1
|
Liang H, Chen L, Zhang H, Liu X. Simple Method to Generate Droplets Spontaneously by a Superhydrophobic Double-Layer Split Nozzle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4730-4738. [PMID: 36961251 DOI: 10.1021/acs.langmuir.3c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Given the problems of traditional droplet generation devices, such as the complex structure and processing technology, difficulty in droplet separation, and low transfer accuracy, we propose a low-adhesion superhydrophobic double-layer split nozzle (SDSN). It realizes spontaneous droplet generation by using an interfacial tension force inside the micro-hole to drive the droplet snap-off. It successfully achieves stable and highly consistent droplets on the micrometer-scale circular micro-hole. Droplets with a volume in the range of 0.65-1.75 ± 0.007 μL can be precisely achieved by adjusting the hole size of the SDSN from 100 to 500 μm. The SDSN is prepared by conventional mechanical drilling, chemical etching, and low surface energy modification. Compared with traditional droplet generation devices, no photolithography process is required, and the cost is lower. Moreover, the droplets can be obtained directly without any post-processing, avoiding the problem of separating droplets from another solution. The stability of SDSN is good, and the droplet volume is not affected by the fluctuation of external conditions. The rate of droplet generation can be freely adjusted by adjusting the speed of the electronic microinjection pump without affecting the droplet volume. It enables efficient droplet transfer without liquid residue, which improves the transfer accuracy and helps to save the use of expensive reagents. This simple but effective structure will be of great help to make breakthroughs in next-generation spontaneous droplet generation, liquid transport, and digital microfluidic devices.
Collapse
Affiliation(s)
- Hao Liang
- MEMS Center, Harbin Institute of Technology, Harbin 150001, China
| | - Liang Chen
- MEMS Center, Harbin Institute of Technology, Harbin 150001, China
| | - Haifeng Zhang
- Key Laboratory of Micro-Systems and Micro-structures Manufacturing, Ministry of Education, Harbin 150001, China
- MEMS Center, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaowei Liu
- Key Laboratory of Micro-Systems and Micro-structures Manufacturing, Ministry of Education, Harbin 150001, China
- MEMS Center, Harbin Institute of Technology, Harbin 150001, China
- State Key Laboratory of Urban Water Resource & Environment (Harbin Institute of Technology), Harbin 150001, China
| |
Collapse
|
2
|
A microfluidic study of bubble formation and coalescence tuned by dynamic adsorption of SDS and proteins. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
3
|
Kim HH, Cho Y, Baek D, Rho KH, Park SH, Lee S. Parallelization of Microfluidic Droplet Junctions for Ultraviscous Fluids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205001. [PMID: 36310131 DOI: 10.1002/smll.202205001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The parallelization of multiple microfluidic droplet junctions has been successfully achieved so that the production throughput of the uniform microemulsions/particles has witnessed considerable progress. However, these advancements have been observed only in the case of a low viscous fluid (viscosity of 10-2 -10-3 Pa s). This study designs and fabricates a microfluidic device, enabling a uniform micro-emulsification of an ultraviscous fluid (viscosity of 3.5 Pa s) with a throughput of ≈330 000 droplets per hour. Multiple T-junctions of a dispersed oil phase, split from a single inlet, are connected into the single post-crossflow channel of a continuous water phase. In the proposed device, the continuous water phase undergoes a series circuit, wherein the resistances are continuously accumulated. The independent corrugations of the dispersed oil phase channel, under the theoretical guidance, compromise such increased resistances; the ratio of water to oil flow rates at each junction becomes consistent across T-junctions. Owing to the design being based on a fully 2D interconnection, single-step soft lithography is sufficient for developing the full device. This easy-to-craft architecture contrasts with the previous approach, wherein complicated 3D interconnections of the multiple junctions are involved, thereby facilitating the rapid uptake of high throughput droplet microfluidics for experts and newcomers alike.
