1
|
Kusano R, Kusano Y. Applications of Plasma Technologies in Recycling Processes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1687. [PMID: 38612199 PMCID: PMC11012531 DOI: 10.3390/ma17071687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Plasmas are reactive ionised gases, which enable the creation of unique reaction fields. This allows plasmas to be widely used for a variety of chemical processes for materials, recycling among others. Because of the increase in urgency to find more sustainable methods of waste management, plasmas have been enthusiastically applied to recycling processes. This review presents recent developments of plasma technologies for recycling linked to economical models of circular economy and waste management hierarchies, exemplifying the thermal decomposition of organic components or substances, the recovery of inorganic materials like metals, the treatment of paper, wind turbine waste, and electronic waste. It is discovered that thermal plasmas are most applicable to thermal processes, whereas nonthermal plasmas are often applied in different contexts which utilise their chemical selectivity. Most applications of plasmas in recycling are successful, but there is room for advancements in applications. Additionally, further perspectives are discussed.
Collapse
Affiliation(s)
- Reinosuke Kusano
- School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK;
| | - Yukihiro Kusano
- Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| |
Collapse
|
2
|
Mery A, Chenavier Y, Marcucci C, Benayad A, Alper JP, Dubois L, Haon C, Boime NH, Sadki S, Duclairoir F. Toward the Improvement of Silicon-Based Composite Electrodes via an In-Situ Si@C-Graphene Composite Synthesis for Li-Ion Battery Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2451. [PMID: 36984331 PMCID: PMC10051277 DOI: 10.3390/ma16062451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Using Si as anode materials for Li-ion batteries remain challenging due to its morphological evolution and SEI modification upon cycling. The present work aims at developing a composite consisting of carbon-coated Si nanoparticles (Si@C NPs) intimately embedded in a three-dimensional (3D) graphene hydrogel (GHG) architecture to stabilize Si inside LiB electrodes. Instead of simply mixing both components, the novelty of the synthesis procedure lies in the in situ hydrothermal process, which was shown to successfully yield graphene oxide reduction, 3D graphene assembly production, and homogeneous distribution of Si@C NPs in the GHG matrix. Electrochemical characterizations in half-cells, on electrodes not containing additional conductive additive, revealed the importance of the protective C shell to achieve high specific capacity (up to 2200 mAh.g-1), along with good stability (200 cycles with an average Ceff > 99%). These performances are far superior to that of electrodes made with non-C-coated Si NPs or prepared by mixing both components. These observations highlight the synergetic effects of C shell on Si NPs, and of the single-step in situ preparation that enables the yield of a Si@C-GHG hybrid composite with physicochemical, structural, and morphological properties promoting sample conductivity and Li-ion diffusion pathways.
Collapse
Affiliation(s)
- Adrien Mery
- Université Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, F-38000 Grenoble, France
| | - Yves Chenavier
- Université Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, F-38000 Grenoble, France
| | - Coralie Marcucci
- Université Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, F-38000 Grenoble, France
| | - Anass Benayad
- Université Grenoble Alpes, CEA, LITEN, DTNM, F-38054 Grenoble, France
| | - John P. Alper
- Université Paris Saclay, IRAMIS, UMR NIMBE, CEA Saclay, F-91191 Gif-sur-Yvette, CEDEX, France
| | - Lionel Dubois
- Université Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, F-38000 Grenoble, France
| | - Cédric Haon
- Université Grenoble Alpes, CEA, LITEN, DEHT, F-38054 Grenoble, France
| | - Nathalie Herlin Boime
- Université Paris Saclay, IRAMIS, UMR NIMBE, CEA Saclay, F-91191 Gif-sur-Yvette, CEDEX, France
| | - Saïd Sadki
- Université Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, F-38000 Grenoble, France
| | | |
Collapse
|
3
|
Kundu T, Rath SS, Das SK, Parhi PK, Angadi SI. Recovery of lithium from spodumene-bearing pegmatites: A comprehensive review on geological reserves, beneficiation, and extraction. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2022.118142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Energy Efficiency Enhancement of Inductively Coupled Plasma Torch: Computational Study. MATERIALS 2022; 15:ma15155213. [PMID: 35955148 PMCID: PMC9370037 DOI: 10.3390/ma15155213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022]
Abstract
In this research, we studied the performance analysis of inductively coupled radiofrequency plasma “RF-ICP” torch used in multi-material processing. A 2D numerical model built with COMSOL Multiphysics was used to study the discharge behavior and evaluate the overall efficiency transmitted into the plasma system. The temperature and velocity flow of the plasma were investigated. The numerical results are consistent with previous experimental studies. The temperature and velocity profiles are represented under a wide range of RF power and for different sheath gas flow rates. With increasing power, the radial peak temperature typically shifts towards the wall. The resistance of the torch rises whereas the inductance diminishes with increasing RF power. The overall dependency of the coupling efficiency to the RF power is also estimated. The stabilization of the plasma flow dependency to the sheath swirl flow was investigated. The incorporation of Helium (0.02%) into an Argon gas was established to minimize the energy lost in the sidewall. The number and spacing of induction coil numbers affects the temperature and flow field distribution. A valuable approach to designing and optimizing the induction plasma system is presented in the proposed study. The obtained results are fundamental to specify ICP torch design criteria needed for multi-material processing.
