1
|
Karim FE, Uddin A, Islam MR, Islam S. Splitting and authentication of the newest retrieved cellulose-rich organic fiber from the exterior layer of Bangladeshi palmyra seed sprouts. RSC Adv 2024; 14:30336-30345. [PMID: 39318466 PMCID: PMC11420619 DOI: 10.1039/d4ra04030a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/25/2024] [Indexed: 09/26/2024] Open
Abstract
The upward trajectory of plant-based cellulosic fiber originating from renewable sources is crucial to visualizing a sustainable future. This article reports a freshly developed and distinctive natural fiber derived from palmyra seed sprout fibers (PSSF) by employing hot water retting. The hygroscopic behavior (moisture regain and content) density, bundle fiber strength, burning behavior, and chemical composition of the fiber are determined using ASTM D1909, ASTM D2654, ASTM D891-18, ASTM D1445, ASTM D1230-22, and TAPPI standards, respectively. Crystallinity, fiber configuration, biological groups, flame behavior, and temperature responsiveness are determined using XRD, SEM, FTIR, burn test, and TGA tests. The reported cellulose-rich textile fiber that contains 64% cellulose with average moisture recovery and content percentages of 14.38% and 12.56%, respectively. The envisioned fiber has an average tensile strength of 11.05 g tex-1, a breaking extension of 1.8 mm, and a crystallinity of 38%. The highest temperature at which the fiber begins to deteriorate is 474 °C. This noble fiber can be utilized to create biological materials, cellulose nanoparticles, composites reinforced with fibers, and more.
Collapse
Affiliation(s)
- Fahmida-E- Karim
- Department of Textile Engineering, Ahsanullah University of Science and Technology (AUST) Dhaka Bangladesh
| | - Afsar Uddin
- Department of Textile Engineering, BGMEA University of Fashion and Technology (BUFT) Dhaka Bangladesh
| | - Md Redwanul Islam
- Department of Textile Engineering, Ahsanullah University of Science and Technology (AUST) Dhaka Bangladesh
| | - Shahidul Islam
- Department of Textile Engineering, BGMEA University of Fashion and Technology (BUFT) Dhaka Bangladesh
| |
Collapse
|
2
|
Tushar SI, Anik HR, Uddin MM, Mandal S, Mohakar V, Rai S, Sharma S. Nanocellulose-based porous lightweight materials with flame retardant properties: A review. Carbohydr Polym 2024; 339:122237. [PMID: 38823907 DOI: 10.1016/j.carbpol.2024.122237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 06/03/2024]
Abstract
This review discusses the development and application of nanocellulose (NC)-aerogels, a sustainable and biodegradable biomaterial, with enhanced flame retardant (FR) properties. NC-aerogels combine the excellent physical and mechanical properties of NC with the low density and thermal conductivity of aerogels, making them promising for thermal insulation and other fields. However, the flammability of NC-aerogels limits their use in some applications, such as electromagnetic interference shielding, oil/water separation, and flame-resistant textiles. The review covers the design, fabrication, modification, and working mechanism of NC porous materials, focusing on how advanced technologies can impart FR properties into them. The review also evaluates the FR performance of NC-aerogels by employing widely recognized tests, such as the limited oxygen index, cone calorimeter, and UL-94. The review also explores the integration of innovative and eco-friendly materials, such as MXene, metal-organic frameworks, dopamine, lignin, and alginate, into NC-aerogels, to improve their FR performance and functionality. The review concludes by outlining the potential, challenges, and limitations of future research on FR NC-aerogels, identifying the obstacles and potential solutions, and understanding the current progress and gaps in the field.
Collapse
Affiliation(s)
- Shariful Islam Tushar
- Department of Design and Merchandising, Oklahoma State University, Stillwater, OK 74078, USA; Department of Apparel Engineering, Bangladesh University of Textiles, Tejgaon, Dhaka 1208, Bangladesh
| | - Habibur Rahman Anik
- Department of Apparel Engineering, Bangladesh University of Textiles, Tejgaon, Dhaka 1208, Bangladesh; Department of Chemistry and Chemical & Biomedical Engineering, University of New Haven, West Haven, CT 06516, USA
| | - Md Mazbah Uddin
- Department of Textiles, Merchandising, and Interiors, University of Georgia, 305 Sanford Dr., Athens, GA 30602, USA.
