1
|
Espinoza-Espinoza LA, Muñoz-More HD, Nole-Jaramillo JM, Ruiz-Flores LA, Arana-Torres NM, Moreno-Quispe LA, Valdiviezo-Marcelo J. Microencapsulation of vitamins: A review and meta-analysis of coating materials, release and food fortification. Food Res Int 2024; 187:114420. [PMID: 38763670 DOI: 10.1016/j.foodres.2024.114420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Vitamins are responsible for providing biological properties to the human body; however, their instability under certain environmental conditions limits their utilization in the food industry. The objective was to conduct a systematic review on the use of biopolymers and lipid bases in microencapsulation processes, assessing their impact on the stability, controlled release, and viability of fortified foods with microencapsulated vitamins. The literature search was conducted between the years 2013-2023, gathering information from databases such as Scopus, PubMed, Web of Science and publishers including Taylor & Francis, Elsevier, Springer and MDPI; a total of 49 articles were compiled The results were classified according to the microencapsulation method, considering the following information: core, coating material, solvent, formulation, process conditions, particle size, efficiency, yield, bioavailability, bioaccessibility, in vitro release, correlation coefficient and references. It has been evidenced that gums are the most frequently employed coatings in the protection of vitamins (14.04%), followed by alginate (10.53%), modified chitosan (9.65%), whey protein (8.77%), lipid bases (8.77%), chitosan (7.89%), modified starch (7.89%), starch (7.02%), gelatin (6.14%), maltodextrin (5.26%), zein (3.51%), pectin (2.63%) and other materials (7.89%). The factors influencing the release of vitamins include pH, modification of the coating material and crosslinking agents; additionally, it was determined that the most fitting mathematical model for release values is Weibull, followed by Zero Order, Higuchi and Korsmeyer-Peppas; finally, foods commonly fortified with microencapsulated vitamins were described, with yogurt, bakery products and gummy candies being notable examples.
Collapse
Affiliation(s)
| | - Henry Daniel Muñoz-More
- Laboratorio de Alimentos Funcionales y Bioprocesos - Facultad de Ingeniería de Industrias alimentarias, Universidad Nacional de Frontera, Sullana 20100, Peru.
| | - Juliana Maricielo Nole-Jaramillo
- Laboratorio de Alimentos Funcionales y Bioprocesos - Facultad de Ingeniería de Industrias alimentarias, Universidad Nacional de Frontera, Sullana 20100, Peru
| | - Luis Alberto Ruiz-Flores
- Laboratorio de Alimentos Funcionales y Bioprocesos - Facultad de Ingeniería de Industrias alimentarias, Universidad Nacional de Frontera, Sullana 20100, Peru
| | - Nancy Maribel Arana-Torres
- Laboratorio de Alimentos Funcionales y Bioprocesos - Facultad de Ingeniería de Industrias alimentarias, Universidad Nacional de Frontera, Sullana 20100, Peru
| | - Luz Arelis Moreno-Quispe
- Facultad de Ciencias empresariales y Turismo, Universidad Nacional de Frontera, Sullana 20100, Peru
| | - Jaime Valdiviezo-Marcelo
- Laboratorio de Alimentos Funcionales y Bioprocesos - Facultad de Ingeniería de Industrias alimentarias, Universidad Nacional de Frontera, Sullana 20100, Peru
| |
Collapse
|
2
|
Balanč B, Salević-Jelić A, Đorđević V, Bugarski B, Nedović V, Petrović P, Knežević-Jugović Z. The Application of Protein Concentrate Obtained from Green Leaf Biomass in Structuring Nanofibers for Delivery of Vitamin B12. Foods 2024; 13:1576. [PMID: 38790876 PMCID: PMC11121456 DOI: 10.3390/foods13101576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Nanofibers made of natural proteins have caught the increasing attention of food scientists because of their edibility, renewability, and possibility for various applications. The objective of this study was to prepare nanofibers based on pumpkin leaf protein concentrate (LPC) as a by-product from some crops and gelatin as carriers for vitamin B12 using the electrospinning technique. The starting mixtures were analyzed in terms of viscosity, density, surface tension, and electrical conductivity. Scanning electron micrographs of the obtained nanofibers showed a slight increase in fiber average diameter with the addition of LPC and vitamin B12 (~81 nm to 109 nm). Fourier transform infrared spectroscopy verified the physical blending of gelatin and LPC without phase separation. Thermal analysis showed the fibers had good thermal stability up to 220 °C, highlighting their potential for food applications, regardless of the thermal processing. Additionally, the newly developed fibers have good storage stability, as detected by low water activity values ranging from 0.336 to 0.376. Finally, the release study illustrates the promising sustained release of vitamin B12 from gelatin-LPC nanofibers, mainly governed by the Fickian diffusion mechanism. The obtained results implied the potential of these nanofibers in the development of functional food products with improved nutritional profiles.
Collapse
Affiliation(s)
- Bojana Balanč
- Innovation Centre of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (P.P.)
| | - Ana Salević-Jelić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Beograd, Serbia; (A.S.-J.); (V.N.)
| | - Verica Đorđević
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (Z.K.-J.)
| | - Branko Bugarski
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (Z.K.-J.)
| | - Viktor Nedović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Beograd, Serbia; (A.S.-J.); (V.N.)
| | - Predrag Petrović
- Innovation Centre of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (P.P.)
| | - Zorica Knežević-Jugović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (Z.K.-J.)
| |
Collapse
|
3
|
Gharibzahedi SMT, Moghadam M, Amft J, Tolun A, Hasabnis G, Altintas Z. Recent Advances in Dietary Sources, Health Benefits, Emerging Encapsulation Methods, Food Fortification, and New Sensor-Based Monitoring of Vitamin B 12: A Critical Review. Molecules 2023; 28:7469. [PMID: 38005191 PMCID: PMC10673454 DOI: 10.3390/molecules28227469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
In this overview, the latest achievements in dietary origins, absorption mechanism, bioavailability assay, health advantages, cutting-edge encapsulation techniques, fortification approaches, and innovative highly sensitive sensor-based detection methods of vitamin B12 (VB12) were addressed. The cobalt-centered vitamin B is mainly found in animal products, posing challenges for strict vegetarians and vegans. Its bioavailability is highly influenced by intrinsic factor, absorption in the ileum, and liver reabsorption. VB12 mainly contributes to blood cell synthesis, cognitive function, and cardiovascular health, and potentially reduces anemia and optic neuropathy. Microencapsulation techniques improve the stability and controlled release of VB12. Co-microencapsulation of VB12 with other vitamins and bioactive compounds enhances bioavailability and controlled release, providing versatile initiatives for improving bio-functionality. Nanotechnology, including nanovesicles, nanoemulsions, and nanoparticles can enhance the delivery, stability, and bioavailability of VB12 in diverse applications, ranging from antimicrobial agents to skincare and oral insulin delivery. Staple food fortification with encapsulated and free VB12 emerges as a prominent strategy to combat deficiency and promote nutritional value. Biosensing technologies, such as electrochemical and optical biosensors, offer rapid, portable, and sensitive VB12 assessment. Carbon dot-based fluorescent nanosensors, nanocluster-based fluorescent probes, and electrochemical sensors show promise for precise detection, especially in pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
| | - Maryam Moghadam
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, 24118 Kiel, Germany; (M.M.); (J.A.)
| | - Jonas Amft
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, 24118 Kiel, Germany; (M.M.); (J.A.)
| | - Aysu Tolun
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany; (A.T.); (G.H.)
| | - Gauri Hasabnis
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany; (A.T.); (G.H.)
| | - Zeynep Altintas
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany; (A.T.); (G.H.)
- Kiel Nano, Surface and Interface Science—KiNSIS, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
4
|
Lukova P, Katsarov P. Contemporary Aspects of Designing Marine Polysaccharide Microparticles as Drug Carriers for Biomedical Application. Pharmaceutics 2023; 15:2126. [PMID: 37631340 PMCID: PMC10458623 DOI: 10.3390/pharmaceutics15082126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The main goal of modern pharmaceutical technology is to create new drug formulations that are safer and more effective. These formulations should allow targeted drug delivery, improved drug stability and bioavailability, fewer side effects, and reduced drug toxicity. One successful approach for achieving these objectives is using polymer microcarriers for drug delivery. They are effective for treating various diseases through different administration routes. When creating pharmaceutical systems, choosing the right drug carrier is crucial. Biomaterials have become increasingly popular over the past few decades due to their lack of toxicity, renewable sources, and affordability. Marine polysaccharides, in particular, have been widely used as substitutes for synthetic polymers in drug carrier applications. Their inherent properties, such as biodegradability and biocompatibility, make marine polysaccharide-based microcarriers a prospective platform for developing drug delivery systems. This review paper explores the principles of microparticle design using marine polysaccharides as drug carriers. By reviewing the current literature, the paper highlights the challenges of formulating polymer microparticles, and proposes various technological solutions. It also outlines future perspectives for developing marine polysaccharides as drug microcarriers.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Plamen Katsarov
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
5
|
Co-Encapsulation of Epigallocatechin-3-Gallate and Vitamin B12 in Zein Microstructures by Electrospinning/Electrospraying Technique. Molecules 2023; 28:molecules28062544. [PMID: 36985516 PMCID: PMC10053329 DOI: 10.3390/molecules28062544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
EGCG is a catechin known for its antioxidant and anti-inflammatory characteristics. Vitamin B12 is an essential vitamin found in animal-derived products, and its deficiency may cause serious health problems such as anemia. The effectiveness of both catechin and vitamin B12 depends on their stability and bioavailability, which can be lost during industrial processes due to degradation when exposed to external factors. A potential solution to this issue is the microencapsulation, which protects the compounds from external agents. The current study aims to microencapsulate EGCG and vitamin B12 in a polymer matrix of biological origin, zein. Microencapsulation was performed using an electrospinning technique, and different concentrations of zein (1–30% w/v) and active compound (0.5–5% w/w) were tested, resulting in the production of micro/nanoparticles, fibers, or the mixture of both. The microstructures were analyzed and characterized in terms of morphology, release profile and kinetics, and encapsulation efficiency. High encapsulation efficiencies were obtained, and the highest were found in the samples with 1% w/w of active substance and 30% w/v of zein. Controlled release studies were conducted in deionized water and in an ethanolic solution, and five kinetic models were applied to the release profiles. The results indicated that the Weibull model was the best fit for the majority of results.
Collapse
|
6
|
Temova Rakuša Ž, Roškar R, Hickey N, Geremia S. Vitamin B 12 in Foods, Food Supplements, and Medicines-A Review of Its Role and Properties with a Focus on Its Stability. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010240. [PMID: 36615431 PMCID: PMC9822362 DOI: 10.3390/molecules28010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Vitamin B12, also known as the anti-pernicious anemia factor, is an essential micronutrient totally dependent on dietary sources that is commonly integrated with food supplements. Four vitamin B12 forms-cyanocobalamin, hydroxocobalamin, 5'-deoxyadenosylcobalamin, and methylcobalamin-are currently used for supplementation and, here, we provide an overview of their biochemical role, bioavailability, and efficacy in different dosage forms. Since the effective quantity of vitamin B12 depends on the stability of the different forms, we further provide a review of their main reactivity and stability under exposure to various environmental factors (e.g., temperature, pH, light) and the presence of some typical interacting compounds (oxidants, reductants, and other water-soluble vitamins). Further, we explore how the manufacturing process and storage affect B12 stability in foods, food supplements, and medicines and provide a summary of the data published to date on the content-related quality of vitamin B12 products on the market. We also provide an overview of the approaches toward their stabilization, including minimization of the destabilizing factors, addition of proper stabilizers, or application of some (innovative) technological processes that could be implemented and contribute to the production of high-quality vitamin B12 products.
Collapse
Affiliation(s)
| | - Robert Roškar
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, Centre of Excellence in Biocrystallography, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Silvano Geremia
- Department of Chemical and Pharmaceutical Sciences, Centre of Excellence in Biocrystallography, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
- Correspondence:
| |
Collapse
|
7
|
Yan C, Kim SR, Ruiz DR, Farmer JR. Microencapsulation for Food Applications: A Review. ACS APPLIED BIO MATERIALS 2022; 5:5497-5512. [PMID: 36395471 DOI: 10.1021/acsabm.2c00673] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Food products contain various active ingredients, such as flavors, nutrients, unsaturated fatty acids, color, probiotics, etc., that require protection during food processing and storage to preserve their quality and shelf life. This review provides an overview of standard microencapsulation technologies, processes, materials, industrial examples, reasons for market success, a summary of recent applications, and the challenges in the food industry, categorized by active food ingredients: flavors, polyunsaturated fatty acids, probiotics, antioxidants, colors, vitamins, and others. We also provide a comprehensive analysis of the advantages and disadvantages of the most common microencapsulation technologies in the food industry such as spray drying, coacervation, extrusion, and spray cooling. This review ends with future perspectives on microencapsulation for food applications.
Collapse
Affiliation(s)
- Cuie Yan
- Division of Encapsulation, Blue California, Rancho Santa Margarita, California 92688, United States
| | - Sang-Ryoung Kim
- Division of Encapsulation, Blue California, Rancho Santa Margarita, California 92688, United States
| | - Daniela R Ruiz
- Division of Encapsulation, Blue California, Rancho Santa Margarita, California 92688, United States
| | - Jordan R Farmer
- Division of Encapsulation, Blue California, Rancho Santa Margarita, California 92688, United States
| |
Collapse
|
8
|
Yadav N, Mudgal D, Anand R, Jindal S, Mishra V. Recent development in nanoencapsulation and delivery of natural bioactives through chitosan scaffolds for various biological applications. Int J Biol Macromol 2022; 220:537-572. [PMID: 35987359 DOI: 10.1016/j.ijbiomac.2022.08.098] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 12/19/2022]
Abstract
Nowadays, nano/micro-encapsulation as a pioneering technique may significantly improve the bioavailability and durability of Natural bioactives. For this purpose, chitosan as a bioactive cationic natural polysaccharide has been frequently used as a carrier because of its distinct chemical and biological properties, including polycationic nature, biocompatibility, and biodegradability. Moreover, polysaccharide-based nano/micro-formulations are a new and extensive trend in scientific research and development in the disciplines of biomedicine, bioorganic/ medicinal chemistry, pharmaceutics, agrochemistry, and the food industry. It promises a new paradigm in drug delivery systems and nanocarrier formulations. This review aims to summarize current developments in approaches for designing innovative chitosan micro/nano-matrix, with an emphasis on the encapsulation of natural bioactives. The special emphasis led to a detailed integrative scientific achievement of the functionalities and abilities for encapsulating natural bioactives and mechanisms regulated in vitro/in vivo release in various biological/physiological environments.
Collapse
Affiliation(s)
- Nisha Yadav
- Amity Institute of Click Chemistry Research and Studies, Amity University Noida, UP-201313, India
| | - Deeksha Mudgal
- Amity Institute of Click Chemistry Research and Studies, Amity University Noida, UP-201313, India
| | - Ritesh Anand
- Amity Institute of Click Chemistry Research and Studies, Amity University Noida, UP-201313, India
| | - Simran Jindal
- Amity Institute of Click Chemistry Research and Studies, Amity University Noida, UP-201313, India
| | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University Noida, UP-201313, India.
| |
Collapse
|
9
|
Bioprocess Strategies for Vitamin B12 Production by Microbial Fermentation and Its Market Applications. Bioengineering (Basel) 2022; 9:bioengineering9080365. [PMID: 36004890 PMCID: PMC9405231 DOI: 10.3390/bioengineering9080365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin B12 is a widely used compound in the feed and food, healthcare and medical industries that can only be produced by fermentation because of the complexity of its chemical synthesis. For this reason, finding better producer strains and optimizing their bioprocesses have been the main focus of industrial producers over the last few decades. In this review, we initially provide a historical overview of vitamin B12 research and the main biosynthetic characteristics of the two microorganism families typically used for its industrial production: several strains of Propionibacterium freudenreichii and strains related to Pseudomonas denitrificans. Later, a complete summary of the current state of vitamin B12 industrial production as well as the main advances and challenges for improving it is detailed, with a special focus on bioprocess optimization, which aims not only to increase production but also sustainability. In addition, a comprehensive list of the most important and relevant patents for the present industrial strains is provided. Finally, the potential applications of vitamin B12 in different markets are discussed.
Collapse
|
10
|
Coelho SC, Estevinho BN, Rocha F. Recent Advances in Water-Soluble Vitamins Delivery Systems Prepared by Mechanical Processes (Electrospinning and Spray-Drying Techniques) for Food and Nutraceuticals Applications-A Review. Foods 2022; 11:foods11091271. [PMID: 35563994 PMCID: PMC9100492 DOI: 10.3390/foods11091271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 01/15/2023] Open
Abstract
Water-soluble vitamins are essential micronutrients in diets and crucial to biochemical functions in human body physiology. These vitamins are essential for healthy diets and have a preventive role against diseases. However, their limitations associated with high sensitivity against external conditions (temperature, light, pH, moisture, oxygen) can lead to degradation during processing and storage. In this context, microencapsulation may overcome these conditions, protecting a biomolecule’s bioavailability, stability, and effectiveness of delivery. This technique has been used to produce delivery systems based on polymeric agents that surround the active compounds. The present review focuses on the most relevant topics of water-soluble vitamin encapsulation using promising methods to produce delivery vehicles—electrohydrodynamic (electrospinning and electrospraying) and spray-drying techniques. An overview of the suitable structures produced by these processes is provided. The review introduces the general principles of the methods, advantages, disadvantages, and involved parameters. A brief list of the used physicochemical techniques for the systems’ characterization is discussed in this review. Electrospinning and spray-drying techniques are the focus of this investigation in order to guarantee vitamins’ bioaccessibility and bioavailability. Recent studies and the main encapsulating agents used for these micronutrients in both processes applied to functional food and nutraceutical areas are highlighted in this review.
Collapse
|
11
|
Milinković Budinčić J, Petrović L, Đekić L, Aleksić M, Fraj J, Popović S, Bučko S, Katona J, Spasojević L, Škrbić J, Malenović A. Chitosan/Sodium Dodecyl Sulfate Complexes for Microencapsulation of Vitamin E and Its Release Profile-Understanding the Effect of Anionic Surfactant. Pharmaceuticals (Basel) 2021; 15:ph15010054. [PMID: 35056111 PMCID: PMC8779650 DOI: 10.3390/ph15010054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 01/18/2023] Open
Abstract
Microencapsulation of bioactive substances is a common strategy for their protection and release rate control. The use of chitosan (Ch) is particularly promising due to its abundance, biocompatibility, and interaction with anionic surfactants to form complexes of different characteristics with relevance for use in microcapsule wall design. In this study, Ch/sodium dodecyl sulfate (SDS) microcapsules, without and with cross-linking agent (formaldehyde (FA) or glutaraldehyde (GA)), were obtained by the spray drying of vitamin E loaded oil-in-water emulsion. All of the microcapsules had good stability during the drying process. Depending on the composition, their product yield, moisture content, and encapsulation efficiency varied between 11-34%, 1.14-1.62%, and 94-126%, respectively. SEM and FTIR analysis results indicate that SDS as well as cross-linkers significantly affected the microcapsule wall properties. The profiles of in vitro vitamin E release from the investigated microcapsules fit with the Korsmeyer-Peppas model (r2 > 0.9). The chemical structure of the anionic surfactant was found to have a significant effect on the vitamin E release mechanism. Ch/SDS coacervates may build a microcapsule wall without toxic crosslinkers. This enabled the combined diffusion/swelling based release mechanism of the encapsulated lipophilic substance, which can be considered favorable for utilization in food and pharmaceutical products.
Collapse
Affiliation(s)
- Jelena Milinković Budinčić
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (L.P.); (M.A.); (J.F.)
- Correspondence:
| | - Lidija Petrović
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (L.P.); (M.A.); (J.F.)
| | - Ljiljana Đekić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia;
| | - Milijana Aleksić
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (L.P.); (M.A.); (J.F.)
| | - Jadranka Fraj
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (L.P.); (M.A.); (J.F.)
| | - Senka Popović
- Department of Food Preservation Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Sandra Bučko
- Department of Applied and Engineering Chemistry, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (S.B.); (J.K.); (L.S.); (J.Š.)
| | - Jaroslav Katona
- Department of Applied and Engineering Chemistry, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (S.B.); (J.K.); (L.S.); (J.Š.)
| | - Ljiljana Spasojević
- Department of Applied and Engineering Chemistry, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (S.B.); (J.K.); (L.S.); (J.Š.)
| | - Jelena Škrbić
- Department of Applied and Engineering Chemistry, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (S.B.); (J.K.); (L.S.); (J.Š.)
