1
|
Eslami E, Donsì F, Ferrari G, Pataro G. Enhancing Cutin Extraction Efficiency from Industrially Derived Tomato Processing Residues by High-Pressure Homogenization. Foods 2024; 13:1415. [PMID: 38731786 PMCID: PMC11083356 DOI: 10.3390/foods13091415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
This study primarily aimed to enhance the extraction of cutin from industrial tomato peel residues. Initially, the conventional extraction process was optimized using response surface methodology (RSM). Subsequently, high-pressure homogenization (HPH) was introduced to improve extraction efficiency and sustainability. The optimization process focused on determining the optimal conditions for conventional extraction via chemical hydrolysis, including temperature (100-130 °C), time (15-120 min), and NaOH concentration (1-3%). The optimized conditions, determined as 130 °C, 120 min, and 3% NaOH solution, yielded a maximum cutin extraction of 32.5%. Furthermore, the results indicated that applying HPH pre-treatment to tomato peels before alkaline hydrolysis significantly increased the cutin extraction yield, reaching 46.1%. This represents an approximately 42% increase compared to the conventional process. Importantly, HPH pre-treatment enabled cutin extraction under milder conditions using a 2% NaOH solution, reducing NaOH usage by 33%, while still achieving a substantial cutin yield of 45.6%. FT-IR analysis confirmed that cutin obtained via both conventional and HPH-assisted extraction exhibited similar chemical structures, indicating that the main chemical groups and structure of cutin remained unaltered by HPH treatment. Furthermore, cutin extracts from both conventional and HPH-assisted extraction demonstrated thermal stability up to approximately 200 °C, with less than 5% weight loss according to TGA analysis. These findings underscore the potential of HPH technology to significantly enhance cutin extraction yield from tomato peel residues while utilizing milder chemical hydrolysis conditions, thereby promoting a more sustainable and efficient cutin extraction process.
Collapse
Affiliation(s)
- Elham Eslami
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, Italy; (E.E.); (F.D.); (G.F.)
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, Italy
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, Italy; (E.E.); (F.D.); (G.F.)
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, Italy
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, Italy; (E.E.); (F.D.); (G.F.)
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, Italy
| | - Gianpiero Pataro
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, Italy; (E.E.); (F.D.); (G.F.)
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, Italy
| |
Collapse
|
2
|
Liu G, Zhang X, Wang J, Li L, Cao J, Yin C, Liu Y, Chen G, Lv J, Xu X, Wang J, Huang X, Xu D. Facile preparation of biomimetic mineralized COFs based on magnetic silk fibroin and its effective extraction of sulforaphane from cruciferous vegetables. Food Chem 2024; 434:137482. [PMID: 37722339 DOI: 10.1016/j.foodchem.2023.137482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/11/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
A novel biomimetic mineralized covalent organic framework (BM-COF) was prepared based on magnetic silk fibroin and a new sulforaphane pretreatment technology was constructed. First, metal coordination was performed on the surface of silk fibroin, and nanoparticles were deposited by in-situ mineralization after co-precipitation. Then, biomineralized COFs were prepared by in-situ self-assembly of a COF layer on Fe3O4@silk fibroin surface guided by interfacial directional growth technology. The BM-COFs had a multilayer structure, large specific surface area and pore volume, and superparamagnetic properties, which make them an ideal adsorbent. The adsorption of sulforaphane by BM-COFs is mainly multi-molecular layer adsorption and chemisorption, there might be electrostatic action, π-stacking and hydrogen bonding in the adsorption process. The composite material was successfully used for the pretreatment of sulforaphane in cruciferous vegetables. An extraction time of 30 min gave extraction efficiencies as high as 92%, and the recovery could reach more than 73%.