| | - Sumit Mandal
- Department of Design and Merchandising, Oklahoma State University, Stillwater, OK 74078, USA
| | - Vijay Mohakar
- Department of Textiles, Merchandising, and Interiors, University of Georgia, 305 Sanford Dr., Athens, GA 30602, USA
| | - Smriti Rai
- Department of Textiles, Merchandising, and Interiors, University of Georgia, 305 Sanford Dr., Athens, GA 30602, USA
| | - Suraj Sharma
- Department of Textiles, Merchandising, and Interiors, University of Georgia, 305 Sanford Dr., Athens, GA 30602, USA.
| |
Collapse
|
3
|
Wan J, Luo C. Accumulation of Hydrogen Bonds and van der Waals Interactions Determines Force Response between Two Parallel Cellulose Chains: Steered Molecular Dynamics Simulations. J Phys Chem B 2024; 128:6742-6750. [PMID: 38975805 DOI: 10.1021/acs.jpcb.4c01826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
We investigated the response forces between two parallel cellulose chains during the shearing and tearing processes by using steered molecular dynamics simulations. It was found that there are two logarithmic dependencies between response force and pulling speed in shearing processes but only one in tearing, according to Bell's equation by fitting the f-ln v curve. The mechanism is that there are 2-fold interactions determining the force response between two parallel cellulose chains resisting chain separation during a shearing process. Our results indicate that hydrogen bonds dominate the interchain interactions in the fast pull mode (FPM) for shearing, while van der Waals interactions dominate in the slow pull mode (SPM). For tearing, the one-by-one breaking of hydrogen bonds and van der Waals interactions plays a main role.
Collapse
Affiliation(s)
- Jia Wan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chuanfu Luo
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Ahmad W, Ahmad N, Rasheed S, Nabeel MI, Mohyuddin A, Riaz MT, Hussain D. Silica-Based Superhydrophobic and Superoleophilic Cotton Fabric with Enhanced Self-Cleaning Properties for Oil-Water Separation and Methylene Blue Degradation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5639-5650. [PMID: 38447102 DOI: 10.1021/acs.langmuir.3c02821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Superhydrophobic textiles with multifunctional characteristics are highly desired and have attracted tremendous research attention. This research employs a simple dip-coating method to obtain a fluorine-free silica-based superhydrophobic and superoleophilic cotton fabric. Pristine cotton fabric is coated with SiO2 nanoparticles and octadecylamine. SiO2 nanoparticles are anchored on the cotton fabric to increase surface roughness, and octadecyl amine lowers the surface energy, turning the hydrophilic cotton fabric into superhydrophobic. The designed cotton fabric exhibits a water contact angle of 159° and a sliding angle of 7°. The prepared cotton fabric is characterized by attenuated total reflectance-fourier transform infrared spectroscopy, X-ray diffraction, atomic force microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. In addition, the coated fabric reveals excellent features, including mechanical and chemical stability, superhydrophobicity, superoleophilicity, and the self-cleaning ability. SiO2 nanoparticles and octadecylamine-coated cotton fabric demonstrate exceptional oil-water separation and wastewater remediation performance by degrading the methylene blue solution up to 89% under visible light. The oil-water separation ability is tested against five different oils with more than 90% separation efficiency. This strategy has the advantages of low-cost precursors, a simple and scalable coating method, enhanced superhydrophobicity and superoleophilicity, self-cleaning ability, efficient oil-water separation, and exceptional wastewater remediation performance.
Collapse
Affiliation(s)
- Waqas Ahmad
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Naseer Ahmad
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sufian Rasheed
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Ikram Nabeel
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Abrar Mohyuddin
- Department of Chemistry, The Emerson University, Multan 60000, Pakistan
| | - Muhammad Tariq Riaz
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
5
|
McNeice P, Ten Brink GH, Gran U, Karlson L, Edvinsson R, Feringa BL. Cellulose modification for sustainable polymers: overcoming problems of solubility and processing. RSC SUSTAINABILITY 2024; 2:369-376. [PMID: 38333579 PMCID: PMC10849079 DOI: 10.1039/d3su00317e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024]
Abstract
Two new water-soluble cellulose derivatives were prepared by a two-step transformation with 1,3-propane sultone, followed by either maleic or succinic anhydride, thereby converting cellulose into a more easily processable form. It was found that the solubility was dependent on both the degree of substitution and the chemical properties of the substituents. The water-soluble cellulose has a molecular weight greater than 100 000 g mol-1 and both the morphology and molecular weight can be tuned by varying the reaction conditions. Furthermore, the flexible, two-step nature of the process allows for expansion of this methodology in order to prepare cellulose analogues for different applications.