| | - Anđelija Malenović
- Department of Drug Analysis, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia;
| |
Collapse
|
12
|
Coelho SC, Laget S, Benaut P, Rocha F, Estevinho BN. A new approach to the production of zein microstructures with vitamin B12, by electrospinning and spray drying techniques. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.06.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Franco Ribeiro E, Carregari Polachini T, Dutra Alvim I, Quiles A, Hernando I, Nicoletti VR. Microencapsulation of roasted coffee oil Pickering emulsions using spray‐ and freeze‐drying: physical, structural and
in vitro
bioaccessibility studies. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Elisa Franco Ribeiro
- São Paulo State University (Unesp) Institute of Biosciences, Humanities and Exact Sciences (Ibilce) Campus São José do Rio Preto São Paulo 15054‐000 Brazil
- Food Microstructure and Chemistry Research Group Universitat Politècnica de València (UPV) Valencia 46022 Spain
| | - Tiago Carregari Polachini
- São Paulo State University (Unesp) Institute of Biosciences, Humanities and Exact Sciences (Ibilce) Campus São José do Rio Preto São Paulo 15054‐000 Brazil
| | - Izabela Dutra Alvim
- Cereal and Chocolate Technology Center Food Technology Institute (ITAL) Campinas São Paulo 13070‐178 Brazil
| | - Amparo Quiles
- Food Microstructure and Chemistry Research Group Universitat Politècnica de València (UPV) Valencia 46022 Spain
| | - Isabel Hernando
- Food Microstructure and Chemistry Research Group Universitat Politècnica de València (UPV) Valencia 46022 Spain
| | - Vania Regina Nicoletti
- São Paulo State University (Unesp) Institute of Biosciences, Humanities and Exact Sciences (Ibilce) Campus São José do Rio Preto São Paulo 15054‐000 Brazil
| |
Collapse
|
14
|
Carlan IC, Estevinho BN, Rocha F. Innovation and improvement in food fortification: Microencapsulation of vitamin B2 and B3 by a spray-drying method and evaluation of the simulated release profiles. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1924768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ioana C. Carlan
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Berta N. Estevinho
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Fernando Rocha
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| |
Collapse
|
15
|
A comprehensive review on the controlled release of encapsulated food ingredients; fundamental concepts to design and applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Enhancement of stability of vitamin B12 by co-crystallization: A convenient and palatable form of fortification. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Budinčić JM, Petrović L, Đekić L, Fraj J, Bučko S, Katona J, Spasojević L. Study of vitamin E microencapsulation and controlled release from chitosan/sodium lauryl ether sulfate microcapsules. Carbohydr Polym 2021; 251:116988. [PMID: 33142560 DOI: 10.1016/j.carbpol.2020.116988] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022]
Abstract
Potential benefit of microencapsulation is its ability to deliver and protect incorporated ingredients such as vitamin E. Microcapsule wall properties can be changed by adding of coss-linking agents that are usually considered toxic for application. The microcapsules were prepared by a spray-drying technique using coacervation method, by depositing the coacervate formed in the mixture of chitosan and sodium lauryl ether sulfate to the oil/water interface. All obtained microcapsules suspensions had slightly lower mean diameter compared to the starting emulsion (6.85 ± 0.213 μm), which shows their good stability during the drying process. The choice and absence of cross-linking agents had influence on kinetics of vitamin E release. Encapsulation efficiency of microcapsules without cross-linking agent was 73.17 ± 0.64 %. This study avoided the use of aldehydes as cross-linking agents and found that chitosan/SLES complex can be used as wall material for the microencapsulation of hydrophobic active molecules in cosmetic industry.
Collapse
Affiliation(s)
- Jelena Milinković Budinčić
- Faculty of Technology Novi Sad, University of Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Serbia.
| | - Lidija Petrović
- Faculty of Technology Novi Sad, University of Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Serbia
| | - Ljiljana Đekić
- Faculty of Pharmacy, University of Belgrade, Department of Pharmaceutical Technology and Cosmetology, Serbia
| | - Jadranka Fraj
- Faculty of Technology Novi Sad, University of Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Serbia
| | - Sandra Bučko
- Faculty of Technology Novi Sad, University of Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Serbia
| | - Jaroslav Katona
- Faculty of Technology Novi Sad, University of Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Serbia
| | - Ljiljana Spasojević
- Faculty of Technology Novi Sad, University of Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Serbia
| |
Collapse
|
18
|
Pérez-Landa I, Bonilla-Landa I, Monribot-Villanueva J, Ramírez-Vázquez M, Lasa R, Ramos-Torres W, Olivares-Romero J, Barrera-Méndez F. Photoprotection and release study of spinosad biopolymeric microparticles obtained by spray drying. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.08.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Malekjani N, Jafari SM. Modeling the release of food bioactive ingredients from carriers/nanocarriers by the empirical, semiempirical, and mechanistic models. Compr Rev Food Sci Food Saf 2020; 20:3-47. [PMID: 33443795 DOI: 10.1111/1541-4337.12660] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/26/2022]
Abstract
The encapsulation process has been utilized in the field of food technology to enhance the technofunctional properties of food products and the delivery of nutraceutical ingredients via food into the human body. The latter application is very similar to drug delivery systems. The inherent sophisticated nature of release mechanisms requires the utilization of mathematical equations and statistics to predict the release behavior during the time. The science of mathematical modeling of controlled release has gained a tremendous advancement in drug delivery in recent years. Many of these modeling methods could be transferred to food. In order to develop and design enhanced food controlled/targeted bioactive release systems, understanding of the underlying physiological and chemical processes, mechanisms, and principles of release and applying the knowledge gained in the pharmaceutical field to food products is a big challenge. Ideally, by using an appropriate mathematical model, the formulation parameters could be predicted to achieve a specific release behavior. So, designing new products could be optimized. Many papers are dealing with encapsulation approaches and evaluation of the impact of process and the utilized system on release characteristics of encapsulated food bioactives, but still, there is no deep insight into the mathematical release modeling of encapsulated food materials. In this study, information gained from the pharmaceutical field is collected and discussed to investigate the probable application in the food industry.