Collapse
Affiliation(s)
- Guangyang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China; Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou 075000, China.
| | - Xuan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China; Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou 075000, China; Southwest University, Chongqing 400715, China.
| | - Jian Wang
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou 075000, China.
| | - Lingyun Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China.
| | - Jiayong Cao
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou 075000, China.
| | - Chen Yin
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou 075000, China.
| | - Yuan Liu
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou 075000, China.
| | - Ge Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China.
| | - Jun Lv
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China.
| | - Xiaomin Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture Beijing, 100081 Beijing, China.
| | - Xiaodong Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China.
| | - Donghui Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China; Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Che G, Chen M, Li X, Xiao J, Liu L, Guo L. Effect of UV-A Irradiation on Bioactive Compounds Accumulation and Hypoglycemia-Related Enzymes Activities of Broccoli and Radish Sprouts. PLANTS (BASEL, SWITZERLAND) 2024; 13:450. [PMID: 38337982 PMCID: PMC10857714 DOI: 10.3390/plants13030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
In the present study, different intensities of UV-A were applied to compare their effects on growth, bioactive compounds and hypoglycemia-related enzyme activities in broccoli and radish sprouts. The growth of sprouts was decreased after UV-A irradiation. A total of 12 W of UV-A irradiation resulted in the highest content of anthocyanin, chlorophyll, polyphenol and ascorbic acid in broccoli and radish sprouts. The highest soluble sugar content was recorded in sprouts under 8 W of UV-A irradiation, while no significant difference was obtained in soluble protein content among different UV-A intensities. Furthermore, 12 W of UV-A irradiation induced the highest glucosinolate accumulation, especially glucoraphanin and glucoraphenin in broccoli and radish sprouts, respectively; thus, it enhanced sulforaphane and sulforaphene formation. The α-amylase, α-glucosidase and pancrelipase inhibitory rates of two kinds of sprouts were enhanced significantly after UV-A irradiation, indicating UV-A-irradiation-treated broccoli and radish sprouts have new prospects as hypoglycemic functional foods.
Collapse
Affiliation(s)
- Gongheng Che
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
| | - Mingmei Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
| | - Xiaodan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Junxia Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Liang Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Liping Guo
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| |
Collapse
|
4
|
Men X, Han X, Oh G, Im JH, Lim JS, Cho GH, Choi SI, Lee OH. Plant sources, extraction techniques, analytical methods, bioactivity, and bioavailability of sulforaphane: a review. Food Sci Biotechnol 2024; 33:539-556. [PMID: 38274178 PMCID: PMC10805900 DOI: 10.1007/s10068-023-01434-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 01/27/2024] Open
Abstract
Sulforaphane (SFN) is an isothiocyanate commonly found in cruciferous vegetables. It is formed via the enzymatic hydrolysis of glucoraphanin by myrosinase. SFN exerts various biological effects, including anti-cancer, anti-oxidation, anti-obesity, and anti-inflammatory effects, and is widely used in functional foods and clinical medicine. However, the structure of SFN is unstable and easily degradable, and its production is easily affected by temperature, pH, and enzyme activity, which limit its application. Hence, several studies are investigating its physicochemical properties, stability, and biological activity to identify methods to increase its content. This article provides a comprehensive review of the plant sources, extraction and analysis techniques, in vitro and in vivo biological activities, and bioavailability of SFN. This article highlights the importance and provides a reference for the research and application of SFN in the future.
Collapse
Affiliation(s)
- Xiao Men
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Xionggao Han
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Geon Oh
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Ji-Hyun Im
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - June seok Lim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Geun hee Cho
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Sun-Il Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Ok-Hwan Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| |
Collapse
|
5
|
Zhu Y, Luan Y, Zhao Y, Liu J, Duan Z, Ruan R. Current Technologies and Uses for Fruit and Vegetable Wastes in a Sustainable System: A Review. Foods 2023; 12:foods12101949. [PMID: 37238767 DOI: 10.3390/foods12101949] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
The fruit and vegetable industry produces millions of tons of residues, which can cause large economic losses. Fruit and vegetable wastes and by-products contain a large number of bioactive substances with functional ingredients that have antioxidant, antibacterial, and other properties. Current technologies can utilize fruit and vegetable waste and by-products as ingredients, food bioactive compounds, and biofuels. Traditional and commercial utilization in the food industry includes such technologies as microwave-assisted extraction (MAE), supercritical fluid extraction (SFE), ultrasonic-assisted extraction (UAE), and high hydrostatic pressure technique (HHP). Biorefinery methods for converting fruit and vegetable wastes into biofuels, such as anaerobic digestion (AD), fermentation, incineration, pyrolysis and gasification, and hydrothermal carbonization, are described. This study provides strategies for the processing of fruit and vegetable wastes using eco-friendly technologies and lays a foundation for the utilization of fruit and vegetable loss/waste and by-products in a sustainable system.
