• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4657932)   Today's Articles (3952)   Subscriber (51243)
For: Velásco-mejía A, Vallejo-becerra V, Chávez-ramírez A, Torres-gonzález J, Reyes-vidal Y, Castañeda-zaldivar F. Modeling and optimization of a pharmaceutical crystallization process by using neural networks and genetic algorithms. POWDER TECHNOL 2016;292:122-8. [DOI: 10.1016/j.powtec.2016.01.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Number Cited by Other Article(s)
1
Honti B, Farkas A, Nagy ZK, Pataki H, Nagy B. Explainable deep recurrent neural networks for the batch analysis of a pharmaceutical tableting process in the spirit of Pharma 4.0. Int J Pharm 2024;662:124509. [PMID: 39048040 DOI: 10.1016/j.ijpharm.2024.124509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
2
Alharby TN, Alanazi M. Development of advanced computational simulation of two-dimensional plate-like crystals: A comparison with population balance model. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]  Open
3
Computing Topological Invariants of Deep Neural Networks. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022;2022:9051908. [PMID: 36248937 PMCID: PMC9568295 DOI: 10.1155/2022/9051908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/27/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022]
4
Mora-Mariano D, Flores-Tlacuahuac A. A machine learning approach for the surrogate modeling of uncertain distributed process engineering models. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
5
Xiouras C, Cameli F, Quilló GL, Kavousanakis ME, Vlachos DG, Stefanidis GD. Applications of Artificial Intelligence and Machine Learning Algorithms to Crystallization. Chem Rev 2022;122:13006-13042. [PMID: 35759465 DOI: 10.1021/acs.chemrev.2c00141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
6
Nagy B, Galata DL, Farkas A, Nagy ZK. Application of Artificial Neural Networks in the Process Analytical Technology of Pharmaceutical Manufacturing-a Review. AAPS J 2022;24:74. [PMID: 35697951 DOI: 10.1208/s12248-022-00706-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/06/2022] [Indexed: 01/22/2023]  Open
7
Evolutionary neural architecture search for surrogate models to enable optimization of industrial continuous crystallization process. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
8
Zheng Y, Wang X, Wu Z. Machine Learning Modeling and Predictive Control of the Batch Crystallization Process. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
9
Moon J, Gbadago DQ, Hwang G, Lee D, Hwang S. Software platform for high-fidelity-data-based artificial neural network modeling and process optimization in chemical engineering. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2021.107637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
10
Ooi YJ, Aung KNG, Chong JW, Tan RR, Aviso KB, Chemmangattuvalappil NG. Design of fragrance molecules using computer-aided molecular design with machine learning. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2021.107585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
11
Nirschl H, Winkler M, Sinn T, Menesklou P. Autonomous Processes in Particle Technology. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202100059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
12
Optimization of Position and Number of Hotspot Detectors Using Artificial Neural Network and Genetic Algorithm to Estimate Material Levels Inside a Silo. SENSORS 2021;21:s21134427. [PMID: 34203417 PMCID: PMC8271723 DOI: 10.3390/s21134427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
13
Heng T, Yang D, Wang R, Zhang L, Lu Y, Du G. Progress in Research on Artificial Intelligence Applied to Polymorphism and Cocrystal Prediction. ACS OMEGA 2021;6:15543-15550. [PMID: 34179597 PMCID: PMC8223226 DOI: 10.1021/acsomega.1c01330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
14
Lou H, Lian B, Hageman MJ. Applications of Machine Learning in Solid Oral Dosage Form Development. J Pharm Sci 2021;110:3150-3165. [PMID: 33951418 DOI: 10.1016/j.xphs.2021.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
15
Yu W, Zhu C, Tsunooka Y, Huang W, Dang Y, Kutsukake K, Harada S, Tagawa M, Ujihara T. Geometrical design of a crystal growth system guided by a machine learning algorithm. CrystEngComm 2021. [DOI: 10.1039/d1ce00106j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
16
Hwangbo S, Al R, Sin G. An integrated framework for plant data-driven process modeling using deep-learning with Monte-Carlo simulations. Comput Chem Eng 2020. [DOI: 10.1016/j.compchemeng.2020.107071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
17
Öner M, Montes FC, Ståhlberg T, Stocks SM, Bajtner JE, Sin G. Comprehensive evaluation of a data driven control strategy: Experimental application to a pharmaceutical crystallization process. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.08.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
18
Application of Artificial Neural Networks in Crystal Growth of Electronic and Opto-Electronic Materials. CRYSTALS 2020. [DOI: 10.3390/cryst10080663] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
19
Khezri V, Yasari E, Panahi M, Khosravi A. Hybrid Artificial Neural Network–Genetic Algorithm-Based Technique to Optimize a Steady-State Gas-to-Liquids Plant. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06477] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
20
Dosta M, Litster JD, Heinrich S. Flowsheet simulation of solids processes: Current status and future trends. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2019.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
21
Zhu Y, Yang H, Si Z, Zhang X. Solubility and thermodynamics of l-hydroxyproline in water and (methanol, ethanol, n-propanol) binary solvent mixtures. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
22
Hjorth T, Svärd M, Rasmuson ÅC. Rationalising crystal nucleation of organic molecules in solution using artificial neural networks. CrystEngComm 2019. [DOI: 10.1039/c8ce01576g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
23
Zhang L, Mao H, Liu L, Du J, Gani R. A machine learning based computer-aided molecular design/screening methodology for fragrance molecules. Comput Chem Eng 2018. [DOI: 10.1016/j.compchemeng.2018.04.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
24
Picos-Benítez AR, López-Hincapié JD, Chávez-Ramírez AU, Rodríguez-García A. Artificial intelligence based model for optimization of COD removal efficiency of an up-flow anaerobic sludge blanket reactor in the saline wastewater treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017;75:1351-1361. [PMID: 28333051 DOI: 10.2166/wst.2017.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA