1
|
Yoshikawa O, Basoli V, Boschetto F, Rondinella A, Lanzutti A, Zhu W, Greco E, Thieringer FM, Xu H, Marin E. Simple Electrospinning Method for Biocompatible Polycaprolactone β-Carotene Scaffolds: Advantages and Limitations. Polymers (Basel) 2024; 16:1371. [PMID: 38794563 PMCID: PMC11125378 DOI: 10.3390/polym16101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, electrospun scaffolds were fabricated using polycaprolactone (PCL) loaded with varying concentrations of β-carotene (1.2%, 2.4%, and 3.6%) via the electrospinning technique. The electrospinning process involved the melting of PCL in acetic acid, followed by the incorporation of β-carotene powder under constant stirring. Raman spectroscopy revealed a homogeneous distribution of β-carotene within the PCL matrix. However, the β-carotene appeared in particulate form, rather than being dissolved and blended with the PCL matrix, a result also confirmed by thermogravimetric analysis. Additionally, X-ray diffraction analysis indicated a decrease in crystallinity with increasing β-carotene concentration. Mechanical testing of the scaffolds demonstrated an increase in ultimate strain, accompanied by a reduction in ultimate stress, indicating a potential plasticizing effect. Moreover, antimicrobial assays revealed a marginal antibacterial effect against Escherichia coli for scaffolds with higher β-carotene concentrations. Conversely, preliminary biological assessment using KUSA-A1 mesenchymal cells indicated enhanced cellular proliferation in response to the scaffolds, suggesting the potential biocompatibility and cell-stimulating properties of β-carotene-loaded PCL scaffolds. Overall, this study provides insights into the fabrication and characterization of electrospun PCL scaffolds containing β-carotene, laying the groundwork for further exploration in tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Orion Yoshikawa
- Ceramic Physics Laboratory, Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (O.Y.); (W.Z.)
| | - Valentina Basoli
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167C, 4123 Allschwil, Switzerland; (V.B.); (F.M.T.)
| | - Francesco Boschetto
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, TX 75219, USA;
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alfredo Rondinella
- Polytechnic Department of Engineering and Architecture, University of Udine, 33100 Udine, Italy; (A.R.); (A.L.)
| | - Alex Lanzutti
- Polytechnic Department of Engineering and Architecture, University of Udine, 33100 Udine, Italy; (A.R.); (A.L.)
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (O.Y.); (W.Z.)
| | - Enrico Greco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Trieste Research Unity, Via G. Giusti 9, 50121 Firenze, Italy
| | - Florian Markus Thieringer
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167C, 4123 Allschwil, Switzerland; (V.B.); (F.M.T.)
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Huaizhong Xu
- Department of Biobased Materials Science, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan;
| | - Elia Marin
- Polytechnic Department of Engineering and Architecture, University of Udine, 33100 Udine, Italy; (A.R.); (A.L.)
- Biomaterials Engineering Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Materials Innovation Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| |
Collapse
|
2
|
González-Peña MA, Ortega-Regules AE, Anaya de Parrodi C, Lozada-Ramírez JD. Chemistry, Occurrence, Properties, Applications, and Encapsulation of Carotenoids-A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020313. [PMID: 36679026 PMCID: PMC9865331 DOI: 10.3390/plants12020313] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 05/13/2023]
Abstract
Carotenoids are natural lipophilic pigments and antioxidants that are present in many fruits and vegetables. The consumption of carotenoids is correlated with positive health effects and a decreased risk of several chronic diseases. Provitamin A carotenoids (β-carotene, α-carotene, γ-carotene, and β-cryptoxanthin) are essential for the development and maintenance of sight. β-carotene, α-carotene, zeaxanthin, β-cryptoxanthin, lutein, and lycopene have high antioxidant activity and promote free radical scavenging, which helps protect against chronic diseases. However, carotenoids are chemically unstable and prone to oxidation in the presence of light, heat, oxygen, acids, and metal ions. The use of carotenoids in the food industry is limited due to their poor solubility in water, bioavailability and quick release. Encapsulation techniques, such as microencapsulation, nanoencapsulation and supercritical encapsulation, are used to overcome these problems. The objective of this paper is to describe the characteristics and potential health benefits of carotenoids and advances in encapsulation techniques for protecting and enhancing their solubility or bioavailability.