Collapse
|
5
|
Modeling of Advanced Silicon Nanomaterial Synthesis Approach: From Reactive Thermal Plasma Jet to Nanosized Particles. NANOMATERIALS 2022; 12:nano12101763. [PMID: 35630984 PMCID: PMC9144447 DOI: 10.3390/nano12101763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
A three-dimensional numerical modelling of a time-dependent, turbulent thermal plasma jet was developed to synthetize silicon nanopowder. Computational fluid dynamics and particle models were employed via COMSOL Multiphysics® v. 5.4 (COMSOL AB, Stockholm, Sweden) to simulate fluid and particle motion in the plasma jet, as well as the heat dependency. Plasma flow and particle interactions were exemplified in terms of momentum, energy, and turbulence flow. The transport of nanoparticles through convection, diffusion, and thermophoresis were also considered. The trajectories and heat transfer of both plasma jet fields, and particles are represented. The swirling flow controls the plasma jet and highly affects the dispersion of the nanoparticles. We demonstrate a decrease in both particles’ velocity and temperature distribution at a higher carrier gas injection velocity. The increase in the particle size and number affects the momentum transfer, turbulence modulation, and energy of particles, and also reduces plasma jet parameters. On the other hand, the upstream flame significantly impacts the particle’s behavior under velocity and heat transfer variation. Our findings open the door for examining thermal plasma impact in nanoparticle synthesis, where it plays a major role in optimizing the growth parameters, ensuring high quality with a low-cost technique.
Collapse
|
6
|
Zhao F, Zhao M, Dong Y, Ma L, Zhang Y, Niu S, Wei L. Facile preparation of micron-sized silicon-graphite‑carbon composite as anode material for high-performance lithium-ion batteries. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
She Z, Uceda M, Pope MA. Encapsulating a Responsive Hydrogel Core for Void Space Modulation in High-Stability Graphene-Wrapped Silicon Anodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10363-10372. [PMID: 35175023 DOI: 10.1021/acsami.1c23356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Due to its formidably high theoretical capacity (3590 mAh/g at room temperature), silicon (Si) is expected to replace graphite as the dominant anode for higher energy density lithium (Li)-ion batteries. However, stability issues stemming from silicon's significant volume expansion (∼300%) upon lithiation have slowed down commercialization. Herein, we report the design of a scalable process to engineer core-shell structures capable of buffering this volume expansion, which utilize a core made up of a poly(ethylene oxide)-carboxymethyl cellulose hydrogel and silicon protected by a crumpled graphene shell. The volume expansion of the hydrogel upon exposure to water creates a void space between the Si-Si and Si-rGO interfaces within the core when the gel dries. Unlike sacrificial spacers, the dehydrated hydrogel remains in the core and acts as an elastic Li-ion conductor, which improves the stability and high rate performance. The optimized composite electrodes retain ∼81.7% of their initial capacity (1055 mAh/(grGO+gel+Si)) after 320 cycles when an active material loading of 1 mg/cm2 is used. At more practical mass loadings (2.5 mg/cm2), the electrodes achieve 2.04 mAh/cm2 and retain 79% of this capacity after 200 cycles against a lithium half-cell. Full cells assembled using a lithium ion phosphate cathode lose only 6.7% of their initial capacity over 100 cycles, demonstrating the potential of this nanocomposite anode for use in next-generation Li-ion batteries.
