1
|
Everett CR, Jiang X, Reus MA, Zhong H, Bitsch M, Plank M, Gallei M, Opel M, Schwartzkopf M, Roth SV, Müller-Buschbaum P. Printed Thin Magnetic Films via Ternary Hybrid Diblock Copolymer Films Containing Magnetic Iron Oxide and Nickel Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:71060-71069. [PMID: 39661934 DOI: 10.1021/acsami.4c18920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Ternary hybrid thin films composed of a diblock copolymer templating two types of nanoparticles (NPs) expand the functionality of binary systems, which renders them interesting for magnetic sensing or magnetic data storage applications. Herein, one-pot slot-die printed hybrid polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) thin films are prepared with iron oxide (magnetite, Fe3O4, d = 20 nm) and nickel NPs (Ni, d = 46 nm) in one step by the advanced slot-die coating technique, which facilitates upscaling of fabrication. The evolution of the hybrid film morphology is probed with in situ grazing-incidence small-angle X-ray scattering and compared to that of a PS-b-PMMA thin film without NPs. Additionally, scanning electron microscopy and atomic force microscopy are used to analyze the surface morphology of hybrid films with an increasing NP content after deposition. It is found that different from the pure PS-b-PMMA thin film drying kinetics with five stages, the ternary hybrid film formation can be divided into four stages that are attributed first to the wet film, solvent evaporation, a subsequent rapid coalescence and microphase separation, and finally the dry film. The magnetic properties of the hybrid thin films are investigated with a superconducting quantum interference device magnetometer. All hybrid films are ferrimagnetic and with increasing nickel weight percent in the hybrid film, while the iron oxide weight percent is kept constant, the magnetic properties of the film are modulated accordingly.
Collapse
Affiliation(s)
- Christopher R Everett
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
| | - Xinyu Jiang
- Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
| | - Manuel A Reus
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
| | - Huaying Zhong
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
| | - Martin Bitsch
- Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany
| | - Martina Plank
- Ernst-Berl-Institute for Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Markus Gallei
- Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany
- Saarene, Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123 Saarbrücken, Germany
| | - Matthias Opel
- Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meissner-Straße 8, 85748 Garching, Germany
| | | | - Stephan V Roth
- Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Peter Müller-Buschbaum
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
| |
Collapse
|
2
|
Jambhulkar S, Ravichandran D, Zhu Y, Thippanna V, Ramanathan A, Patil D, Fonseca N, Thummalapalli SV, Sundaravadivelan B, Sun A, Xu W, Yang S, Kannan AM, Golan Y, Lancaster J, Chen L, Joyee EB, Song K. Nanoparticle Assembly: From Self-Organization to Controlled Micropatterning for Enhanced Functionalities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306394. [PMID: 37775949 DOI: 10.1002/smll.202306394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Nanoparticles form long-range micropatterns via self-assembly or directed self-assembly with superior mechanical, electrical, optical, magnetic, chemical, and other functional properties for broad applications, such as structural supports, thermal exchangers, optoelectronics, microelectronics, and robotics. The precisely defined particle assembly at the nanoscale with simultaneously scalable patterning at the microscale is indispensable for enabling functionality and improving the performance of devices. This article provides a comprehensive review of nanoparticle assembly formed primarily via the balance of forces at the nanoscale (e.g., van der Waals, colloidal, capillary, convection, and chemical forces) and nanoparticle-template interactions (e.g., physical confinement, chemical functionalization, additive layer-upon-layer). The review commences with a general overview of nanoparticle self-assembly, with the state-of-the-art literature review and motivation. It subsequently reviews the recent progress in nanoparticle assembly without the presence of surface templates. Manufacturing techniques for surface template fabrication and their influence on nanoparticle assembly efficiency and effectiveness are then explored. The primary focus is the spatial organization and orientational preference of nanoparticles on non-templated and pre-templated surfaces in a controlled manner. Moreover, the article discusses broad applications of micropatterned surfaces, encompassing various fields. Finally, the review concludes with a summary of manufacturing methods, their limitations, and future trends in nanoparticle assembly.