Collapse
Affiliation(s)
- Marco Antonio González-Peña
- Departmennt of Chemical, Food and Environmental Engineerig, Universidad de las Américas Puebla, Cholula, Puebla 72810, Mexico
| | - Ana Eugenia Ortega-Regules
- Department of Health Sciences, Universidad de las Américas Puebla, Cholula, Puebla 72810, Mexico
- Correspondence: (A.E.O.-R.); (C.A.d.P.); (J.D.L.-R.)
| | - Cecilia Anaya de Parrodi
- Department of Chemical and Biological Sciences, Universidad de las Américas Puebla, Cholula, Puebla 72810, Mexico
- Correspondence: (A.E.O.-R.); (C.A.d.P.); (J.D.L.-R.)
| | - José Daniel Lozada-Ramírez
- Department of Chemical and Biological Sciences, Universidad de las Américas Puebla, Cholula, Puebla 72810, Mexico
- Correspondence: (A.E.O.-R.); (C.A.d.P.); (J.D.L.-R.)
| |
Collapse
|
3
|
Sodeifian G, Usefi MMB. Solubility, Extraction, and Nanoparticles Production in Supercritical Carbon Dioxide: A Mini‐Review. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202200020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gholamhossein Sodeifian
- University of Kashan Faculty of Engineering, Department of Chemical Engineering 87317-53153 Kashan Iran
- University of Kashan Laboratory of Supercritical Fluids and Nanotechnology 87317-53153 Kashan Iran
| | - Mohammad Mahdi Behvand Usefi
- University of Kashan Faculty of Engineering, Department of Chemical Engineering 87317-53153 Kashan Iran
- University of Kashan Laboratory of Supercritical Fluids and Nanotechnology 87317-53153 Kashan Iran
| |
Collapse
|
4
|
Extraction and encapsulation of squalene-rich cod liver oil using supercritical CO2 process for enhanced oxidative stability. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Ghosh S, Sarkar T, Das A, Chakraborty R. Natural colorants from plant pigments and their encapsulation: An emerging window for the food industry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112527] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Aguiar GPS, Magro CD, Carvalho GO, Santos AE, Lanza M, Oliveira JV. Co-precipitation of anthocyanin in PHBV by the SEDS technique. Journal of Food Science and Technology 2021; 58:4217-4224. [PMID: 34538905 DOI: 10.1007/s13197-020-04895-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/24/2020] [Accepted: 11/06/2020] [Indexed: 10/22/2022]
Abstract
Anthocyanins are pigments of plant origin responsible for most blue, purple and all shades of red found in flowers, fruits and some stems and roots of plants, besides comprising a class of potent antioxidant phenolic compounds. Due to the relevance of anthocyanins this work aims to encapsulate anthocyanin extracted from the wine lees through the Solution Enhanced Dispersion by Supercritical Fluids (SEDS) technique and to evaluate the thermal stability of encapsulated versus non-encapsulated anthocyanin. The highest encapsulation efficiency obtained was approximately 66%. Submicron size particles ranging from 0.22 to 0.30 μm were obtained and they were free of residual organic solvent. In relation to the thermal stability, it was verified that the particles degraded about six times less than the non-encapsulated sample, which allows numerous applications since one of the barriers of anthocyanin use is its sensitivity to high temperatures.
Collapse
Affiliation(s)
- Gean P S Aguiar
- Department of Chemical and Food Engineering, UFSC, Florianópolis, SC 88040-900 Brazil
| | - Camila Dal Magro
- Department of Chemical and Food Engineering, UFSC, Florianópolis, SC 88040-900 Brazil
| | - Gabriel O Carvalho
- Department of Chemical and Food Engineering, UFSC, Florianópolis, SC 88040-900 Brazil
| | - Aline E Santos
- Department of Chemical and Food Engineering, UFSC, Florianópolis, SC 88040-900 Brazil
| | - Marcelo Lanza
- Department of Chemical and Food Engineering, UFSC, Florianópolis, SC 88040-900 Brazil
| | - J Vladimir Oliveira
- Department of Chemical and Food Engineering, UFSC, Florianópolis, SC 88040-900 Brazil
| |
Collapse
|
7
|
Dhakal SP, He J. Microencapsulation of vitamins in food applications to prevent losses in processing and storage: A review. Food Res Int 2020; 137:109326. [DOI: 10.1016/j.foodres.2020.109326] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 01/29/2023]
|
8
|
Klettenhammer S, Ferrentino G, Morozova K, Scampicchio M. Novel Technologies Based on Supercritical Fluids for the Encapsulation of Food Grade Bioactive Compounds. Foods 2020; 9:E1395. [PMID: 33023107 PMCID: PMC7601192 DOI: 10.3390/foods9101395] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
In recent years, the demand for nutritive, functional and healthy foods has increased. This trend has induced the food industry to investigate novel technologies able to produce ingredients with enhanced functional and physicochemical properties. Among these technologies, one of the most promising is the encapsulation based on supercritical fluids. Thanks to the inherent absence of organic solvent, the low temperature of the process to reach a supercritical state and the capacity to dissolve lipid soluble bioactives, the encapsulation with supercritical carbon dioxide represents a green technology to produce several functional ingredients, with enhanced stability, high load and tailored protection from environmental factors. Furthermore, from the fine-tuning of the process parameters like temperature, pressure and flow rate, the resulting functional ingredient can be easily designed to tailor the controlled release of the bioactive, or to reach specific levels of taste, odor and color. Accordingly, the aim of the present review is to summarize the state of the art of the techniques based on supercritical carbon dioxide for the encapsulation of bioactive compounds of food interest. Pros and cons of such techniques will be highlighted, giving emphasis to their innovative aspects that could be of interest to the food industry.
