1
|
Khanolkar A, Thorat V, Patil B, Samanta G. Towards a real-time release of blends and tablets using NIR and Raman spectroscopy at commercial scales. Pharm Dev Technol 2023; 28:265-276. [PMID: 36847606 DOI: 10.1080/10837450.2023.2185256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Accepted: 02/20/2023] [Indexed: 03/01/2023]
Abstract
Near Infrared and Raman spectroscopy-based Process Analytical Technology tools were used for monitoring blend uniformity (BU) and content uniformity (CU) for solid oral formulations. A quantitative Partial Least Square model was developed to monitor BU as real-time release testing at a commercial scale. The model having the R2, and root mean square error of 0.9724 and 2.2047, respectively can predict the target concentration of 100% with a 95% confidence interval of 101.85-102.68% even after one year. The tablets from the same blends were investigated for CU using NIR and Raman techniques both in reflection and transmission mode. Raman reflection technique was found to be the best and the PLS model was developed using tablets compressed at different concentrations, hardness, and speed. The model with R2 and RMSE of 0.9766 and 1.9259, respectively was used for the quantification of CU. Both the BU and CU models were validated for accuracy, precision, specificity, linearity, and robustness. The accuracy was proved against the HPLC method with a relative standard deviation of less than 3%. The equivalency for BU by NIR and CU by Raman was evaluated using Schuirmann's Two One-sided tests and found equivalent to HPLC within a 2% acceptable limit.
Collapse
Affiliation(s)
- Aruna Khanolkar
- QbD Department, Integrated Product Development, Cipla Ltd, Mumbai, Maharashtra, India
| | - Viraj Thorat
- QbD Department, Integrated Product Development, Cipla Ltd, Mumbai, Maharashtra, India
| | - Bhaskar Patil
- QbD Department, Integrated Product Development, Cipla Ltd, Mumbai, Maharashtra, India
| | - Gautam Samanta
- QbD Department, Integrated Product Development, Cipla Ltd, Mumbai, Maharashtra, India
| |
Collapse
|
2
|
Zhong L, Gao L, Li L, Nei L, Wei Y, Zhang K, Zhang H, Yin W, Xu D, Zang H. Method development and validation of a near-infrared spectroscopic method for in-line API quantification during fluidized bed granulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121078. [PMID: 35248859 DOI: 10.1016/j.saa.2022.121078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/11/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Near-infrared spectroscopy (NIRS) is an excellent process analytical technology (PAT) tool for active pharmaceutical ingredient (API) quantification during fluidized granulation. Therefore, a portable near-infrared spectrometer combined with a new innovative method of extended iterative optimization technique (EIOT) was used to in-line monitor the API content uniformity during fluidized bed granulation. The principal component analysis (PCA) and partial least squares regression (PLSR) were also used to characterize and predict API concentration with changes from 75% to 125% of the label claim to prove the superiority of EIOT. The API content prediction accuracy of the EIOT method was verified through offline High Performance Liquid Chromatography (HPLC) measurement. Also, the spatial distribution of API in granules was visualized by Raman imaging technology. The results showed that the established NIRS method was suitable for the prediction of API content in fluidized bed granulation, which provides a new idea for the determination of API content during granulation.
Collapse
Affiliation(s)
- Liang Zhong
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Lele Gao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Lian Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Lei Nei
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Yongheng Wei
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Kefan Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Hui Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Wenping Yin
- Shandong SMA Pharmatech Co., Ltd, 165, Huabei Rd., High & New Technology Zone, Zibo, Shandong 0533, China
| | - Dongbo Xu
- Shandong SMA Pharmatech Co., Ltd, 165, Huabei Rd., High & New Technology Zone, Zibo, Shandong 0533, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China; National Glycoengineering Research Center, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan 250012, China.
| |
Collapse
|
3
|
Stegemann S, Faulhammer E, Pinto JT, Paudel A. Focusing on powder processing in dry powder inhalation product development, manufacturing and performance. Int J Pharm 2022; 614:121445. [PMID: 34998921 DOI: 10.1016/j.ijpharm.2021.121445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/17/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022]
Abstract
Dry powder inhalers (DPI) are well established products for the delivery of actives via the pulmonary route. Various DPI products are marketed or developed for the treatment of local lung diseases such as chronic obstructive pulmonary disease (COPD), asthma or cystic fibrosis as well as systemic diseases targeted through inhaled delivery (i.e. Diabetes Mellitus). One of the key prerequisites of DPI formulations is that the aerodynamic size of the drug particles needs to be below 5 µm to enter deeply into the respiratory tract. These inherently cohesive inhalable size particles are either formulated as adhesive mixture with coarse carrier particles like lactose called carrier-based DPI or are formulated as free-flowing carrier-free particles (e.g. soft agglomerates, large hollow particles). In either case, it is common practice that drug and/or excipient particles of DPI formulations are obtained by processing API and API/excipients. The DPI manufacturing process heavily involves several particle and powder technologies such as micronization of the API, dry blending, powder filling and other particle engineering processes such as spray drying, crystallization etc. In this context, it is essential to thoroughly understand the impact of powder/particle properties and processing on the quality and performance of the DPI formulations. This will enable prediction of the processability of the DPI formulations and controlling the manufacturing process so that meticulously designed formulations are able to be finally developed as the finished DPI dosage form. This article is intended to provide a concise account of various aspects of DPI powder processing, including the process understanding and material properties that are important to achieve the desired DPI product quality. Various endeavors of model informed formulation/process design and development for DPI powder and PAT enabled process monitoring and control are also discussed.
Collapse
Affiliation(s)
- Sven Stegemann
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| | - Eva Faulhammer
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Joana T Pinto
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria; Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.
| |
Collapse
|
4
|
Wu S, Cui T, Li Z, Yang M, Zang Z, Li W. Real-time monitoring of the column chromatographic process of Phellodendri Chinensis Cortex part I: end-point determination based on near-infrared spectroscopy combined with machine learning. NEW J CHEM 2022. [DOI: 10.1039/d2nj01291j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and rapid approach for end-point determination of berberine hydrochloride, phellodendrine chloride and total alkaloids in a column chromatographic process.
Collapse
Affiliation(s)
- Sijun Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Tongcan Cui
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China
| | - Zhenzhong Zang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| |
Collapse
|
5
|
Wu SJ, Qiu P, Li P, Li Z, Li WL. A near-infrared spectroscopy-based end-point determination method for the blending process of Dahuang soda tablets. J Zhejiang Univ Sci B 2020; 21:897-910. [PMID: 33150773 DOI: 10.1631/jzus.b2000417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVES This study is aimed to explore the blending process of Dahuang soda tablets. These are composed of two active pharmaceutical ingredients (APIs, emodin and emodin methyl ether) and four kinds of excipients (sodium bicarbonate, starch, sucrose, and magnesium stearate). Also, the objective is to develop a more robust model to determine the blending end-point. METHODS Qualitative and quantitative methods based on near-infrared (NIR) spectroscopy were established to monitor the homogeneity of the powder during the blending process. A calibration set consisting of samples from 15 batches was used to develop two types of calibration models with the partial least squares regression (PLSR) method to explore the influence of density on the model robustness. The principal component analysis-moving block standard deviation (PCA-MBSD) method was used for the end-point determination of the blending with the process spectra. RESULTS The model with different densities showed better prediction performance and robustness than the model with fixed powder density. In addition, the blending end-points of APIs and excipients were inconsistent because of the differences in the physical properties and chemical contents among the materials of the design batches. For the complex systems of multi-components, using the PCA-MBSD method to determine the blending end-point of each component is difficult. In these conditions, a quantitative method is a more suitable alternative. CONCLUSIONS Our results demonstrated that the effect of density plays an important role in improving the performance of the model, and a robust modeling method has been developed.