Collapse
Affiliation(s)
- Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| |
Collapse
|
20
|
In vitro evaluation of microparticles with Laurus nobilis L. extract prepared by spray-drying for application in food and pharmaceutical products. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Estevinho BN, Lazar R, Blaga A, Rocha F. Preliminary evaluation and studies on the preparation, characterization and in vitro release studies of different biopolymer microparticles for controlled release of folic acid. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.05.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Carlan IC, Estevinho BN, Rocha F. Production of vitamin B1 microparticles by a spray drying process using different biopolymers as wall materials. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23735] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ioana C. Carlan
- LEPABE ‐ Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of EngineeringUniversity of Porto Porto Portugal
| | - Berta N. Estevinho
- LEPABE ‐ Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of EngineeringUniversity of Porto Porto Portugal
| | - Fernando Rocha
- LEPABE ‐ Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of EngineeringUniversity of Porto Porto Portugal
| |
Collapse
|
23
|
Yaneva Z, Ivanova D, Nikolova N, Tzanova M. The 21st century revival of chitosan in service to bio-organic chemistry. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1731333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Zvezdelina Yaneva
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, Stara Zagora, Bulgaria
| | - Donika Ivanova
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, Stara Zagora, Bulgaria
| | - Nevena Nikolova
- Faculty of Veterinary Medicine, Radioecology and Ecology Unit, Trakia University, Stara Zagora, Bulgaria
| | - Milena Tzanova
- Faculty of Agriculture, Department of Biochemistry, Microbiology and Physics, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
24
|
Maciel VB, Yoshida CM, Boesch C, Goycoolea FM, Carvalho RA. Iron-rich chitosan-pectin colloidal microparticles laden with ora-pro-nobis (Pereskia aculeata Miller) extract. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Paiva TF, Alves JB, Melo PA, Pinto JC. Development of Smart Polymer Microparticles through Suspension Polymerization for Treatment of Schistosomiasis. MACROMOL REACT ENG 2019. [DOI: 10.1002/mren.201900028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Thamiris Franckini Paiva
- Programa de Engenharia Química/COPPEUniversidade Federal do Rio de Janeiro Cidade Universitária, CP 68502 Rio de Janeiro RJ 21941‐972 Brazil
| | - Jéssica Bentes Alves
- Programa de Engenharia da Nanotecnologia/COPPEUniversidade Federal do Rio de Janeiro Cidade Universitária, CP 68501 Rio de Janeiro RJ 21941‐972 Brazil
| | - Príamo Albuquerque Melo
- Programa de Engenharia Química/COPPEUniversidade Federal do Rio de Janeiro Cidade Universitária, CP 68502 Rio de Janeiro RJ 21941‐972 Brazil
| | - José Carlos Pinto
- Programa de Engenharia Química/COPPEUniversidade Federal do Rio de Janeiro Cidade Universitária, CP 68502 Rio de Janeiro RJ 21941‐972 Brazil
| |
Collapse
|
26
|
Chalella Mazzocato M, Thomazini M, Favaro-Trindade CS. Improving stability of vitamin B12 (Cyanocobalamin) using microencapsulation by spray chilling technique. Food Res Int 2019; 126:108663. [PMID: 31732070 DOI: 10.1016/j.foodres.2019.108663] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 11/26/2022]
Abstract
Vitamin-B12 or cyanocobalamin is an essential micronutrient, so it must be supplied by diet. However, vitamin-B12 is found just in foods derived from animals and it is sensitive of many factors. Due to the unrelenting increase of people with deficiency in vitamin-B12 and easy degradation of this vitamin when subjected to adverse conditions, the aim of this research was to produce solid lipid microparticles (SLM) loaded with vitamin-B12 using the spray chilling technique. It was produced 6 SLM (with 0.1 and 1% vitamin and 0, 2.5 and 5% of lecithin) that were analyzed for optical and scanning electron microscopy, size and particles size distribution, water activity, instrumental color, X-ray diffraction, yield and encapsulation efficiency, release