Collapse
Affiliation(s)
| | - Giovanna Ferrentino
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (S.K.); (K.M.); (M.S.)
| | | | | |
Collapse
|
9
|
Ndayishimiye J, Ferrentino G, Nabil H, Scampicchio M. Encapsulation of Oils Recovered from brewer’s Spent Grain by Particles from Gas Saturated Solutions Technique. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02392-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
10
|
Xie M, Xu M, Chen X, Li Y. Recent Progress of Supercritical Carbon Dioxide in Producing Natural Nanomaterials. Mini Rev Med Chem 2019; 19:465-476. [PMID: 30324880 DOI: 10.2174/1389557518666181015152952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/13/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023]
Abstract
Natural medicines are widely utilized in human healthcare. Their beneficial effects have been attributed to the existence of natural active ingredients (NAI) with a positive impact on disease treatment and prevention. Public awareness about the side effects of synthetic chemical compounds increased the need for NAI as well. Clinical applications of NAI are limited by their instability and poor water solubility, while micronization is a major strategy to overcome these drawbacks. Supercritical carbon dioxide (sc-CO2) based nano techniques have drawn great attention in nanomedicinal area for many years, due to their unique characters such as fast mass transfer, near zero surface tension, effective solvents elimination, non-toxic, non-flammable, low cost and environmentally benign. In terms of functions of sc-CO2, many modified sc-CO2 based techniques are developed to produce NAI nanoparticles with high solubility, biological availability and stability. 5 types of promising methods, including gas-assisted melting atomization, CO2-assisted nebulization with a bubble dryer, supercritical fluidassisted atomization with a hydrodynamic cavitation mixer, supercritical CO2-based coating method and solution-enhanced dispersion by sc-CO2 process, are summarized in this article followed by a highlight of their fundamental synthesis principles and important medicinal applications.
Collapse
Affiliation(s)
- Maobin Xie
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital; Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Man Xu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital; Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoming Chen
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital; Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yi Li
- School of Materials, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
11
|
Di Capua A, Adami R, Cosenza E, Jalaber V, Crampon C, Badens E, Reverchon E. β-Carotene/PVP microspheres produced by Supercritical Assisted Atomization. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.01.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Soh SH, Lee LY. Microencapsulation and Nanoencapsulation Using Supercritical Fluid (SCF) Techniques. Pharmaceutics 2019; 11:pharmaceutics11010021. [PMID: 30621309 PMCID: PMC6359585 DOI: 10.3390/pharmaceutics11010021] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 11/16/2022] Open
Abstract
The unique properties of supercritical fluids, in particular supercritical carbon dioxide (CO2), provide numerous opportunities for the development of processes for pharmaceutical applications. One of the potential applications for pharmaceuticals includes microencapsulation and nanoencapsulation for drug delivery purposes. Supercritical CO2 processes allow the design and control of particle size, as well as drug loading by utilizing the tunable properties of supercritical CO2 at different operating conditions (flow ratio, temperature, pressures, etc.). This review aims to provide a comprehensive overview of the processes and techniques using supercritical fluid processing based on the supercritical properties, the role of supercritical carbon dioxide during the process, and the mechanism of formulation production for each process discussed. The considerations for equipment configurations to achieve the various processes described and the mechanisms behind the representative processes such as RESS (rapid expansion of supercritical solutions), SAS (supercritical antisolvent), SFEE (supercritical fluid extraction of emulsions), PGSS (particles from gas-saturated solutions), drying, and polymer foaming will be explained via schematic representation. More recent developments such as fluidized bed coating using supercritical CO2 as the fluidizing and drying medium, the supercritical CO2 spray drying of aqueous solutions, as well as the production of microporous drug releasing devices via foaming, will be highlighted in this review. Development and strategies to control and optimize the particle morphology, drug loading, and yield from the major processes will also be discussed.