Collapse
Affiliation(s)
- Peter McNeice
- Advanced Research Centre CBBC, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen Nijenborgh 4 Groningen 9747AG The Netherlands
| | - Gert H Ten Brink
- Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 Groningen 9747AG The Netherlands
| | - Ulrik Gran
- Performance Formulations, Nouryon SE-402 58 Göteborg Sweden
| | - Leif Karlson
- Performance Formulations, Nouryon SE-402 58 Göteborg Sweden
| | - Rolf Edvinsson
- Performance Formulations, Nouryon SE-402 58 Göteborg Sweden
| | - Ben L Feringa
- Advanced Research Centre CBBC, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen Nijenborgh 4 Groningen 9747AG The Netherlands
| |
Collapse
|
6
|
Abzan N, Abbasian A, Jonoobi M, Ghasemi I. Cellulose microfiber extraction from leftover celery pulp: Chemomechanical treatments, structural, morphological, and thermal characterization. Int J Biol Macromol 2023; 253:126834. [PMID: 37714240 DOI: 10.1016/j.ijbiomac.2023.126834] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
Based on the variety of attractive applicability and structural advantages, cellulose is suggested as a sustainable and environmentally-friendly replacement for petroleum-based materials. Therefore, the current study proposed two chemo-mechanical treatments including bleaching with sodium chlorite and sodium hypochlorite for pure cellulose extraction from leftover celery pulp (Apium graveolens var. dulce). The characterizations of the extracted cellulose fibers were measured and analyzed, by using FT-IR, XRD, optical microscopy, FE-SEM, and TGA analysis. FTIR analysis confirmed the successful removal of non-cellulosic and impurities materials by chemical treatments. Analyzing the X-ray diffraction showed that the proposed chemo-mechanical procedures did not have damaging impacts on the cellulose crystalline structure. Microscopies analysis within optical microscopy and FE-SEM indicated that the diameters of the untreated fibers generally ranged from 100 to 150 μm, while for the treated ones, they ranged from 10 to 15 μm. The TGA results illustrated the higher initial degradation temperatures for the treated samples which led to significant improvement in their thermal stabilities.
Collapse
Affiliation(s)
- Nooshin Abzan
- Faculty of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Iran.
| | - Ali Abbasian
- Faculty of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Iran.
| | - Mehdi Jonoobi
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Iran.
| | - Ismaeil Ghasemi
- Faculty of Processing, Iran Polymer and Petrochemical Institute, Iran.
| |
Collapse
|
7
|
Zou Y, Cui W, Chen D, Luo F, Li H. In Situ-Generated Heat-Resistant Hydrogen-Bonded Organic Framework for Remarkably Improving Both Flame Retardancy and Mechanical Properties of Epoxy Composites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47463-47474. [PMID: 37750712 DOI: 10.1021/acsami.3c09197] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
In this study, the heat-resistant hydrogen-bonded organic framework (HOF) material HOF-FJU-1 was synthesized via in situ generation and then used as flame retardants (FRs) to improve the flame retardancy of epoxy resin (EP). HOF-FJU-1 can maintain high crystallinity at 450 °C and thus function as a flame retardant in EP. The study found that HOF-FJU-1 facilitates the improvement of char formation in EP, thus inhibiting heat transfer and smoke release during combustion. For EP/HOF-FJU-1 composites, the in situ-generated HOF-FJU-1 can remarkably improve both the mechanical properties and the flame retardancy of EP. Furthermore, the in situ-generated HOF-FJU-1 has better fire safety than the ex situ-generated HOF-FJU-1 at the same filling content. Thermal degradation products and flame retardation mechanisms in the gas and condensed phases were further investigated. This work demonstrates that the in situ-generated HOF-FJU-1 is promising to be an excellent flame-retardant candidate.