Collapse
Affiliation(s)
- Zimin She
- Quantum-Nano Centre, Department of Chemical Engineering, University of Waterloo, Waterloo N2L 3G1, Canada
| | - Marianna Uceda
- Quantum-Nano Centre, Department of Chemical Engineering, University of Waterloo, Waterloo N2L 3G1, Canada
| | - Michael A Pope
- Quantum-Nano Centre, Department of Chemical Engineering, University of Waterloo, Waterloo N2L 3G1, Canada
| |
Collapse
|
8
|
Zhang X, Yamano K, Hayashida R, Tanaka M, Watanabe T. Effect of Methane Injection Methods on the Preparation of Silicon Nanoparticles with Carbon Coating in Induction Thermal Plasma. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2022. [DOI: 10.1252/jcej.21we068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoyu Zhang
- Department of Chemical Engineering, Kyushu University
| | | | | | - Manabu Tanaka
- Department of Chemical Engineering, Kyushu University
| | | |
Collapse
|
9
|
A controllable and byproduct-free synthesis method of carbon-coated silicon nanoparticles by induction thermal plasma for lithium ion battery. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Abstract
The synthesis of nanomaterials, with characteristic dimensions of 1 to 100 nm, is a key component of nanotechnology. Vapor-phase synthesis of nanomaterials has numerous advantages such as high product purity, high-throughput continuous operation, and scalability that have made it the dominant approach for the commercial synthesis of nanomaterials. At the same time, this class of methods has great potential for expanded use in research and development. Here, we present a broad review of progress in vapor-phase nanomaterial synthesis. We describe physically-based vapor-phase synthesis methods including inert gas condensation, spark discharge generation, and pulsed laser ablation; plasma processing methods including thermal- and non-thermal plasma processing; and chemically-based vapor-phase synthesis methods including chemical vapor condensation, flame-based aerosol synthesis, spray pyrolysis, and laser pyrolysis. In addition, we summarize the nanomaterials produced by each method, along with representative applications, and describe the synthesis of the most important materials produced by each method in greater detail.
Collapse
Affiliation(s)
- Mohammad Malekzadeh
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA. and RENEW Institute, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
11
|
Computational Study of Quenching Effects on Growth Processes and Size Distributions of Silicon Nanoparticles at a Thermal Plasma Tail. NANOMATERIALS 2021; 11:nano11061370. [PMID: 34064269 PMCID: PMC8224306 DOI: 10.3390/nano11061370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022]
Abstract
In this paper, quenching effects on silicon nanoparticle growth processes and size distributions at a typical range of cooling rates in a thermal plasma tail are investigated computationally. We used a nodal-type model that expresses a size distribution evolving temporally with simultaneous homogeneous nucleation, heterogeneous condensation, interparticle coagulation, and melting point depression. The numerically obtained size distributions exhibit similar size ranges and tendencies to those of experiment results obtained with and without quenching. In a highly supersaturated state, 40–50% of the vapor atoms are converted rapidly to nanoparticles. After most vapor atoms are consumed, the nanoparticles grow by coagulation, which occurs much more slowly than condensation. At higher cooling rates, one obtains greater total number density, smaller size, and smaller standard deviation. Quenching in thermal plasma fabrication is effectual, but it presents limitations for controlling nanoparticle characteristics.
Collapse
|
12
|
Highly Conductive Al/Al Interfaces in Ultrafine Grained Al Compact Prepared by Low Oxygen Powder Metallurgy Technique. NANOMATERIALS 2021; 11:nano11051182. [PMID: 33946182 PMCID: PMC8145279 DOI: 10.3390/nano11051182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
The low oxygen powder metallurgy technique makes it possible to prepare full-dense ultrafine-grained (UFG) Al compacts with an average grain size of 160 nm by local surface bonding at a substantially lower temperature of 423 K from an Al nanopowder prepared by a low oxygen induction thermal plasma process. By atomic level analysis using transmission electron microscopy, it was found that there was almost no oxide layer at the Al/Al interfaces (grain boundaries) in UFG Al compact. The electrical conductivity of the UFG Al compact reached 3.5 × 107 S/m, which is the same level as that of the cast Al bulk. The Vickers hardness of the UFG Al compact of 1078 MPa, which is 8 times that of the cast Al bulk, could be explained by the Hall-Petch law. In addition, fracture behavior was analyzed by conducting a small punch test. The as-sintered UFG Al compact initially fractured before reaching its ultimate strength due to its large number of grain boundaries with a high misorientation angle. Ultimate strength and elongation were enhanced to 175 MPa and 24%, respectively, by reduction of grain boundaries after annealing, indicating that high compatibility of strength and elongation can be realized by appropriate microstructure control.
Collapse
|
13
|
Zhang X, Liu Z, Tanaka M, Watanabe T. Formation mechanism of amorphous silicon nanoparticles with additional counter-flow quenching gas by induction thermal plasma. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116217] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|