Collapse
Affiliation(s)
- Soon Hong Soh
- Newcastle Research and Innovation Institute, 80 Jurong East Street 21, #05-04 Devan Nair Institute for Employment & Employability, Singapore 609607, Singapore.
| | - Lai Yeng Lee
- Newcastle Research and Innovation Institute, 80 Jurong East Street 21, #05-04 Devan Nair Institute for Employment & Employability, Singapore 609607, Singapore.
- Newcastle University in Singapore, 537 Clementi Road, #06-01 SIT Building@Ngee Ann Polytechnic, Singapore 599493, Singapore.
| |
Collapse
|
13
|
Akolade JO, Balogun M, Swanepoel A, Ibrahim RB, Yusuf AA, Labuschagne P. Microencapsulation of eucalyptol in polyethylene glycol and polycaprolactone using particles from gas-saturated solutions. RSC Adv 2019; 9:34039-34049. [PMID: 35528904 PMCID: PMC9074077 DOI: 10.1039/c9ra06419b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/29/2019] [Indexed: 12/30/2022] Open
Abstract
Eucalyptol is the natural cyclic ether which constitutes the bulk of terpenoids found in essential oils of Eucalyptus spp. and is used in aromatherapy for treatment of migraine, sinusitis, asthma and stress. It acts by inhibiting arachidonic acid metabolism and cytokine production. Chemical instability and volatility of eucalyptol restrict its therapeutic application and necessitate the need to develop an appropriate delivery system to achieve extended release and enhance its bioactivity. However, the synthesis method of the delivery system must be suitable to prevent loss or inactivation of the drug during processing. In this study, supercritical carbon dioxide (scCO2) was explored as an alternative solvent for encapsulation and co-precipitation of eucalyptol with polyethylene glycol (PEG) and/or polycaprolactone (PCL) using the particles from gas-saturated solution (PGSS) process. Polymers and eucalyptol were pre-mixed and then processed in a PGSS autoclave at 45 °C and 80 bar for 1 h. The mixture in scCO2 was micronized and characterized. The presence of eucalyptol in the precipitated particles was confirmed by infrared spectroscopy, gas chromatography and mass spectrometry. The weight ratios of PEG–PCL blends significantly influenced loading capacity and encapsulation efficiency with 77% of eucalyptol encapsulated in a 4 : 1 composite blend of PEG–PCL. The particle size distribution of the PGSS-micronized particles ranged from 30 to 260 μm. ScCO2 assisted microencapsulation in PEG and PCL reduced loss of the volatile drug during a two-hour vaporization study and addition of PCL extended the mean release time in simulated physiological fluids. Free radical scavenging and lipoxygenase inhibitory activities of eucalyptol formulated in the PGSS-micronized particles was sustained. Findings from this study showed that the scCO2-assisted micronization can be used for encapsulation of volatile drugs in polymeric microparticles without affecting bioactivity of the drug. Application of supercritical carbon dioxide as an alternative solvent for microformulation of the volatile unstable drug, eucalyptol in polymeric composites.![]()
Collapse
Affiliation(s)
- Jubril Olayinka Akolade
- Polymers and Composites, Chemicals Cluster, CSIR
- South Africa
- Biotechnology Advanced Research Centre
- Sheda Science and Technology Complex
- Nigeria
| | | | - Andri Swanepoel
- Polymers and Composites, Chemicals Cluster, CSIR
- South Africa
| | | | | | | |
Collapse
|
14
|
Ozkan G, Franco P, De Marco I, Xiao J, Capanoglu E. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chem 2019; 272:494-506. [PMID: 30309574 DOI: 10.1016/j.foodchem.2018.07.205] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/19/2018] [Accepted: 07/27/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Paola Franco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.