Collapse
Affiliation(s)
- Sayli Jambhulkar
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuxiang Zhu
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Varunkumar Thippanna
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dhanush Patil
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Nathan Fonseca
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Barath Sundaravadivelan
- Department of Mechanical and Aerospace Engineering, School for Engineering of Matter, Transport & Energy, Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, AZ, 85281, USA
| | - Allen Sun
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Weiheng Xu
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University (ASU), Tempe, AZ, 85287, USA
| | - Arunachala Mada Kannan
- The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuval Golan
- Department of Materials Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Jessica Lancaster
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Lei Chen
- Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA
| | - Erina B Joyee
- Mechanical Engineering and Engineering Science, University of North Carolina, Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Kenan Song
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia (UGA), Athens, GA, 30602, USA
- Adjunct Professor of School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| |
Collapse
|
3
|
Shi L, Yu F, Ding M, Hang Z, Feng Y, Yan A, Dong H. Connection of ssDNA to Silicon Substrate Based on a Mechano-Chemical Method. MICROMACHINES 2023; 14:1134. [PMID: 37374720 DOI: 10.3390/mi14061134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
A novel fabrication process to connect single-stranded DNA (ssDNA)to a silicon substrate based on a mechano-chemical method is proposed. In this method, the single crystal silicon substrate was mechanically scribed in a diazonium solution of benzoic acid using a diamond tip which formed silicon free radicals. These combined covalently with organic molecules of diazonium benzoic acid contained in the solution to form self-assembled films (SAMs). The SAMs were characterized and analyzed by AFM, X-ray photoelectron spectroscopy and infrared spectroscopy. The results showed that the self-assembled films were covalently connected to the silicon substrate by Si-C. In this way, a nano-level benzoic acid coupling layer was self-assembled on the scribed area of the silicon substrate. The ssDNA was further covalently connected to the silicon surface by the coupling layer. Fluorescence microscopy showed that ssDNA had been connected, and the influence of ssDNA concentration on the fixation effect was studied. The fluorescence brightness gradually increased with the gradual increase in ssDNA concentration from 5 μmol/L to 15 μmol/L, indicating that the fixed amount of ssDNA increased. However, when the concentration of ssDNA increased from 15 μmol/L to 20 μmol/L, the detected fluorescence brightness decreased, indicating that the hybridization amount decreased. The reason may be related to the spatial arrangement of DNA and the electrostatic repulsion between DNA molecules. It was also found that ssDNA junctions on the silicon surface were not very uniform, which was related to many factors, such as the inhomogeneity of the self-assembled coupling layer, the multi-step experimental operation and the pH value of the fixation solution.
Collapse
Affiliation(s)
- Liqiu Shi
- School of Mechanical and Automotive Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang Engineering Research Center for Advanced Hydraulic Equipment, Hangzhou 310018, China
| | - Feng Yu
- School of Mechanical and Automotive Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Mingming Ding
- School of Mechanical and Automotive Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang Engineering Research Center for Advanced Hydraulic Equipment, Hangzhou 310018, China
| | - Zhouming Hang
- School of Mechanical and Automotive Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang Engineering Research Center for Advanced Hydraulic Equipment, Hangzhou 310018, China
| | - Yan Feng
- School of Mechanical and Automotive Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Aifang Yan
- School of Mechanical and Automotive Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Hongji Dong
- School of Mechanical and Automotive Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| |
Collapse
|
6
|
Fabrication of Multiscale 1-Octadecene Monolayer Patterned Arrays Based on a Chemomechanical Method. Processes (Basel) 2022. [DOI: 10.3390/pr10061090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A controlled and self-assembled micromachining system was built to fabricate a mico/nanoscale monolayer patterned array on a silicon surface using a diamond tip. The process was as follows: (1) we preprocessed a silicon wafer to obtain a hydrogen-terminated silicon surface; (2) we scratched three rectangular arrays of 10 μm × 3 μm with a spacing of 2 μm on the silicon surface with a diamond tip in 1-octadecene solution; the Si-H bonds were broken, and silicon free radicals were formed; (3) the 1-octadecene molecules were connected with silicon atoms based on Si-C covalent bonds, and the 1-octadecene nano monolayer was self-assembled on the patterned arrays of the silicon surface. Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Sessile water contact angles were used to detect and characterize the self-assembled monolayers (SAMs). The XPS results showed that the Si2p peak and the O1s peak were significantly decreased after self-assembly; however, the C1s peak was successively significantly increased. Sessile water contact angles showed that the hydrophilicity was weakened after the formation of 1-octenecene SAMs on the silicon substrate. The nanofriction of the sample was measured with AFM. The change in nanofriction also demonstrated that the SAMs were formed in accordance with the patterned array. We demonstrated that, by using this method, self-assembled multiscale structures on silicon substrate can be formed quickly and conveniently.
Collapse
|