1
|
Hong Y, Nie Z, Tian X, Sun J, Zhou Q, Liang W, Chen S, Huang J, Tan K, Dong L. Rare-earth-free up and down-conversion dual-emission carbon dots for Cu 2+ sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124920. [PMID: 39111030 DOI: 10.1016/j.saa.2024.124920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
In this work, up- and down-conversion dual-emission CDs without rare-earth (UD D-CDs) were synthesized using RhB and 1,4-Diaminoanthraquinone as precursors. The synthesized UD D-CDs exhibited dual emissions at 496 and 580 nm under 260 and 865 nm excitation, respectively. The fluorescence emission mechanism, including contributions from carbon nuclei, surface states, molecular states, and internal defect states, was discussed through the separation and purification of UD D-CDs. Based on the interaction between UD D-CDs and copper ions (Cu2+), a dual-mode ratio fluorescence probe was developed to detect and quantify Cu2+. The up-conversion ratio fluorescent probe shows a linear range of 0.0500-15.0 μM, with a detection limit as low as 2.76 nM. This method has been successfully applied to detecting Cu2+ in human serum and has potential applications in biochemical analysis and biological imaging. The successful preparation of up-conversion fluorescent carbon dots without rare earth elements and the ability to perform low-damage detection in high-background biological samples provide a new approach to constructing non-rare earth up-conversion probes.
Collapse
Affiliation(s)
- Yushuang Hong
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zhengpei Nie
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xuelian Tian
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jingfang Sun
- School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Qiuju Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wenbin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Jin Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China; School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bintuan, Shihezi University, Shihezi 832003, PR China.
| | - Kejun Tan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Lin Dong
- School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| |
Collapse
|
2
|
Zhao K, He D, Liu X, Ren F, Wang J, Yan Y, Huang M, Wang Y, Zhang X. Enhance Carrier Diffusion of Monolayer MoSe 2 by Interface Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34349-34357. [PMID: 38912925 DOI: 10.1021/acsami.4c05143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Two-dimensional materials hold great potentials for beyond-CMOS (complementary metal-oxide-semiconductor) electronical and optoelectrical applications, and the development of field effect transistors (FET) with excellent performance using such materials is of particular interest. How to improve the performance of devices thus becomes an urgent issue. The performance of FETs depends greatly on the intrinsic electrical properties of the channel materials, meanwhile the device interface quality, such as extrinsic scattering of charged impurities, charge traps, and substrate surface roughness have a great influence on the performance. In this paper, the impact of the interface quality on the carrier diffusion behaviors of monolayer (ML) MoSe2 has been investigated by using an in situ ultrafast laser technique to avoid the surface contamination during device fabrication process. Two types of self-assembled monolayers (SAMs) are introduced to modify the gate dielectric surface through an interface engineering approach to obtain chemical-stable interfaces. The results showed that the transport properties of ML MoSe2 were enhanced after interface engineering, for example, the carrier mobility of ML MoSe2 was improved from ∼59.4 to ∼166.5 cm2 V-1 s-1 after the SAM modification. Meanwhile, the photocarrier dynamics of ML MoSe2 before and after interfacial engineering were also carefully studied. Our studies provide a feasible method for improving the carrier diffusion behaviors of such materials, and making them suited for application in future integrated circuit.
Collapse
Affiliation(s)
- Kun Zhao
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Dawei He
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Xiaojing Liu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Fangying Ren
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Jiarong Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Yige Yan
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Mohan Huang
- Department of Optical Engineering, Zhejiang A&F University, Linan 311300, P. R. China
| | - Yongsheng Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Xiaoxian Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
3
|
He Y, Liao Y, Zhang B, Xu R, Ma Y, Zhao M, Cui H. Using the photo-enhanced barrier effect on electrochemical response for highly sensitive detection of melamine. Food Chem 2024; 432:137246. [PMID: 37643517 DOI: 10.1016/j.foodchem.2023.137246] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Melamine added to milk powder can lead to kidney injury and even death, but rapid detection is still hard due to the strong interference of milk powder solution. Herein, the CC/CeO2/CNPs mesh was constructed to detect melamine by using the photo-enhanced barrier effects on electrochemical response. Schottky barrier was regulated effectively to produce electrochemical response to melamine by photo-induced electrostatic interaction, which exhibited strong resistance to interference in milk powder solution. Sensitivity was enhanced by nearly 5 times and the lowest detection limit was reduced as low as 0.274 nM. The obtained high recovery (100%-104%) and good stability in milk powder solution indicated the good potential for practical applications. It provides a new opportunity for achieving strong resistance to interference by using the photo-enhanced barrier driving effect on electrochemical response.