Collapse
Affiliation(s)
- Yingbing Zou
- Engineering Research Center of polymer Green Recycling of Ministry of Education, College of Environment and Resource science, Fujian Normal University, Fuzhou 350007, China
| | - Wenqi Cui
- Engineering Research Center of polymer Green Recycling of Ministry of Education, College of Environment and Resource science, Fujian Normal University, Fuzhou 350007, China
| | - Denglong Chen
- Quangang Petrochemical Research Institute, Fujian Normal University, Quanzhou 362801, China
| | - Fubin Luo
- Engineering Research Center of polymer Green Recycling of Ministry of Education, College of Environment and Resource science, Fujian Normal University, Fuzhou 350007, China
| | - Hongzhou Li
- Engineering Research Center of polymer Green Recycling of Ministry of Education, College of Environment and Resource science, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
8
|
Stepina I, Zheglova Y. Pyrolysis of Pine Wood in the Presence of Boron-Nitrogen Compounds. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6353. [PMID: 37834491 PMCID: PMC10573824 DOI: 10.3390/ma16196353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
The actuality of this research is determined by the intensification of new ways of processing woody biomass. This requires revealing the impact of various physicochemical factors on the thermal degradation of wood biopolymers. Boron-nitrogen surface modifiers are used for wood antisepsis and we decided to check their effect on flammability. The aim of the research was to evaluate the flame retardant effect of boron-nitrogen surface modifiers of wood in an inert atmosphere (nitrogen was used). The evaluation was carried out by thermal analysis of modified and the control pine wood samples. The thermal analysis included thermogravimetry, differential scanning calorimetry and kinetic parameters of thermal degradation. It was found that the flame retardant effect of boron-nitrogen wood surface modifiers was not significantly pronounced in the nitrogen atmosphere. The mechanism of the flame retardant effect of boron-nitrogen compounds is reduced to "shielding" of the surface and increasing the proportion of carbonized residue. On the basis of correlation-regression analysis of kinetic parameters of wood thermodestruction in a nitrogen atmosphere, mathematical models of activation energy dependence on conversion were obtained and substantiated. The developed models can be further applied to calculate the predicted value of wood activation energy in the nitrogen atmosphere at any conversion value.
Collapse
Affiliation(s)
- Irina Stepina
- Department of Building Materials Science, National Research Moscow State University of Civil Engineering, Yaroslavskoe sh. 26, 129337 Moscow, Russia
| | - Yulia Zheglova
- Department of Information Systems, Technologies and Automation in Construction, National Research Moscow State University of Civil Engineering, Yaroslavskoe sh. 26, 129337 Moscow, Russia;
| |
Collapse
|
9
|
Musarurwa H, Tavengwa NT. Recyclable polysaccharide/stimuli-responsive polymer composites and their applications in water remediation. Carbohydr Polym 2022; 298:120083. [DOI: 10.1016/j.carbpol.2022.120083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/20/2022] [Accepted: 09/02/2022] [Indexed: 11/02/2022]
|
10
|
|
11
|
Suo Y, Gao W, Chen Z, Yu Y, Chen T, Li C, Zhang Q, Jiang J. Surface modification of cellulose nanocrystal and its applications in flame retardant epoxy resin. J Appl Polym Sci 2022. [DOI: 10.1002/app.52617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yifan Suo
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Wei Gao
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Zhongwei Chen
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Yuan Yu
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Tingting Chen
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Changxin Li
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Qingwu Zhang
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Juncheng Jiang
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control Nanjing Tech University Nanjing China
| |
Collapse
|
12
|
Usurelu CD, Badila S, Frone AN, Panaitescu DM. Poly(3-hydroxybutyrate) Nanocomposites with Cellulose Nanocrystals. Polymers (Basel) 2022; 14:1974. [PMID: 35631856 PMCID: PMC9144865 DOI: 10.3390/polym14101974] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 01/14/2023] Open
Abstract
Poly(3-hydroxybutyrate) (PHB) is one of the most promising substitutes for the petroleum-based polymers used in the packaging and biomedical fields due to its biodegradability, biocompatibility, good stiffness, and strength, along with its good gas-barrier properties. One route to overcome some of the PHB's weaknesses, such as its slow crystallization, brittleness, modest thermal stability, and low melt strength is the addition of cellulose nanocrystals (CNCs) and the production of PHB/CNCs nanocomposites. Choosing the adequate processing technology for the fabrication of the PHB/CNCs nanocomposites and a suitable surface treatment for the CNCs are key factors in obtaining a good interfacial adhesion, superior thermal stability, and mechanical performances for the resulting nanocomposites. The information provided in this review related to the preparation routes, thermal, mechanical, and barrier properties of the PHB/CNCs nanocomposites may represent a starting point in finding new strategies to reduce the manufacturing costs or to design better technological solutions for the production of these materials at industrial scale. It is outlined in this review that the use of low-value biomass resources in the obtaining of both PHB and CNCs might be a safe track for a circular and bio-based economy. Undoubtedly, the PHB/CNCs nanocomposites will be an important part of a greener future in terms of successful replacement of the conventional plastic materials in many engineering and biomedical applications.
Collapse
Affiliation(s)
| | | | - Adriana Nicoleta Frone
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.D.U.); (S.B.)
| | - Denis Mihaela Panaitescu
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.D.U.); (S.B.)
| |
Collapse
|