Collapse
Affiliation(s)
- Hyeon Ho Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - YongDeok Cho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dongjae Baek
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Kyung Hun Rho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sung Hun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Seungwoo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering, Department of Biomicrosystem Technology and KU Photonics Center, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
4
|
Zhan W, Liu Z, Jiang S, Zhu C, Ma Y, Fu T. Comparison of formation of bubbles and droplets in step-emulsification microfluidic devices. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Liu Z, Liu X, Jiang S, Zhu C, Ma Y, Fu T. Effects on droplet generation in step-emulsification microfluidic devices. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Wu J, Yadavali S, Lee D, Issadore DA. Scaling up the throughput of microfluidic droplet-based materials synthesis: A review of recent progress and outlook. APPLIED PHYSICS REVIEWS 2021; 8:031304. [PMID: 34484549 PMCID: PMC8293697 DOI: 10.1063/5.0049897] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/07/2021] [Indexed: 05/14/2023]
Abstract
The last two decades have witnessed tremendous progress in the development of microfluidic chips that generate micrometer- and nanometer-scale materials. These chips allow precise control over composition, structure, and particle uniformity not achievable using conventional methods. These microfluidic-generated materials have demonstrated enormous potential for applications in medicine, agriculture, food processing, acoustic, and optical meta-materials, and more. However, because the basis of these chips' performance is their precise control of fluid flows at the micrometer scale, their operation is limited to the inherently low throughputs dictated by the physics of multiphasic flows in micro-channels. This limitation on throughput results in material production rates that are too low for most practical applications. In recent years, however, significant progress has been made to tackle this challenge by designing microchip architectures that incorporate multiple microfluidic devices onto single chips. These devices can be operated in parallel to increase throughput while retaining the benefits of microfluidic particle generation. In this review, we will highlight recent work in this area and share our perspective on the key unsolved challenges and opportunities in this field.
Collapse
Affiliation(s)
- Jingyu Wu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
7
|
Liu Z, Duan C, Jiang S, Zhu C, Ma Y, Fu T. Microfluidic step emulsification techniques based on spontaneous transformation mechanism: A review. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Ma Z, Zhao Y, Khalid N, Shu G, Neves MA, Kobayashi I, Nakajima M. Comparative study of oil-in-water emulsions encapsulating fucoxanthin formulated by microchannel emulsification and high-pressure homogenization. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Gelin P, Bihi I, Ziemecka I, Thienpont B, Christiaens J, Hellemans K, Maes D, De Malsche W. Microfluidic Device for High-Throughput Production of Monodisperse Droplets. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pierre Gelin
- μFlow group, Department of Bioengineering Sciences, Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels 1050 , Belgium
| | - Ilyesse Bihi
- μFlow group, Department of Bioengineering Sciences, Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels 1050 , Belgium
| | - Iwona Ziemecka
- μFlow group, Department of Bioengineering Sciences, Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels 1050 , Belgium
| | - Benoit Thienpont
- μFlow group, Department of Bioengineering Sciences, Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels 1050 , Belgium
| | - Jo Christiaens
- μFlow group, Department of Bioengineering Sciences, Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels 1050 , Belgium
| | - Karine Hellemans
- Unit Diabetes Pathology and Therapy, Diabetes Research Center, Vrije Universiteit Brussel, Brussels 1000, Belgium
| | - Dominique Maes
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Wim De Malsche
- μFlow group, Department of Bioengineering Sciences, Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels 1050 , Belgium
| |
Collapse
|
10
|
Monodisperse droplet formation by spontaneous and interaction based mechanisms in partitioned EDGE microfluidic device. Sci Rep 2019; 9:7820. [PMID: 31127142 PMCID: PMC6534564 DOI: 10.1038/s41598-019-44239-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/09/2019] [Indexed: 01/01/2023] Open
Abstract
The partitioned EDGE droplet generation device is known for its’ high monodisperse droplet formation frequencies in two distinct pressure ranges, and an interesting candidate for scale up of microfluidic emulsification devices. In the current study, we test various continuous and dispersed phase properties and device geometries to unravel how the device spontaneously forms small monodisperse droplets (6–18 μm) at low pressures, and larger monodisperse droplets (>28 μm) at elevated pressures. For the small droplets, we show that the continuous phase inflow in the droplet formation unit largely determines droplet formation behaviour and the resulting droplet size and blow-up pressure. This effect was not considered as a factor of significance for spontaneous droplet formation devices that are mostly characterised by capillary numbers in literature. We then show for the first time that the formation of larger droplets is caused by physical interaction between neighbouring droplets, and highly dependent on device geometry. The insights obtained here are an essential step toward industrial emulsification based on microfluidic devices.
