1
|
Mohanapriya V, Sakthivel R, Pham NDK, Cheng CK, Le HS, Dong TMH. Nanotechnology- A ray of hope for heavy metals removal. CHEMOSPHERE 2023; 311:136989. [PMID: 36309058 DOI: 10.1016/j.chemosphere.2022.136989] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Environmental effects of heavy metal pollution are considered as a widespread problem throughout the world, as it jeopardizes human health and also reduces the sustainability of a cleaner environment. Removal of such noxious pollutants from wastewater is pivotal because it provides a propitious solution for a cleaner environment and water scarcity. Adsorption treatment plays a significant role in water remediation due to its potent treatment and low cost of adsorbents. In the last two decades, researchers have been highly focused on the modification of adsorption treatment by functionalized and surface-modified nanomaterials which has spurred intense research. The characteristics of nano adsorbents attract global scientists as it is also economically viable. This review shines its light on the functionalized nanomaterials application for heavy metals removal from wastewater and also highlights the importance of regeneration of nanomaterials in the view of visualizing the economic aspects along with a cleaner environment. The review also focused on the proper disposal of nanomaterials with crucial issues that persist in the adsorption process and also emphasize future research modification at a large-scale application in industries.
Collapse
Affiliation(s)
- V Mohanapriya
- Research scholar, Department of Civil Engineering, Government College of Technology, Coimbatore, 641013, India.
| | - R Sakthivel
- Department of Mechanical Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - Nguyen Dang Khoa Pham
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Huu Son Le
- Faculty of Automotive Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Thi Minh Hao Dong
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
2
|
Point of need simultaneous biosensing of pharmaceutical micropollutants with binder free conjugation of manganese stannate micro-rods on reduced graphene oxide in real-time analysis. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
3
|
Gupta A, Sharma V, Sharma K, Kumar V, Choudhary S, Mankotia P, Kumar B, Mishra H, Moulick A, Ekielski A, Mishra PK. A Review of Adsorbents for Heavy Metal Decontamination: Growing Approach to Wastewater Treatment. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4702. [PMID: 34443225 PMCID: PMC8398132 DOI: 10.3390/ma14164702] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 02/05/2023]
Abstract
Heavy metal is released from many industries into water. Before the industrial wastewater is discharged, the contamination level should be reduced to meet the recommended level as prescribed by the local laws of a country. They may be poisonous or cancerous in origin. Their presence does not only damage people, but also animals and vegetation because of their mobility, toxicity, and non-biodegradability into aquatic ecosystems. The review comprehensively discusses the progress made by various adsorbents such as natural materials, synthetic, agricultural, biopolymers, and commercial for extraction of the metal ions such as Ni2+, Cu2+, Pb2+, Cd2+, As2+ and Zn2+ along with their adsorption mechanisms. The adsorption isotherm indicates the relation between the amount adsorbed by the adsorbent and the concentration. The Freundlich isotherm explains the effective physical adsorption of the solute particle from the solution on the adsorbent and Langmuir isotherm gives an idea about the effect of various factors on the adsorption process. The adsorption kinetics data provide valuable insights into the reaction pathways, the mechanism of the sorption reaction, and solute uptake. The pseudo-first-order and pseudo-second-order models were applied to describe the sorption kinetics. The presented information can be used for the development of bio-based water treatment strategies.
Collapse
Affiliation(s)
- Archana Gupta
- Department of Chemistry, MCM DAV College for Women, Sector 36,
Chandigarh 160036, India;
| | - Vishal Sharma
- Institute of Forensic Science and Criminology, Panjab University, Chandigarh 160014, India; (S.C.); (P.M.)
| | - Kashma Sharma
- Department of Chemistry, DAV College, Sector-10, Chandigarh 160011, India;
| | - Vijay Kumar
- Department of Physics, National Institute of Technology Srinagar, Srinagar 190006, India;
| | - Sonal Choudhary
- Institute of Forensic Science and Criminology, Panjab University, Chandigarh 160014, India; (S.C.); (P.M.)
| | - Priyanka Mankotia
- Institute of Forensic Science and Criminology, Panjab University, Chandigarh 160014, India; (S.C.); (P.M.)
| | - Brajesh Kumar
- Post Graduate Department of Chemistry, TATA College, Jharkhand, Chaibasa 833202, India;
- Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui 171103, Ecuador
| | - Harshita Mishra
- Smart Society Research Team, Faculty of Business and Economics, Mendel University in Brno, 61300 Brno, Czech Republic; (H.M.); (A.M.)