Collapse
Affiliation(s)
- Yingdan Zhu
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Yueting Luan
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yingnan Zhao
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jiali Liu
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhangqun Duan
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| |
Collapse
|
6
|
Castro-Muñoz R, Boczkaj G, Jafari SM. The role of hydrodynamic cavitation in tuning physicochemical properties of food items: A comprehensive review. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
7
|
Liu J, Huang L, An J, Ma Y, Cheng Y, Zhang R, Peng P, Wang Y, Addy M, Chen P, Chen C, Liu Y, Huang G, Ruan R. Application of high‐pressure homogenization to improve physicochemical and antioxidant properties of almond hulls. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Juer Liu
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering University of Minnesota St. Paul Minnesota USA
- Department of Food Science and Nutrition University of Minnesota St. Paul Minnesota USA
| | - Li Huang
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering University of Minnesota St. Paul Minnesota USA
- Zhejiang University Shandong (Linyi) Modern Agricultural Research Institute Linyi Shandong China
| | - Jun An
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering University of Minnesota St. Paul Minnesota USA
| | - Yiwei Ma
- Department of Food Science and Nutrition University of Minnesota St. Paul Minnesota USA
| | - Yanling Cheng
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering University of Minnesota St. Paul Minnesota USA
| | - Renchuan Zhang
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering University of Minnesota St. Paul Minnesota USA
| | - Peng Peng
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering University of Minnesota St. Paul Minnesota USA
| | - Yuanpu Wang
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering University of Minnesota St. Paul Minnesota USA
- State Key Laboratory of Food Science and Technology, and Engineering Research, Center for Biomass Conversion, Ministry of Education Nanchang University Nanchang China
| | - Min Addy
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering University of Minnesota St. Paul Minnesota USA
| | - Paul Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering University of Minnesota St. Paul Minnesota USA
| | - Chi Chen
- Department of Food Science and Nutrition University of Minnesota St. Paul Minnesota USA
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, and Engineering Research, Center for Biomass Conversion, Ministry of Education Nanchang University Nanchang China
| | | | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering University of Minnesota St. Paul Minnesota USA
- Department of Food Science and Nutrition University of Minnesota St. Paul Minnesota USA
| |
Collapse
|
8
|
Vichakshana GAD, Foo SC, Choo WS. Impact of high-pressure homogenization pretreatment on recovery of curcumin from turmeric by different combinations of extraction and drying methods. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Deng WW, Mei XP, Cheng ZJ, gan TX, Tian X, Hu JN, Zang CR, Sun B, Wu J, Deng Y, Ghiladi R, Lorimer GH, Keceli G, Wang J. Extraction of weak hydrophobic sulforaphane from broccoli by salting-out assisted hydrophobic deep eutectic solvent extraction. Food Chem 2022; 405:134817. [DOI: 10.1016/j.foodchem.2022.134817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
10
|
Parvathy Eswari A, Kavitha S, Yukesh Kannah R, Kumar G, Bhatia SK, Hoon Park J, Rajesh Banu J. Dispersion assisted pretreatment for enhanced anaerobic biodegradability and biogas recovery -strategies and applications. BIORESOURCE TECHNOLOGY 2022; 361:127634. [PMID: 35863598 DOI: 10.1016/j.biortech.2022.127634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Disperser assisted homogenization is a promising mechanical based disintegration process to improve the substrate biodegradability and biogas recovery from biomass. During dispersion, the extent of liquefaction relies on the dispersion parameters and biomass properties. Hence, assessment of the optimal parameters varies with type of disperser and biomass. Dispersion assisted homogenization of some biomass such as sludge is not only studied in lab scale but also investigated in full scale plants providing positive outcome. For instance, the large-scale investigation of disperser homogenization has attained nearly 40-50 percent increment in bioenergy recovery. However, research gaps in terms of energy and cost efficiency still exists. This review paper outlines the impact of disperser parameters, its efficiency in biomass disintegration and biogas recovery. It has been proposed to combine homogenization process in the bioenergy generation to investigate the energy and cost efficiency of the entire process.