| |
Collapse
|
15
|
Vo DT, Saravana PS, Woo HC, Chun BS. Fucoxanthin-rich oil encapsulation using biodegradable polyethylene glycol and particles from gas-saturated solutions technique. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Perspectives on the use of supercritical particle formation technologies for food ingredients. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.11.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Janiszewska-Turak E. Carotenoids microencapsulation by spray drying method and supercritical micronization. Food Res Int 2017; 99:891-901. [DOI: 10.1016/j.foodres.2017.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/27/2017] [Accepted: 02/02/2017] [Indexed: 12/11/2022]
|
18
|
Soukoulis C, Bohn T. A comprehensive overview on the micro- and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids. Crit Rev Food Sci Nutr 2017; 58:1-36. [DOI: 10.1080/10408398.2014.971353] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Christos Soukoulis
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Torsten Bohn
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
- Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
| |
Collapse
|
19
|
|
20
|
Saldanha do Carmo C, Nunes AN, Silva I, Maia C, Poejo J, Ferreira-Dias S, Nogueira I, Bronze R, Duarte CMM. Formulation of pea protein for increased satiety and improved foaming properties. RSC Adv 2016. [DOI: 10.1039/c5ra22452g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pea protein was successfully encapsulated into a lipophilic carrier through PGSS®. HPT-scCO2of pea protein has enabled higher foam stability.
Collapse
Affiliation(s)
- C. Saldanha do Carmo
- iBET, Instituto de Biologia Experimental e Tecnológica
- Portugal
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- Portugal
| | - A. N. Nunes
- iBET, Instituto de Biologia Experimental e Tecnológica
- Portugal
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- Portugal
| | - I. Silva
- iBET, Instituto de Biologia Experimental e Tecnológica
- Portugal
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- Portugal
| | - C. Maia
- iBET, Instituto de Biologia Experimental e Tecnológica
- Portugal
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- Portugal
| | - J. Poejo
- iBET, Instituto de Biologia Experimental e Tecnológica
- Portugal
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- Portugal
| | - S. Ferreira-Dias
- Instituto Superior de Agronomia
- LEAF
- Universidade de Lisboa
- Portugal
| | - I. Nogueira
- Instituto Superior Técnico
- Instituto de Ciências e Engenharia de Materiais e Superfícies
- Universidade de Lisboa
- Portugal
| | - R. Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica
- Portugal
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- Portugal
| | - C. M. M. Duarte
- iBET, Instituto de Biologia Experimental e Tecnológica
- Portugal
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- Portugal
| |
Collapse
|
21
|
Knez Ž, Knez Hrnčič M, Škerget M. Particle Formation and Product Formulation Using Supercritical Fluids. Annu Rev Chem Biomol Eng 2015; 6:379-407. [DOI: 10.1146/annurev-chembioeng-061114-123317] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Traditional methods for solids processing involve either high temperatures, necessary for melting or viscosity reduction, or hazardous organic solvents. Owing to the negative impact of the solvents on the environment, especially on living organisms, intensive research has focused on new, sustainable methods for the processing of these substances. Applying supercritical fluids for particle formation may produce powders and composites with special characteristics. Several processes for formation and design of solid particles using dense gases have been studied intensively. The unique thermodynamic and fluid-dynamic properties of supercritical fluids can be used also for impregnation of solid particles or for the formation of solid powderous emulsions and particle coating, e.g., for formation of solids with unique properties for use in different applications. We give an overview of the application of sub- and supercritical fluids as green processing media for particle formation processes and present recent advances and trends in development.