Collapse
Affiliation(s)
- Yichang He
- School of Materials Science and Engineering, Ocean University of China, 266100 Qingdao, PR China.
| | - Yiquan Liao
- School of Materials Science and Engineering, Ocean University of China, 266100 Qingdao, PR China.
| | - Bin Zhang
- School of Materials Science and Engineering, Ocean University of China, 266100 Qingdao, PR China.
| | - Ruiqi Xu
- School of Materials Science and Engineering, Ocean University of China, 266100 Qingdao, PR China.
| | - Ye Ma
- School of Materials Science and Engineering, Ocean University of China, 266100 Qingdao, PR China.
| | - Minggang Zhao
- School of Materials Science and Engineering, Ocean University of China, 266100 Qingdao, PR China.
| | - Hongzhi Cui
- School of Materials Science and Engineering, Ocean University of China, 266100 Qingdao, PR China.
| |
Collapse
|
4
|
Luo Q, Liu W, Zhuo Q. The Mechanism of Ozone Oxidation of Coal and the Revelation of Coal Macromolecular Structure by Oxidation Products. ACS OMEGA 2024; 9:753-770. [PMID: 38222567 PMCID: PMC10785781 DOI: 10.1021/acsomega.3c06525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 11/23/2023] [Indexed: 01/16/2024]
Abstract
Ozone was injected into a coal-water suspension, and an HRTEM test was carried out on the separated oxidation products. The results show that from the perspective of visualization the macromolecular network structure of coal contains a large number of graphite-like structures. However, the chemical reaction mechanism between the coal surface and O3 is not clear, and the microscopic formation mechanism of oxygen-containing functional groups in carbon quantum dots has not been explained. As a result, the reaction process between O3 and methylene on the coal surface was studied by the DFT method. We found that OH• generated by O3 in water can oxidize two adjacent carbon atoms in methylene into double bonds (C=C), and finally, aldehydes and carboxylic acids were generated. By calculation of thermodynamic parameters ΔG and ΔH, it is found that all reactions are spontaneous exothermic processes. The above chemical reaction is based on the physical adsorption of OH• with Ar-(CH2)6-Ar and O3 with Ar-CH2-CH=CH-(CH2)3-Ar. The calculated adsorption energies of the two systems are -9.41 and -12.55 kcal/mol, respectively. Then, the charge transfer and atomic orbital interaction before and after adsorption are analyzed from the perspectives of Mulliken charge, density of states, deformation density, and total charge density. The results show that the electrostatic attraction is the main driving force of adsorption. The ether bond (C-O-C) in coal is finally oxidized to an ester group (RCOOR'), the hydroxyl group (CH2-CH-OH) on the aliphatic chain is oxidized to a carbonyl group (CH2-C=O), and the benzene with two OH• forms phenol hydroxyl and one molecule of water. Finally, the coal and the corresponding coal-based carbon quantum dots were investigated by infrared spectroscopy; the difference in functional groups before and after oxidation was clarified, and the result was in good agreement with the simulation.
Collapse
Affiliation(s)
- Qing Luo
- School
of Materials and Chemical Engineering, Henan
University of Urban Construction, Daxiangshan Road, Pingdingshan 467036, Henan Province, China
- School
of Chemical and Environment Engineering, China University of Mining & Technology (Beijing), D11, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Wenli Liu
- School
of Chemical and Environment Engineering, China University of Mining & Technology (Beijing), D11, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Qiming Zhuo
- School
of Chemical and Environment Engineering, China University of Mining & Technology (Beijing), D11, Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
5
|
Zou Y, Hu Y, Shen Z, Yao L, Tang D, Zhang S, Wang S, Hu B, Zhao G, Wang X. Application of aluminosilicate clay mineral-based composites in photocatalysis. J Environ Sci (China) 2022; 115:190-214. [PMID: 34969448 DOI: 10.1016/j.jes.2021.07.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 05/18/2023]
Abstract
Aluminosilicate clay mineral (ACM) is a kind of typical raw materials that used widely in manufacturing industry owing to the abundant reserve and low-cost exploring. In past two decades, in-depth understanding on unique layered structure and abundant surface properties endows ACM in the emerging research and application fields. In field of solar-chemical energy conversion, ACM has been widely used to support various semiconductor photocatalysts, forming the composites and achieving efficient conversion of reactants under sunlight irradiation. To date, classic ACM such as kaolinite and montmorillonite, loaded with semiconductor photocatalysts has been widely applied in photocatalysis. This review summaries the recent works on ACM-based composites in photocatalysis. Focusing on the properties of surface and layered structure, we elucidate the different features in the composition with various functional photocatalysts on two typical kinds of ACM, i.e., type 1:1 and type 2:1. Not only large surface area and active surface hydroxyl group assist the substrate adsorption, but also the layered structure provides more space to enlarge the application of ACM-based photocatalysts. Besides, we overview the modifications on ACM from both external surface and the inter-layer space that make the formation of composites more efficiently and boost the photo-chemical process. This review could inspire more upcoming design and synthesis for ACM-based photocatalysts, leading this kind of economic and eco-friendly materials for more practical application in the future.
Collapse
Affiliation(s)
- Yingtong Zou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; School of Life Science, Shaoxing University, Shaoxing 312000, China
| | - Yezi Hu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zewen Shen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Ling Yao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Duoyue Tang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Sai Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shuqin Wang
- School of Life Science, Shaoxing University, Shaoxing 312000, China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing 312000, China
| | - Guixia Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; School of Life Science, Shaoxing University, Shaoxing 312000, China.
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; School of Life Science, Shaoxing University, Shaoxing 312000, China.
| |
Collapse
|
6
|
Mahmoud ME, Abouelanwar ME, Mahmoud SELME, Abdel Salam M. Adsorption behavior of silver quantum dots by a novel super magnetic CoFe 2O 4-biochar-polymeric nanocomposite. J Colloid Interface Sci 2022; 606:1597-1608. [PMID: 34500161 DOI: 10.1016/j.jcis.2021.08.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/16/2022]
Abstract
Recent industrial development and research progress in nanotechnology have led to the release of a number of nanomaterials with particle sizes (1-10 nm) which are categorized as quantum dots (QDs) in aquatic system. Disposal away of such QDs will cause potential pollution to the environment. Therefore, removal of disposed QDs from wastewater represents a challenging research subject for scientists and engineers. Hence, the objective of this study is devoted to assess the process of coagulative removal of silver quantum dots (Ag-QDs), as an example, from water by a novel super magnetic nanocomposite. Such material was aimed to prepare from the chemical combination and reaction of a generated Citrus sinensis and Citrus reticulata peels biochar (SMCsr-B) with spinel cobalt ferrite (CoFe2O4) as a super-magnetic source. The produced (SMCsr-B) was then crosslinked with polyurea-formaldehyde polymer (PUF) using EDA in only two minutes via microwave irradiation to produce (SMCsr-B/PUF). The SEM, EDX, FT-IR, XRD, and XPS analyses of the assembled (SMCsr-B/PUF) nanocomposite were acquired to confirm surface morphology and chemical structure. Controlling experimental factors were investigated as pH, time, and Ag-QDs pollutant concentration using microwave irradiative removal technique to establish the efficiency of coagulative adsorption of Ag-QDs onto (SMCsr-B/PUF). The solution (pH 5) was proved to exhibit the higher removal percentages of Ag-QDs in 15-25 s. SMCsr-B/PUF nanocomposite exhibited high removal efficiency as 93.12%, 92.39% and 92.48% upon using 20, 40 and 60 mg L-1 of Ag-QDs, respectively in presence of 10 mM NaCl. The kinetic and equilibrium adsorption data were best fitted to Freundlich model. The prepared SMCsr-B/PUF was successfully utilized as an efficient super magnetic nanocomposite for removal and recovery of Ag-QDs from aqueous environment.
