1
|
Chormare R, Moradeeya PG, Sahoo TP, Seenuvasan M, Baskar G, Saravaia HT, Kumar MA. Conversion of solid wastes and natural biomass for deciphering the valorization of biochar in pollution abatement: A review on the thermo-chemical processes. CHEMOSPHERE 2023; 339:139760. [PMID: 37567272 DOI: 10.1016/j.chemosphere.2023.139760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/14/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
This overview addresses the formation of solid trash and the various forms of waste from a variety of industries, which environmentalists have embraced. The paper investigates the negative effects on the environment caused by unsustainable management of municipal solid trash as well as the opportunities presented by the formal system. This examination looks at the origins of solid waste as well as the typical treatment methods. Pyrolysis methods, feedstock pyrolysis, and lignocellulosic biomass pyrolysis were highlighted. Explain in detail the various thermochemical processes that take place during the pyrolysis of biomass. Due to its carbon content, low cost, accessibility, ubiquitousness, renewable nature, and environmental friendliness, biomass waste is a unique biochar precursor. This study looks at the different types of biomass waste that are available for treating wastewater. This study discussed a wide variety of reactors. Adsorption is the standard method that is used the most frequently to remove hazardous organic, dye, and inorganic pollutants from wastewater. These pollutants cause damage to the environment and water supplies, thus it is important to remove them. Adsorption is both simple and inexpensive to utilize. Temperature-dependent conversions explain the kinetic theories of biomaterial biochemical degradation. This article presents a review that explains how pyrolytic breakdown char materials can be used to reduce pollution and improve environmental management.
Collapse
Affiliation(s)
- Rishikesh Chormare
- Process Design and Engineering Cell, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Pareshkumar G Moradeeya
- Department of Environmental Science and Engineering, Marwadi University, Rajkot, 360 003, Gujarat, India
| | - Tarini Prasad Sahoo
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India; Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Muthulingam Seenuvasan
- Department of Chemical Engineering, Hindusthan College of Engineering and Technology, Coimbatore, 641 032, Tamil Nadu, India
| | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, 600 119, Tamil Nadu, India
| | - Hitesh T Saravaia
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India; Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India.
| | - Madhava Anil Kumar
- Centre for Rural and Entrepreneurship Development, National Institute of Technical Teachers Training and Research, Chennai, 600 113, Tamil Nadu, India.
| |
Collapse
|
2
|
Zhang H, Okuyama K, Higuchi S, Soon G, Lisak G, Law AWK. CFD-DEM simulations of municipal solid waste gasification in a pilot-scale direct-melting furnace. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 162:43-54. [PMID: 36933447 DOI: 10.1016/j.wasman.2023.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/17/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
A multiphase CFD-DEM model was built to simulate the waste-to-energy gasifying and direct melting furnace in a pilot demonstration facility. The characterizations of feedstocks, waste pyrolysis kinetics, and charcoal combustion kinetics were first obtained in the laboratory and used as model inputs. The density and heat capacity of waste and charcoal particles were then modelled dynamically under different status, composition, and temperature. A simplified ash melting model was developed to track the final fate of waste particles. The simulation results were in good agreement with the site observations in both temperature and slag/fly-ash generations, verifying the CFD-DEM model settings and gas-particle dynamics. More importantly, the 3-D simulations quantified and visualized the individual functioning zones in the direct-melting gasifier as well as the dynamic changes throughout the whole lifetime of waste particles, which is otherwise technically unachievable for direct plant observations. Hence, the study demonstrates that the established CFD-DEM model together with the developed simulation procedures can be used as a tool for the optimisation of operating conditions and scaled-up design for future prototype waste-to-energy gasifying and direct melting furnace.
Collapse
Affiliation(s)
- Hui Zhang
- JFE Engineering Corporation Singapore Branch, 1 CleanTech Loop, Singapore 637141, Singapore
| | - Keiichi Okuyama
- JFE Engineering Corporation Singapore Branch, 1 CleanTech Loop, Singapore 637141, Singapore
| | - Shinji Higuchi
- JFE Engineering Corporation Singapore Branch, 1 CleanTech Loop, Singapore 637141, Singapore
| | - Genevieve Soon
- Environmental Process Modelling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 CleanTech Loop, Singapore 637141, Singapore
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Adrian Wing-Keung Law
- Environmental Process Modelling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 CleanTech Loop, Singapore 637141, Singapore.