Collapse
Affiliation(s)
- A Parvathy Eswari
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli 627007, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli 627007, India
| | - R Yukesh Kannah
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, Konkuk University, Seoul 05029, South Korea
| | - Jeong Hoon Park
- Korea Institute of Industrial Technology, Sustainable Technology and Wellness R&D Group Jeju City, South Korea
| | - J Rajesh Banu
- Department of Life Science, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610005, India.
| |
Collapse
|
11
|
Improvement of the Stability and Release of Sulforaphane-enriched Broccoli Sprout Extract Nanoliposomes by Co-encapsulation into Basil Seed Gum. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02826-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Liu Y, Zhang D, Li X, Xiao J, Guo L. Enhancement of ultrasound-assisted extraction of sulforaphane from broccoli seeds via the application of microwave pretreatment. ULTRASONICS SONOCHEMISTRY 2022; 87:106061. [PMID: 35716467 PMCID: PMC9213254 DOI: 10.1016/j.ultsonch.2022.106061] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
In this study, microwave pretreatment and grinding treatment were used to enhance sulforaphane formation, then ultrasonic-assisted extraction (UAE) was applied to extract sulforaphane using simultaneous hydrolysis and extraction method. The effects of various parameters, which were ultrasonic time,ultrasonic power, solid-water ratio and solid-ethyl acetate ratio on the extraction rate of sulforaphane were investigated. The results showed that microwave pretreatment enhanced sulforaphane formation. Excessive size reduction did not increase or even reduced extraction rate of sulforaphane. Simultaneous hydrolysis and extraction significantly increased extraction rate of sulforaphane compared to hydrolysis followed by extraction. UAE accelerated mass transfer and the solubilization of the targeted compounds due to the acoustic cavitation effect, thus enhanced enzymatic hydrolysis of glucoraphanin and the extraction rate of sulforaphane. The extraction rate of sulforaphane using UAE with simultaneous hydrolysis and extraction was 4.07-fold of the conventional extraction method. UAE was an effective method to extract sulforaphane from broccoli seeds since it led to higher yield of sulforaphane in a much shorter extraction time.
Collapse
Affiliation(s)
- Yanbing Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Di Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xiaodan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China
| | - Junxia Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China
| | - Liping Guo
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China.
| |
Collapse
|
13
|
Effects of High Pressure-Assisted Extraction on Yield, Antioxidant, Antimicrobial, and Anti-diabetic Properties of Chlorogenic Acid and Caffeine Extracted from Green Coffee Beans. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02828-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Jurić S, Jurić M, Ferrari G, Režek Jambrak A, Donsì F. Lycopene‐rich cream obtained via high‐pressure homogenisation of tomato processing residues in a water–oil mixture. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Slaven Jurić
- Department of Chemistry Faculty of Agriculture University of Zagreb Svetos\̌imunska Cesta 25 Zagreb 10000 Croatia
- Faculty of Food Technology and Biotechnology University of Zagreb Pierottijeva 6 Zagreb 10000 Croatia
| | - Marina Jurić
- Department of Food Chemistry Faculty of Pharmacy and Biochemistry University of Zagreb Zagreb 10000 Croatia
| | - Giovanna Ferrari
- Department of Industrial Engineering University of Salerno via Giovanni Paolo II 132 Fisciano 84084 Italy
- ProdAl Scarl via Ponte don Melillo Fisciano SA 84084 Italy
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology University of Zagreb Pierottijeva 6 Zagreb 10000 Croatia
| | - Francesco Donsì
- Department of Industrial Engineering University of Salerno via Giovanni Paolo II 132 Fisciano 84084 Italy
| |
Collapse
|
15
|
González F, Quintero J, Del Río R, Mahn A. Optimization of an Extraction Process to Obtain a Food-Grade Sulforaphane-Rich Extract from Broccoli ( Brassica oleracea var. italica). Molecules 2021; 26:molecules26134042. [PMID: 34279379 PMCID: PMC8272218 DOI: 10.3390/molecules26134042] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022] Open
Abstract
Sulforaphane (SFN) is a powerful health-promoting compound found in broccoli in the form of its inactive precursor, glucoraphanin (GFN). SFN formation occurs through the enzymatic hydrolysis of glucoraphanin by myrosinase under specific chemical conditions. Its incorporation in food formulations has been hindered by the thermal instability of SFN and low concentration in Brassicaceae. Then, extracting SFN from broccoli at a temperature below 40 °C appears as an option to recover and stabilize SFN, aiming at delivering it as a nutraceutical. We studied an eco-friendly extraction process to obtain an SFN-rich extract from broccoli. The effect of the broccoli mass/solvent ratio, ethanol concentration in the extractant solution, and extraction time on the recovery of SFN, GFN, phenolic compounds, and antioxidant activity were studied through a Box–Behnken design. The regression models explained more than 70% of the variability in the responses, adequately representing the system. The experimental factors differently affected the bioactive compound recovery and antioxidant activity of the extracts. The extraction conditions that allowed the highest recovery of bioactive compounds and antioxidant activity were identified and experimentally validated. The results may provide the basis for the design of a process to produce a sulforaphane-rich food supplement or nutraceutical by using a GRAS extractant.