Collapse
|
11
|
Lian J, Luo X, Huang X, Wang Y, Xu Z, Ruan X. Investigation of microfluidic co-flow effects on step emulsification: Interfacial tension and flow velocities. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Khalid N, Kobayashi I, Neves MA, Uemura K, Nakajima M, Nabetani H. Encapsulation of β-sitosterol plus γ-oryzanol in O/W emulsions: Formulation characteristics and stability evaluation with microchannel emulsification. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2017.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Vladisavljević GT. Structured microparticles with tailored properties produced by membrane emulsification. Adv Colloid Interface Sci 2015; 225:53-87. [PMID: 26329593 DOI: 10.1016/j.cis.2015.07.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/03/2015] [Accepted: 07/05/2015] [Indexed: 01/30/2023]
Abstract
This paper provides an overview of membrane emulsification routes for fabrication of structured microparticles with tailored properties for specific applications. Direct (bottom-up) and premix (top-down) membrane emulsification processes are discussed including operational, formulation and membrane factors that control the droplet size and droplet generation regimes. A special emphasis was put on different methods of controlled shear generation on membrane surface, such as cross flow on the membrane surface, swirl flow, forward and backward flow pulsations in the continuous phase and membrane oscillations and rotations. Droplets produced by membrane emulsification can be used for synthesis of particles with versatile morphology (solid and hollow, matrix and core/shell, spherical and non-spherical, porous and coherent, composite and homogeneous), which can be surface functionalised and coated or loaded with macromolecules, nanoparticles, quantum dots, drugs, phase change materials and high molecular weight gases to achieve controlled/targeted drug release and impart special optical, chemical, electrical, acoustic, thermal and magnetic properties. The template emulsions including metal-in-oil, solid-in-oil-in-water, oil-in-oil, multilayer, and Pickering emulsions can be produced with high encapsulation efficiency of encapsulated materials and narrow size distribution and transformed into structured particles using a variety of solidification processes, such as polymerisation (suspension, mini-emulsion, interfacial and in-situ), ionic gelation, chemical crosslinking, melt solidification, internal phase separation, layer-by-layer electrostatic deposition, particle self-assembly, complex coacervation, spray drying, sol-gel processing, and molecular imprinting. Particles fabricated from droplets produced by membrane emulsification include nanoclusters, colloidosomes, carbon aerogel particles, nanoshells, polymeric (molecularly imprinted, hypercrosslinked, Janus and core/shell) particles, solder metal powders and inorganic particles. Membrane emulsification devices operate under constant temperature due to low shear rates on the membrane surface, which range from (1-10)×10(3) s(-1) in a direct process to (1-10)×10(4) s(-1) in a premix process.
Collapse
Affiliation(s)
- Goran T Vladisavljević
- Chemical Engineering Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom; Laboratory of Chemical Dynamics, Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia.
| |
Collapse
|
14
|
Ekanem EE, Nabavi SA, Vladisavljević GT, Gu S. Structured Biodegradable Polymeric Microparticles for Drug Delivery Produced Using Flow Focusing Glass Microfluidic Devices. ACS APPLIED MATERIALS & INTERFACES 2015; 7:23132-23143. [PMID: 26423218 DOI: 10.1021/acsami.5b06943] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Biodegradable poly(DL-lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) microparticles with tunable size, shape, internal structure and surface morphology were produced by counter-current flow focusing in axisymmetric (3D) glass capillary devices. The dispersed phase was composed of 0.5-2 wt % polymer solution in a volatile organic solvent (ethyl acetate or dichloromethane) and the continuous phase was 5 wt % aqueous poly(vinyl alcohol) solution. The droplets with a coefficient of variation in dripping regime below 2.5% were evaporated to form polymeric particles with uniform sizes ranging between 4 and 30 μm. The particle microstructure and surface roughness were modified by adding nanofiller (montmorillonite nanoclay) or porogen (2-methylpentane) in the dispersed phase to form less porous polymer matrix or porous particles with golf-ball-like dimpled surface, respectively. The presence of 2-4 wt % nanoclay in the host polymer significantly reduced the release rate of paracetamol and prevented the early burst release, as a result of reduced polymer porosity and tortuous path for the diffusing drug molecules. Numerical modeling results using the volume of fluid-continuum surface force model agreed well with experimental behavior and revealed trapping of nanoclay particles in the dispersed phase upstream of the orifice at low dispersed phase flow rates and for 4 wt % nanoclay content, due to vortex formation. Janus PLA/PCL (polycaprolactone) particles were produced by solvent evaporation-induced phase separation within organic phase droplets containing 3% (v/v) PLA/PCL (30/70 or 70/30) mixture in dichloromethane. A strong preferential adsorption of Rhodamine 6G dye onto PLA was utilized to identify PLA portions of the Janus particles by confocal laser scanning microscopy (CLSM). Uniform hemispherical PCL particles were produced by dissolution of PLA domes with acetone.