profile, besides free and encapsulated vitamin stability for 120 days. It was reported that the SLM presented a spherical shape and smooth surfaces, medium size values varying from 13.28 to 26.99 μm. The yield and encapsulation efficiency values within the range of 80.7 to 99.7% and from 76.7 to 101.1%, respectively. The encapsulation promoted better protection of vitamin-B12 (>91.1% for all formulations after 120 days of storage) when compared to the free one (75.2%). In addition, it was observed a good effect of the presence of soya lecithin in formulations; it promoted a more controlled release of vitamin-B12 in fluids and also shown better stability results. The spray chilling encapsulation technique proved to be a promising alternative, since it protected vitamin-B12 without the necessity of using high temperatures or organic solvents to encapsulate it, besides having a low cost.
Collapse
Affiliation(s)
- Marcella Chalella Mazzocato
- Universidade de São Paulo (USP), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Av. Duque de Caxias Norte, 225, CP 23, CEP 13535 900 Pirassununga, SP, Brazil
| | - Marcelo Thomazini
- Universidade de São Paulo (USP), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Av. Duque de Caxias Norte, 225, CP 23, CEP 13535 900 Pirassununga, SP, Brazil
| | - Carmen S Favaro-Trindade
- Universidade de São Paulo (USP), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Av. Duque de Caxias Norte, 225, CP 23, CEP 13535 900 Pirassununga, SP, Brazil.
| |
Collapse
|
27
|
Ribeiro AM, Estevinho BN, Rocha F. Spray Drying Encapsulation of Elderberry Extract and Evaluating the Release and Stability of Phenolic Compounds in Encapsulated Powders. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02304-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Zabot GL, Silva EK, Emerick LB, Felisberto MHF, Clerici MTPS, Meireles MAA. Physicochemical, morphological, thermal and pasting properties of a novel native starch obtained from annatto seeds. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.10.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Gonçalves A, Estevinho BN, Rocha F. Characterization of biopolymer-based systems obtained by spray-drying for retinoic acid controlled delivery. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.01.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
30
|
Application of a cyanobacterial extracellular polymeric substance in the microencapsulation of vitamin B12. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.11.079] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
C.R. R, Sundaran SP, T. S, Athiyanathil S. “Nano in micro” architecture composite membranes for controlled drug delivery. APPLIED CLAY SCIENCE 2018; 166:262-275. [DOI: 10.1016/j.clay.2018.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
32
|
Yan L, Wang R, Wang H, Sheng K, Liu C, Qu H, Ma A, Zheng L. Formulation and characterization of chitosan hydrochloride and carboxymethyl chitosan encapsulated quercetin nanoparticles for controlled applications in foods system and simulated gastrointestinal condition. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.06.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
Deng Z, Guancheng J, Lili Y, Yinbo H, Xiaoxiao N. Microencapsulation of 2,2′-Azobis(2-methylpropionamide) dihydrochloride initiator using acrylonitrile butadiene styrene as shell for application in lost-circulation control. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
34
|
Bucurescu A, Blaga AC, Estevinho BN, Rocha F. Microencapsulation of Curcumin by a Spray-Drying Technique Using Gum Arabic as Encapsulating Agent and Release Studies. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2140-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Souza AL, Hidalgo-Chávez DW, Pontes SM, Gomes FS, Cabral LM, Tonon RV. Microencapsulation by spray drying of a lycopene-rich tomato concentrate: Characterization and stability. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.01.053] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Stability of lime essential oil microparticles produced with protein-carbohydrate blends. Food Res Int 2018; 105:936-944. [DOI: 10.1016/j.foodres.2017.12.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 02/03/2023]
|