Collapse
Affiliation(s)
- Francis González
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Santiago 9160000, Chile; (F.G.); (J.Q.)
| | - Julián Quintero
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Santiago 9160000, Chile; (F.G.); (J.Q.)
| | - Rodrigo Del Río
- Laboratory of Cardiorespiratory Control, Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (PUC), Santiago 3542000, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Andrea Mahn
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Santiago 9160000, Chile; (F.G.); (J.Q.)
- Correspondence: ; Tel.: +56-2-27181833
| |
Collapse
|
16
|
Favela-González KM, Hernández-Almanza AY, De la Fuente-Salcido NM. The value of bioactive compounds of cruciferous vegetables (Brassica) as antimicrobials and antioxidants: A review. J Food Biochem 2020; 44:e13414. [PMID: 32743821 DOI: 10.1111/jfbc.13414] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
Nowadays, consumers are demanding nutrient-rich products for health optimal benefits. In this regard, Brassicaceae family plants, previously named cruciferous, group a large number of widely consumed species around the world. The popularity of Brassica is increasing due to their nutritional value and pharmacological effects. The group includes a large number of vegetable foods such as cabbages, broccoli, cauliflower, mustards as well as, oilseed rapeseed, canola, among others. In recent years, the phytochemical composition of Brassicaceae has been studied deeply because they contain many valuable metabolites, which are directly linked to different recognized biological activities. The scientific evidence confirms diverse medical properties for the treatment of chronic diseases such as obesity, type-2 diabetes, cardiovascular diseases (hypertension, stroke), cancer, and osteoporosis. The unique features of Brassicaceae family plants conferred by their phytochemicals, have extended future prospects about their use for beneficial effects on human nutrition and health worldwide. PRACTICAL APPLICATIONS: For years, the Brassicaceae plants have been a fascinating research topic, due to their chemical composition characterized by rich in bioactive compounds. The implementation of extracts of these vegetables, causes various beneficial effects of high biological value in the treatment of diseases, owing to their bioactive properties (anti-obesity, anticancer, antimicrobial, antioxidant, hepatoprotective, cardioprotective, gastroprotective, anti-inflammatory, antianemic, and immunomodulator). Therefore, this review summarizes the chemical composition, describes the bioactive compounds isolated in the plant extracts, and highlights diverse biological activities, mainly the antimicrobial and antioxidant capacity. Brassica plants, as source of natural bioactive agents, have a great potential application to improve the human nutrition and health.
Collapse
Affiliation(s)
- Kenia Mirozlava Favela-González
- Graduate Program in Biochemical Engineering, Biological Sciences Faculty, Autonomous University of Coahuila, Torreón, México
| | - Ayerim Yedid Hernández-Almanza
- Graduate Program in Biochemical Engineering, Biological Sciences Faculty, Autonomous University of Coahuila, Torreón, México
| | - Norma Margarita De la Fuente-Salcido
- Graduate Program in Biochemical Engineering, Biological Sciences Faculty, Autonomous University of Coahuila, Torreón, México
- Bioprospecting and Bioprocesses Department, Biological Sciences Faculty, Autonomous University of Coahuila, Torreón, México
| |
Collapse
|
17
|
Mesa J, Hinestroza-Córdoba LI, Barrera C, Seguí L, Betoret E, Betoret N. High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability. Molecules 2020; 25:E3305. [PMID: 32708208 PMCID: PMC7397014 DOI: 10.3390/molecules25143305] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/24/2022] Open
Abstract
Interest in high homogenization pressure technology has grown over the years. It is a green technology with low energy consumption that does not generate high CO2 emissions or polluting effluents. Its main food applications derive from its effect on particle size, causing a more homogeneous distribution of fluid elements (particles, globules, droplets, aggregates, etc.) and favoring the release of intracellular components, and from its effect on the structure and configuration of chemical components such as polyphenols and macromolecules such as carbohydrates (fibers) and proteins (also microorganisms and enzymes). The challenges of the 21st century are leading the processed food industry towards the creation of food of high nutritional quality and the use of waste to obtain ingredients with specific properties. For this purpose, soft and nonthermal technologies such as high pressure homogenization have huge potential. The objective of this work is to review how the need to combine safety, functionality and sustainability in the food industry has conditioned the application of high-pressure homogenization technology in the last decade.