Collapse
Affiliation(s)
- Ekanem E Ekanem
- Department of Chemical Engineering, Loughborough University , Loughborough, LE11 3TU, United Kingdom
| | - Seyed Ali Nabavi
- School of Energy, Environment & Agrifood (SEEA), Department of Offshore, Process & Energy Engineering, Cranfield University , Cranfield, MK43 0AL, United Kingdom
| | - Goran T Vladisavljević
- Department of Chemical Engineering, Loughborough University , Loughborough, LE11 3TU, United Kingdom
| | - Sai Gu
- Department of Chemical and Process Engineering, Faculty of Engineering and Physical Sciences, University of Surrey , Guildford, GU2 7XH, United Kingdom
| |
Collapse
|
15
|
Sahin S, Schroën K. Partitioned EDGE devices for high throughput production of monodisperse emulsion droplets with two distinct sizes. LAB ON A CHIP 2015; 15:2486-95. [PMID: 25953515 DOI: 10.1039/c5lc00379b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We present a novel microfluidic EDGE (Edge based Droplet GEneration) device with regularly spaced micron-sized partitions, which is aimed at upscaling of o/w emulsion preparation. By this means, remarkably higher pressure stability was obtained, and two orders of magnitude higher droplet formation frequency was achieved compared to regular EDGE devices. Interestingly, we observed two different monodisperse droplet formation regimes for plateaus that were 2 micrometres in height, and to the best of our knowledge, no other microfluidic device has this ability. The average diameters of the droplets were 9 and 28 μm, both with a coefficient of variation (CV) below 5%. Based on the experimental throughput and a plausible mass parallelization scenario, the amount of hexadecane that can be emulsified is estimated to be between 6 and 25 m(3) m(-2) h(-1) depending on the required droplet size. With its high throughput potential and ability to produce uniform droplets of two different sizes, the partitioned EDGE device is promising for industrial emulsion production.
Collapse
Affiliation(s)
- Sami Sahin
- Wageningen University, Food Process Engineering Group, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| | | |
Collapse
|
16
|
|
17
|
Sahin S, Sawalha H, Schroën K. High throughput production of double emulsions using packed bed premix emulsification. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.08.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
|
19
|
Vladisavljević GT, Khalid N, Neves MA, Kuroiwa T, Nakajima M, Uemura K, Ichikawa S, Kobayashi I. Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery. Adv Drug Deliv Rev 2013; 65:1626-63. [PMID: 23899864 DOI: 10.1016/j.addr.2013.07.017] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 01/09/2023]
Abstract
Microfluidics is an emerging and promising interdisciplinary technology which offers powerful platforms for precise production of novel functional materials (e.g., emulsion droplets, microcapsules, and nanoparticles as drug delivery vehicles- and drug molecules) as well as high-throughput analyses (e.g., bioassays, detection, and diagnostics). In particular, multiphase microfluidics is a rapidly growing technology and has beneficial applications in various fields including biomedicals, chemicals, and foods. In this review, we first describe the fundamentals and latest developments in multiphase microfluidics for producing biocompatible materials that are precisely controlled in size, shape, internal morphology and composition. We next describe some microfluidic applications that synthesize drug molecules, handle biological substances and biological units, and imitate biological organs. We also highlight and discuss design, applications and scale up of droplet- and flow-based microfluidic devices used for drug discovery and delivery.
Collapse
|
20
|
El-Abbassi A, Neves MA, Kobayashi I, Hafidi A, Nakajima M. Preparation and characterization of highly stable monodisperse argan oil-in-water emulsions using microchannel emulsification. EUR J LIPID SCI TECH 2012. [DOI: 10.1002/ejlt.201200085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Abstract
Monodisperse polyethylene glycol (PEG) microspheres were prepared using microfluidic chips coupled with photopolymerization technique. Based on sheath effect in T-junction microfluidic channels, dispersions of uniform PEG prepolymer droplets in silicon oil are formed. The diameters of the formed PEG prepolymer droplets in the dispersions were controlled very well by altering the relative sheath/sample flow rate ratios. After photopolymerization under UV exposure, the uniform PEG prepolymer droplets isolated by silicon oil underwent photocrosslinking and became monodisperse PEG microspheres.