Collapse
Affiliation(s)
- Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia;, ,
| | - Maša Knez Hrnčič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia;, ,
| | - Mojca Škerget
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia;, ,
| |
Collapse
|
22
|
Lashkarbolooki M, Hezave AZ, Rahnama Y, Ozlati R, Rajaei H, Esmaeilzadeh F. Solubility of cyproheptadine in supercritical carbon dioxide; experimental and modeling approaches. J Supercrit Fluids 2013. [DOI: 10.1016/j.supflu.2013.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
de Paz E, Rodríguez S, Kluge J, Martín Á, Mazzotti M, Cocero MJ. Solubility of β-carotene in poly-(ɛ-caprolactone) particles produced in colloidal state by Supercritical Fluid Extraction of Emulsions (SFEE). J Supercrit Fluids 2013. [DOI: 10.1016/j.supflu.2013.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Varona S, Martín Á, Cocero MJ, Duarte CMM. Encapsulation of Lavandin Essential Oil in Poly-(ϵ-caprolactones) by PGSS Process. Chem Eng Technol 2013. [DOI: 10.1002/ceat.201200592] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Falconer JR, Wen J, Zargar-Shoshtari S, Chen JJ, Farid M, Tallon SJ, Alany RG. Preparation and characterization of progesterone dispersions using supercritical carbon dioxide. Drug Dev Ind Pharm 2013; 40:458-69. [PMID: 23418960 DOI: 10.3109/03639045.2013.768630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Supercritical fluid methods offer an alternative to conventional mixing methods, particularly for heat sensitive drugs and where an organic solvent is undesirable. OBJECTIVE To design, develop and construct a unit for the particles from a gas-saturated suspension/solution (PGSS) method and form endogenous progesterone (PGN) dispersion systems using SC-CO2. MATERIALS AND METHODS The PGN dispersions were manufactured using three selected excipients: polyethylene glycol (PEG) 400/4000 (50:50), Gelucire 44/14 and D-α-tocopheryl PEG 1000 succinate (TPGS). Semisolid dispersions of PGN prepared by PGSS method were compared to the conventional methods; comelting (CM), cosolvent (CS) and physical mixing (PM). The dispersion systems made were characterized by Raman and Fourier transform infrared (FTIR) spectroscopies, X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), PGN recovery, uniformity and in vitro dissolution, analyzed by high-performance liquid chromatography (HPLC). RESULTS Raman spectra revealed no changes in the crystalline structure of PGN treated with SC-CO2 compared to that of untreated PGN. XRPD and FTIR showed the presence of peaks and bands for PGN confirming that PGN has been incorporated well with each individual excipient. All PGN dispersions prepared by the PGSS method resulted in the improvement of PGN dissolution rates compared to that prepared by the conventional methods and untreated PGN after 60 min (p value < 0.05). CONCLUSION The novel PGN dispersions prepared by the PGSS method offer the great potential to enhance PGN dissolution rate, reduce preparation time and form stable crystalline dispersion systems over those prepared by conventional methods.
Collapse
Affiliation(s)
- James R Falconer
- Drug Delivery Research Unit (2DRU), School of Pharmacy, Faculty of Medical and Health Sciences and
| | | | | | | | | | | | | |
Collapse
|
26
|
Falconer JR, Wen J, Zargar‐Shoshtari S, Chen JJ, Mohammed F, Chan J, Alany RG. The effects of supercritical carbon dioxide processing on progesterone dispersion systems: a multivariate study. AAPS PharmSciTech 2012; 13:1255-65. [PMID: 22993123 DOI: 10.1208/s12249-012-9850-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/27/2012] [Indexed: 11/30/2022] Open
Abstract
The aim of this work was to investigate the effects of supercritical carbon dioxide (SC-CO(2)) processing on the release profiles of progesterone (PGN) and Gelucire 44/14 dispersion systems. A fractional factorial design was conducted for optimization of the particles from gas-saturated suspension (PGSS) method and formulation parameters and evaluating the effects of three independent responses: PGSS process yield, in vitro dissolution extent after 20 min (E(20)) and t (1/2) for prepared PGN dispersion systems. The experimental domain included seven factors measured at two levels to determine which factors represent the greatest amount of variation, hence the most influence on the resulting PGN dispersion systems. Variables tested were temperature (A) and pressure (B) of the supercritical fluid, sample loading (C), SC-CO(2) processing time (D), sonication (E), drug-to-excipient ratio (F) and orifice diameter into the expansion chamber (G). The analysis of variance showed that the factors tested had significant effects on the responses (p value <0.05). It was found that the optimum values of the PGSS process are higher pressure (186 bar), higher temperature (60°C), a longer processing time (30 min) and lower PGN-to-excipient ratio of 1:10. The corresponding processing yield was 94.7%, extent of PGN dissolution after 20 min was 85.6% and the t (1/2) was 17.7 min. The results suggest that Gelucire 44/14-based dispersion systems might represent a promising formulation for delivery of PGN. The preparation of PGN-loaded Gelucire 44/14 dispersion systems from a PGSS method can be optimized by factorial design experimentation.
Collapse
|
27
|
Girotra P, Singh SK, Nagpal K. Supercritical fluid technology: a promising approach in pharmaceutical research. Pharm Dev Technol 2012; 18:22-38. [DOI: 10.3109/10837450.2012.726998] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|