| | - Amitava Moulick
- Smart Society Research Team, Faculty of Business and Economics, Mendel University in Brno, 61300 Brno, Czech Republic; (H.M.); (A.M.)
| | - Adam Ekielski
- Department of Production Engineering, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Pawan Kumar Mishra
- Faculty of Business and Economics, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
4
|
Li H, Bai Y, Yang Q, Yu Y. A Highly Expanded Polycarboxylate Gel and New Environmental Response Effects for Efficiently Adsorbing and Recovering Cu(II) from Water. ACS OMEGA 2021; 6:5318-5334. [PMID: 33681572 PMCID: PMC7931198 DOI: 10.1021/acsomega.0c05431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
A new highly expanded polycarboxylate gel (EPCG) was accidentally formed in a facile cross-linking copolymerization system. When used as an adsorbent material, the EPCG could be quickly expanded 29.44 times in water to have a high permeability inside for realizing the efficient adsorption toward Cu(II) from water. The adsorption capacity of EPCG toward Cu(II) was 261.70 mg/g, which was higher than that of all the selected existing adsorbents reported in recent years. The adsorption rate of expanded EPCG was 3.61 times higher than that of the previous polyantionic gel. Similarly, due to the high expansion and high permeability of EPCG, the EPCG skeleton could be further coated with an alkaline NaOH, forming a novel NaOH-coated EPCG material, and its adsorption capacity toward Cu(II) was further improved to 333.21 mg/g compared to that of pure EPCG adsorbent. Moreover, the EPCG wastes after adsorbing Cu(II) could be fully desorbed to be regenerated for reuse. A total of 99.39% of the adsorbed Cu(II) was desorbed from EPCG wastes to be recovered. The adsorption capacity of regenerated EPCG reused for adsorbing Cu(II) was 259.05 mg/g, which was very near that of the original EPCG. In addition, a series of simulation experiments and instrumental analysis were adopted to confirm the new environmental response effects as the key factors in the purification of Cu(II)-containing wastewater, including "expansion-shrink," "alkali-coating," and "acid-desorption" responses.
Collapse
Affiliation(s)
- Hongyan Li
- College
of Chemistry and Chemical Engineering, Jiangxi
Normal University, Ziyang Road 99, Nanchang 330022, China
| | - Yu Bai
- College
of Chemistry and Chemical Engineering, Jiangxi
Normal University, Ziyang Road 99, Nanchang 330022, China
| | - Qiwen Yang
- College
of Chemistry and Chemical Engineering, Jiangxi
Normal University, Ziyang Road 99, Nanchang 330022, China
| | - Yikai Yu
- College
of Chemistry and Chemical Engineering, Jiangxi
Normal University, Ziyang Road 99, Nanchang 330022, China
- Key
Laboratory of Chemical Biology of Jiangxi Province, Ziyang Road 99, Nanchang, 330022, China
| |
Collapse
|
5
|
Ibrahim Y, Naddeo V, Banat F, Hasan SW. Preparation of novel polyvinylidene fluoride (PVDF)-Tin(IV) oxide (SnO2) ion exchange mixed matrix membranes for the removal of heavy metals from aqueous solutions. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117250] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Metoprolol beta-blocker decontamination from water by the adsorptive action of metal-organic frameworks-nano titanium oxide coated tin dioxide nanoparticles. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
7
|
Khutlane JT, Koch KR, Malgas-Enus R. Competitive removal of PGMs from aqueous solutions via dendrimer modified magnetic nanoparticles. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2922-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
8
|
Shang Z, Hu Z, Huang L, Guo Z, Liu H, Zhang C. Removal of amoxicillin from aqueous solution by zinc acetate modified activated carbon derived from reed. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.04.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Mahmoud ME, El-Said GF, Rashedy IR, Abdelfattah AM. Assembly and implementation of an eco-friendly marine nanosediment for adsorptive removal of heptavalent manganese: Adsorption isotherm, thermodynamic and kinetics studies. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.09.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Mahmoud ME, Nabil GM, Zaki MM, Saleh MM. Starch functionalization of iron oxide by-product from steel industry as a sustainable low cost nanocomposite for removal of divalent toxic metal ions from water. Int J Biol Macromol 2019; 137:455-468. [DOI: 10.1016/j.ijbiomac.2019.06.170] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/27/2019] [Accepted: 06/24/2019] [Indexed: 11/26/2022]
|