Collapse
|
22
|
Seemann R, Brinkmann M, Pfohl T, Herminghaus S. Droplet based microfluidics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:016601. [PMID: 22790308 DOI: 10.1088/0034-4885/75/1/016601] [Citation(s) in RCA: 488] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Droplet based microfluidics is a rapidly growing interdisciplinary field of research combining soft matter physics, biochemistry and microsystems engineering. Its applications range from fast analytical systems or the synthesis of advanced materials to protein crystallization and biological assays for living cells. Precise control of droplet volumes and reliable manipulation of individual droplets such as coalescence, mixing of their contents, and sorting in combination with fast analysis tools allow us to perform chemical reactions inside the droplets under defined conditions. In this paper, we will review available drop generation and manipulation techniques. The main focus of this review is not to be comprehensive and explain all techniques in great detail but to identify and shed light on similarities and underlying physical principles. Since geometry and wetting properties of the microfluidic channels are crucial factors for droplet generation, we also briefly describe typical device fabrication methods in droplet based microfluidics. Examples of applications and reaction schemes which rely on the discussed manipulation techniques are also presented, such as the fabrication of special materials and biophysical experiments.
Collapse
Affiliation(s)
- Ralf Seemann
- Experimental Physics, Saarland University, D-66123 Saarbrücken, Germany.
| | | | | | | |
Collapse
|
23
|
Maan AA, Schroën K, Boom R. Spontaneous droplet formation techniques for monodisperse emulsions preparation – Perspectives for food applications. J FOOD ENG 2011. [DOI: 10.1016/j.jfoodeng.2011.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
|
25
|
Liu W, Yang XL, Ho WSW. Preparation of uniform-sized multiple emulsions and micro/nano particulates for drug delivery by membrane emulsification. J Pharm Sci 2010; 100:75-93. [PMID: 20589949 DOI: 10.1002/jps.22272] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/20/2010] [Accepted: 05/21/2010] [Indexed: 12/17/2022]
Abstract
Much attention has in recent years been paid to fine applications of drug delivery systems, such as multiple emulsions, micro/nano solid lipid and polymer particles (spheres or capsules). Precise control of particle size and size distribution is especially important in such fine applications. Membrane emulsification can be used to prepare uniform-sized multiple emulsions and micro/nano particulates for drug delivery. It is a promising technique because of the better control of size and size distribution, the mildness of the process, the low energy consumption, easy operation and simple equipment, and amendable for large scale production. This review describes the state of the art of membrane emulsification in the preparation of monodisperse multiple emulsions and micro/nano particulates for drug delivery in recent years. The principles, influence of process parameters, advantages and disadvantages, and applications in preparing different types of drug delivery systems are reviewed. It can be concluded that the membrane emulsification technique in preparing emulsion/particulate products for drug delivery will further expand in the near future in conjunction with more basic investigations on this technique.
Collapse
Affiliation(s)
- Wei Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | |
Collapse
|
26
|
|
27
|
Chuah AM, Kuroiwa T, Kobayashi I, Zhang X, Nakajima M. Preparation of uniformly sized alginate microspheres using the novel combined methods of microchannel emulsification and external gelation. Colloids Surf A Physicochem Eng Asp 2009. [DOI: 10.1016/j.colsurfa.2009.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Continuous production of solid lipid nanoparticles by liquid flow-focusing and gas displacing method in microchannels. Chem Eng Sci 2009. [DOI: 10.1016/j.ces.2009.06.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Shirasu porous glass (SPG) membrane emulsification in the absence of shear flow at the membrane surface: Influence of surfactant type and concentration, viscosities of dispersed and continuous phases, and transmembrane pressure. J Memb Sci 2009. [DOI: 10.1016/j.memsci.2008.11.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Zhang S, Yun J, Shen S, Chen Z, Yao K, Chen J, Chen B. Formation of solid lipid nanoparticles in a microchannel system with a cross-shaped junction. Chem Eng Sci 2008. [DOI: 10.1016/j.ces.2008.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Dragosavac MM, Sovilj MN, Kosvintsev SR, Holdich RG, Vladisavljević GT. Controlled production of oil-in-water emulsions containing unrefined pumpkin seed oil using stirred cell membrane emulsification. J Memb Sci 2008. [DOI: 10.1016/j.memsci.2008.05.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|