Collapse
Affiliation(s)
- Si-Jun Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, China
| | - Ping Qiu
- Hunan Zhengqing Pharmaceutical Group Co., Ltd., Huaihua 418005, China
| | - Pian Li
- Langtian Pharmaceutical (Hubei) Co., Ltd., Huangshi 435000, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, China
| | - Wen-Long Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
6
|
Zhong L, Gao L, Li L, Zang H. Trends-process analytical technology in solid oral dosage manufacturing. Eur J Pharm Biopharm 2020; 153:187-199. [DOI: 10.1016/j.ejpb.2020.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 10/24/2022]
|
7
|
Markl D, Warman M, Dumarey M, Bergman EL, Folestad S, Shi Z, Manley LF, Goodwin DJ, Zeitler JA. Review of real-time release testing of pharmaceutical tablets: State-of-the art, challenges and future perspective. Int J Pharm 2020; 582:119353. [DOI: 10.1016/j.ijpharm.2020.119353] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 10/24/2022]
|
8
|
Raw Material Variability and Its Impact on the Online Adaptive Control of Cohesive Powder Blend Homogeneity Using NIR Spectroscopy. Processes (Basel) 2019. [DOI: 10.3390/pr7090568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is significant to analyze the blend homogeneity of cohesive powders during pharmaceutical manufacturing in order to provide the exact content of the active pharmaceutical ingredient (API) for each individual dose unit. In this paper, an online monitoring platform using an MEMS near infrared (NIR) sensor was designed to control the bin blending process of cohesive powders. The state of blend homogeneity was detected by an adaptive algorithm, which was calibration free. The online control procedures and algorithm’s parameters were fine-tuned through six pilot experiments and were successfully transferred to the industrial production. The reliability of homogeneity detection results was validated by 16 commercial scale experiments using 16 kinds of natural product powders (NPPs), respectively. Furthermore, 19 physical quality attributes of all NPPs and the excipient were fully characterized. The blending end time was used to denote the degree of difficulty of blending. The empirical relationships between variability of NPPs and the blending end time were captured by latent variable modeling. The critical material attributes (CMAs) affecting the blending process were identified as the particle shape and flowability descriptors of cohesive powders. Under the framework of quality by design (QbD) and process analytical technology (PAT), the online NIR spectroscopy together with the powder characterization facilitated a deeper understanding of the mixing process.
Collapse
|
9
|
Crouter A, Briens L. Methods to Assess Mixing of Pharmaceutical Powders. AAPS PharmSciTech 2019; 20:84. [PMID: 30673887 DOI: 10.1208/s12249-018-1286-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/18/2018] [Indexed: 11/30/2022] Open
Abstract
The pharmaceutical manufacturing process consists of several steps, each of which must be monitored and controlled to ensure quality standards are met. The level of blending has an impact on the final product quality; therefore, it is important to be able to monitor blending progress and identify an end-point. Currently, the pharmaceutical industry assesses blend content and uniformity through the extraction of samples using thief probes followed by analytical methods, such as spectroscopy, to determine the sample composition. The development of process analytical technologies (PAT) can improve product monitoring with the aim of increasing efficiency, product quality and consistency, and creating a better understanding of the manufacturing process. Ideally, these are inline methods to remove issues related to extractive sampling and allow direct monitoring of the system using various sensors. Many technologies have been investigated, including spectroscopic techniques such as near-infrared spectroscopy, velocimetric techniques that may use tracers, tomographic techniques, and acoustic emissions monitoring. While some techniques have demonstrated potential, many have significant disadvantages including the need for equipment modification, specific requirements of the material, expensive equipment, extensive analysis, the location of the probes may be critical and/or invasive, and lastly, the technique may only be applicable to the development phase. Both the advantages and disadvantages of the technologies should be considered in application to a specific system.
Collapse
|
10
|
|