Collapse
Affiliation(s)
- José Mesa
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
| | - Leidy Indira Hinestroza-Córdoba
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
- Grupo de Valoración y Aprovechamiento de la Biodiversidad, Universidad Tecnológica del Chocó. AA.292, Calle 22 No. 18B-10, Quibdó-Chocó CP 270001, Colombia
| | - Cristina Barrera
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
| | - Lucía Seguí
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
| | - Ester Betoret
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, 46980 Paterna, Spain
| | - Noelia Betoret
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
| |
Collapse
|
18
|
Donsì F, Velikov KP. Mechanical cell disruption of mustard bran suspensions for improved dispersion properties and protein release. Food Funct 2020; 11:6273-6284. [PMID: 32602518 DOI: 10.1039/d0fo00852d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mustard bran, a by-product of mustard production, is still rich in valuable compounds. The high-pressure homogenization treatment was tested as a mechanical cell disruption (MCD) technique to unlock valuable intracellular compounds. An aqueous suspension of mustard bran was treated by shear mixing, followed by high-pressure homogenization at different pressure levels (50-150 MPa) and number of passes (1-10), and using different homogenizing systems. The moderate-intensity treatment (up to 100 MPa and 3 passes) can deliver significant changes in the mustard bran suspension, inducing (a) a more homogeneous and smooth appearance due to the disruption of individual cells, (b) a better structuring ability in the suspension, through the increase in viscosity and storage and loss moduli G' and G'', as well as (c) a remarkable enhancement of protein release, up to 72% of total proteins. The controlling factor in the extent of MCD was found to be the specific energy transferred to the mustard bran suspensions, whereas no significant differences were recorded when varying the homogenization system. The MCD process of mustard bran, based on its physical treatments using only water as a suspension medium, can be regarded as a safe, clean and environmentally friendly technology platform, which contributes to reaching the zero-waste concept by transforming agro-food by-products into value-added ingredients, with enhanced functionality and bioactive content.
Collapse
Affiliation(s)
- Francesco Donsì
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | | |
Collapse
|
19
|
Gali L, Bedjou F, Velikov KP, Ferrari G, Donsì F. High-pressure homogenization-assisted extraction of bioactive compounds from Ruta chalepensis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00525-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Santana ÁL, Zanini JA, Macedo GA. Dispersion‐assisted extraction of guarana processing wastes on the obtaining of polyphenols and alkaloids. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ádina L. Santana
- Bioprocesses Laboratory/DEPAN/FEA (School of Food Engineering)University of Campinas Campinas Brazil
- Food Innovation CenterUniversity of Nebraska‐Lincoln Lincoln Nebraska
| | - Júlia A. Zanini
- Bioprocesses Laboratory/DEPAN/FEA (School of Food Engineering)University of Campinas Campinas Brazil
| | - Gabriela A. Macedo
- Bioprocesses Laboratory/DEPAN/FEA (School of Food Engineering)University of Campinas Campinas Brazil
| |
Collapse
|
21
|
Asaithambi N, Singha P, Dwivedi M, Singh SK. Hydrodynamic cavitation and its application in food and beverage industry: A review. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13144] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Poonam Singha
- Department of Food ScienceCornell University Ithaca New York
| | - Madhuresh Dwivedi
- Department of Food Process EngineeringNIT Rourkela Rourkela Odisha India
| | - Sushil K. Singh
- Department of Food Process EngineeringNIT Rourkela Rourkela Odisha India
| |
Collapse
|