| |
Collapse
|
3
|
Vuppaladadiyam AK, Vuppaladadiyam SSV, Sahoo A, Murugavelh S, Anthony E, Bhaskar T, Zheng Y, Zhao M, Duan H, Zhao Y, Antunes E, Sarmah AK, Leu SY. Bio-oil and biochar from the pyrolytic conversion of biomass: A current and future perspective on the trade-off between economic, environmental, and technical indicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159155. [PMID: 36206897 DOI: 10.1016/j.scitotenv.2022.159155] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Over the years, the transformation of biomass into a plethora of renewable value-added products has been identified as a promising strategy to fulfil high energy demands, lower greenhouse gas emissions, and exploit under-utilized resources. Techno-economic analysis (TEA) and life-cycle assessment (LCA) are essential to scale up this process while lowering the conversion cost. In this study, trade-offs are made between economic, environmental, and technical indicators produced from these methodologies to better evaluate the commercialization potential of biomass pyrolysis. This research emphasizes the necessity of combining LCA and TEA variables to assess the performance of the early-stage technology and associated constraints. The important findings based on the LCA analysis imply that most of the studies reported in literature focussed on the global warming potentials (GWP) under environmental category by considering greenhouse gases (GHGs) as evaluation parameter, neglecting many other important environmental indices. In addition, the upstream and downstream processes play an important role in understanding the life cycle impacts of a biomass based biorefinery. Under upstream conditions, the use of a specific type of feedstock may influence the LCA conclusions and technical priority. Under downstream conditions, the product utilization as fuels in different energy backgrounds is crucial to the overall impact potentials of the pyrolysis systems. In view of the TEA analysis, investigations towards maximizing the yield of valuable co-products would play an important role in the commercialization of pyrolysis process. However, comprehensive research to compare the conventional, advanced, and emerging approaches of biomass pyrolysis from the economic perspective is currently not available in the literature.
Collapse
Affiliation(s)
- Arun Krishna Vuppaladadiyam
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong; College of Science & Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | | | - Abhisek Sahoo
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - S Murugavelh
- CO(2) Research and Green Technologies Centre, VIT, Vellore, Tamil Nadu 632014, India
| | - Edward Anthony
- Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | - Thallada Bhaskar
- Thermo-Catalytic Processes Area (TPA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India
| | - Ying Zheng
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Ming Zhao
- School of Environment, Tsinghua University, Beijing 100084, China; Research Center of Biogas Centralized Utilization, Beijing 100084, China
| | - Huabo Duan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yan Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Elsa Antunes
- College of Science & Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
4
|
CFD-Simulation of Isobutane Dehydrogenation for a Fluidized Bed Reactor. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6060098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the present study, a mathematical model of the isobutane dehydrogenation process for a laboratory reactor with a diameter of 2.8 cm and a height of 70 cm was created using CFD methods. A two-fluid model was selected as a model for the fluidization simulation, when the gas and solid granular phases were considered as continuous. The model of chemical kinetics considers three reactions that make the main contribution to the products mass fraction at the reactor outlet: the reaction of catalytic dehydrogenation of isobutane to isobutylene, the reaction of thermal cracking of isobutylene with the formation of methane and propylene, and the reaction of catalytic hydrogenation of propylene. The model was verified in a series of experimental studies. Experimental studies and numerical simulations were carried out for the process parameters: gas velocity 0.008, 0.012 and 0.016 m/s, gas temperature 550, 575, 600 and 625 °C, and catalyst mass 75, 100 and 125 g. The optimal process temperature was 575 °C, where the yield of isobutylene averaged 47.6% of the mass. As the temperature decreased, the yield of isobutylene decreased to 40.1% by weight on average. With an increase in temperature, the yield of isobutylene increased to 52.8% by weight on average, and the total yield of products of side reactions increased to 20% by weight on average. Changes in the gas velocity and catalyst mass had an insignificant effect on the values of the yield of isobutylene, but significantly affected the values of the yield of the by-products.