Collapse
Affiliation(s)
- Mohamed E Mahmoud
- Faculty of Sciences, Chemistry Department, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt.
| | - Magda E Abouelanwar
- Faculty of Sciences, Chemistry Department, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt
| | - Safe ELdeen M E Mahmoud
- Chemical and Petrochemical Engineering Department, College of Engineering and Technology, Arab Academy for Science and Technology and Maritime Transport, Alexandria, Egypt
| | - Mohamed Abdel Salam
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O Box 80200, Jeddah 21589, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Liu Y, Zhang C, Shi A, Zuo S, Yao C, Ni C, Li X. Full solar spectrum driven CO2 conversion over S-Scheme natural mineral nanocomposite enhanced by LSPR effect. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Lu X, Chen F, Qian J, Fu M, Jiang Q, Zhang Q. Facile fabrication of CeF3/g-C3N4 heterojunction photocatalysts with upconversion properties for enhanced photocatalytic desulfurization performance. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2020.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Hitam C, Jalil A, Izan S, Azami M, Hassim M, Chanlek N. The unforeseen relationship of Fe2O3 and ZnO on fibrous silica KCC-1 catalyst for fabricated Z-scheme extractive-photooxidative desulphurization. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.07.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Mousavi-Kamazani M, Ashrafi S. Single-step sonochemical synthesis of Cu 2O-CeO 2 nanocomposites with enhanced photocatalytic oxidative desulfurization. ULTRASONICS SONOCHEMISTRY 2020; 63:104948. [PMID: 31945578 DOI: 10.1016/j.ultsonch.2019.104948] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 05/27/2023]
Abstract
In this paper, for the first time, composite nanostructures of Cu2O-CeO2 were prepared by a facile and single-step sonochemical method for thiophene photocatalytic oxidative desulfurization. Sonication was performed utilizing a high-intensity ultrasonic probe with a maximum output power of 80 Wcm-3 and operating frequency at 20 kHz. The direct effect of ultrasonic waves on the composition and morphology of the obtained products was also evaluated and it was found that under ultrasonic irradiation, Cu2O-CeO2 can be produced while the main product in the absence of ultrasonic waves is CuO-CeO2. Cu2O-CeO2 exhibits much higher photocatalytic efficiency (84%) than CuO-CeO2 (39%) due to its higher light absorption and electron synergistic effect. The effect of Ce:Cu on photocatalytic efficiency was examined by considering the ratios of 1:0.25, 1:1, 0.5:1, and 0.25:1 and yields of 64, 81, 84, and 76% were obtained, respectively. This indicates that there is an optimal value for the Ce:Cu ratio in the Cu2O-CeO2 nanocomposite.
Collapse
|
11
|
Liu W, Yin K, Yuan K, Zuo S, Yang S, Yao C, Chen M. In situ synthesis of Bi2MoO6@C@attapulgite photocatalyst for enhanced photocatalytic nitrogen fixation ability under simulated solar irradiation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Li X, Wang Z, Shi H, Dai D, Zuo S, Yao C, Ni C. Full spectrum driven SCR removal of NO over hierarchical CeVO 4/attapulgite nanocomposite with high resistance to SO 2 and H 2O. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121977. [PMID: 31911381 DOI: 10.1016/j.jhazmat.2019.121977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/17/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Removal of hazardous NO at low temperature via photo-assisted selective catalytic reduction (photo-SCR) strategy is promising, however fully harvesting of solar energy and achieving high SO2/H2O tolerance still remain a challenge. Herein, the phosphoric acid modified natural attapulgite(P-ATP) was employed as a matrix to immobilize CeVO4 by microwave hydrothermal method. Results show that P-ATP provides abundant active sites facilitating the in situ grow of CeVO4 nanorods on its surface which hierarchically construct a dendritic-like photocatalyst. The near-infrared (NIR) light is upconverted to visible and UV light through CeVO4 which not only broaden the absorption range of solar light, but also build Z-scheme heterostructure with P-ATP enhancing the redox potential of charge carriers. The CeVO4/P-ATP nanocomposite can reach as high as 92 % for NO conversion under full-spectrum solar irradiation, while retaining nearly 60 % conversion under NIR light. Moreover, the catalyst exhibits outstanding tolerance with SO2 and H2O due to the presence of Ce species which can prevent NH3 from being sulfated, while ATP prevent catalyst from being corroded by H2O. This work may open up a new window for full-spectrum driven SCR of NO based on cost-effective mineral catalyst.
Collapse
Affiliation(s)
- Xiazhang Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, PR China; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Key Laboratory of Metallurgical Emission Reduction and Resources Recycling (Anhui University of Technology), Ministry of Education, 243002 Maanshan, PR China.
| | - Zhendong Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, PR China
| | - Haiyang Shi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, PR China
| | - Da Dai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, PR China
| | - Shixiang Zuo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, PR China
| | - Chao Yao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, PR China
| | - Chaoying Ni
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|