Collapse
|
5
|
Wang K, Tian X, Shan T, Wang C. Simulation of Material Movement in the Process of Catalytic Pyrolysis of Waste Tires. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122050116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
De la Flor-Barriga LA, Rodríguez-Zúñiga UF. Numerical analysis on a catalytic pyrolysis reactor design for plastic waste upcycling using CFD modelling. RSC Adv 2022; 12:12436-12445. [PMID: 35480373 PMCID: PMC9037077 DOI: 10.1039/d2ra01407f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/15/2022] [Indexed: 11/28/2022] Open
Abstract
Catalytic pyrolysis technologies are a current trend to address plastic waste upcycling, offering lower energy consumption and higher value products when compared to conventional thermal pyrolysis. In this study, catalytic pyrolysis of HDPE was simulated using computational fluid dynamics (CFD) in order to analyze the physical behaviour of a designed fluidized bed reactor unit on a pilot scale. Dimensionless numbers were used for heat and mass transfer assessment to provide useful insights for the scale-up of this technology. A fluidized bed reactor configuration was selected for its effective heat/mass transfer and compatibility with ZSM-5 catalyst. Calculations were performed on a set of temperatures (300–500 °C) and feed rates (0.5–1 kg m−2 s−1) to determine the best performing conditions. Tradeoffs between conversion, production rate and heat consumption were discussed. The key results of this study indicate that a feed rate of 1 kg m−2 s−1 at 500 °C yields the best gasoline production while consuming the lowest amount of energy per kilogram of product. Catalytic pyrolysis technologies are a current trend to address plastic waste upcycling, offering lower energy consumption and higher value products when compared to conventional thermal pyrolysis.![]()
Collapse
|
7
|
Li P, Xu R, Wang N, Chang J, Si H. Pneumatic feeding characteristics into dense-phase region of a fluidized bed for biomass pyrolysis. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Lei Z, Hao S, Yang J, Zhang L, Fang B, Wei K, Lingbo Q, Jin S, Wei C. Study on denitration and sulfur removal performance of Mn-Ce supported fly ash catalyst. CHEMOSPHERE 2021; 270:128646. [PMID: 33127116 DOI: 10.1016/j.chemosphere.2020.128646] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Nitrogen oxides (NOx) are the main pollutants of air, which mainly come from the combustion of coal and fossil fuels. In this paper, with fly ash used as the catalyst carrier, the effects on the denitration and sulfur resistance of Mn-Ce loading sequence and molar ratio were studied. The catalyst was characterized and analyzed by XRD, XPS, SEM. The results show that when Mn-Ce bimetal is loaded at the same time, Mn ions enter the CeO2 lattice to form a solid solution of Mn-O-Ce fluorite structure, which makes the catalyst has the best denitration and sulfur resistance. The catalyst denitration performance increases first and then decreases with the increase of Mn-Ce molar ratio. When Mn-Ce is 1:1, the denitration efficiency is higher, the total conversion rate of NO is the highest and the deactivation time is the longest, the catalyst is resistant to sulfur performance is also the best.
Collapse
Affiliation(s)
- Zhang Lei
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an University of Science and Technology, Xi'an, 710054, China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi'an, 710021, China.
| | - Shu Hao
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an University of Science and Technology, Xi'an, 710054, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Jia Yang
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Lei Zhang
- China National Heavy Machinery Research Institute co, Ltd, Xi'an, 710032, China
| | - Bai Fang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kuang Wei
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Qi Lingbo
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Shang Jin
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Chao Wei
- Shenmu Hongliulin Coal Mine of Shaanxi Coal Industry Co., Ltd., Shenmu, 719300, China
| |
Collapse
|
9
|
Huang Y, Liu S, Akhtar MA, Li B, Zhou J, Zhang S, Zhang H. Volatile-char interactions during biomass pyrolysis: Understanding the potential origin of char activity. BIORESOURCE TECHNOLOGY 2020; 316:123938. [PMID: 32758923 DOI: 10.1016/j.biortech.2020.123938] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
To understand the potential origin of char activity responsible for volatile evolution during biomass pyrolysis, the interactions between benzyl phenyl ether (BPE, a typical lignin dimer) and pinewood chars prepared under a series of thermal, acidy, and steamy conditions were investigated. The results showed the activity of low-temperature char on BPE conversion was mainly attributed to the surface O-containing functional groups. The BPE conversion decreased as the temperature for char preparation raised, resulting from the elimination of char surface functional groups to a large degree at high temperature. The low activity of high-temperature char on BPE conversion could be recovered by acid-washing to release metal-occupied carbon based active sites (e.g., small aromatic rings), and further promoted by steam activation to modify the surface property and porous structure, finally achieving a full conversion of BPE and high selectivity to the products of phenol and toluene.
Collapse
Affiliation(s)
- Yong Huang
- Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shasha Liu
- Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Muhammad Asif Akhtar
- Department of Chemical Engineering, University of Engineering and Technology, G.T. Road, Lahore, Pakistan
| | - Bin Li
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianbin Zhou
- Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shu Zhang
- Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Hong Zhang
- Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|