1
|
Kiricenko K, Klinken S, Kleinebudde P. Proof of a LOD prediction model with orthogonal PAT methods in continuous wet granulation and drying. J Pharm Sci 2025; 114:176-184. [PMID: 39004417 DOI: 10.1016/j.xphs.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Real-time monitoring of critical quality attributes, such as residual water in granules after drying which can be determined through loss-on-drying (LOD), during wet granulation and drying is essential in continuous manufacturing. Near-infrared (NIR) spectroscopy has been widely used as process analytical technology (PAT) for in-line LOD monitoring. This study aims to develop and apply a model for predicting the LOD based on process parameters. Additionally, the efficacy of an orthogonal PAT approach using NIR and mass balance (MB) for a vibrating fluidized bed dryer (VFBD) is demonstrated. An in-house-built, cost-effective NIR sensor was utilized for measurements and exhibited good correlation compared to standard method via infrared drying. The combination of NIR and MB, as independent methods, has demonstrated their applicability. A good correlation, with a Pearson r above 0.99, was observed for LOD up to 16 % (w/w). The use of an orthogonal PAT method mitigated the risk of false process adaption. In some experiments where the NIR sensor might have been covered by powder and therefore did not measure accurately, LOD monitoring via MB remained feasible. The developed model effectively predicted LOD or process parameters, resulting in an R2 of 0.882 and a RMSE of 0.475 between predicted and measured LOD using the standard method.
Collapse
Affiliation(s)
- Katharina Kiricenko
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Science, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Stefan Klinken
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Science, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Peter Kleinebudde
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Science, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
2
|
Leane M, Pitt K, Reynolds G, Tantuccio A, Moreton C, Crean A, Kleinebudde P, Carlin B, Gamble J, Gamlen M, Stone E, Kuentz M, Gururajan B, Khimyak YZ, Van Snick B, Andersen S, Misic Z, Peter S, Sheehan S. Ten years of the manufacturing classification system: a review of literature applications and an extension of the framework to continuous manufacture. Pharm Dev Technol 2024; 29:395-414. [PMID: 38618690 DOI: 10.1080/10837450.2024.2342953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The MCS initiative was first introduced in 2013. Since then, two MCS papers have been published: the first proposing a structured approach to consider the impact of drug substance physical properties on manufacturability and the second outlining real world examples of MCS principles. By 2023, both publications had been extensively cited by over 240 publications. This article firstly reviews this citing work and considers how the MCS concepts have been received and are being applied. Secondly, we will extend the MCS framework to continuous manufacture. The review structure follows the flow of drug product development focussing first on optimisation of API properties. The exploitation of links between API particle properties and manufacturability using large datasets seems particularly promising. Subsequently, applications of the MCS for formulation design include a detailed look at the impact of percolation threshold, the role of excipients and how other classification systems can be of assistance. The final review section focusses on manufacturing process development, covering the impact of strain rate sensitivity and modelling applications. The second part of the paper focuses on continuous processing proposing a parallel MCS framework alongside the existing batch manufacturing guidance. Specifically, we propose that continuous direct compression can accommodate a wider range of API properties compared to its batch equivalent.
Collapse
Affiliation(s)
- Michael Leane
- Drug Product Development, Bristol Myers Squibb, Moreton, UK
| | - Kendal Pitt
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Gavin Reynolds
- Oral Product Development, Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK
| | - Anthony Tantuccio
- Technology Intensification, Hovione LLC, East Windsor, New Jersey, USA
| | | | - Abina Crean
- SSPC, the SFI Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland
| | - Peter Kleinebudde
- Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Brian Carlin
- Owner, Carlin Pharma Consulting, Lawrenceville, New Jersey, USA
| | - John Gamble
- Drug Product Development, Bristol Myers Squibb, Moreton, UK
| | - Michael Gamlen
- Chief Scientific Officer, Gamlen Tableting Ltd, Heanor, UK
| | - Elaine Stone
- Consultant, Stonepharma Ltd. ATIC, Loughborough, UK
| | - Martin Kuentz
- Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences FHNW, Muttenz, Switzerland
| | - Bindhu Gururajan
- Pharmaceutical Development, Novartis Pharma AG, Basel, Switzerland
| | - Yaroslav Z Khimyak
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Bernd Van Snick
- Oral Solids Development, Drug Product Development, JnJ Innovative Medicine, Beerse, Belgium
| | - Sune Andersen
- Oral Solids Development, Drug Product Development, JnJ Innovative Medicine, Beerse, Belgium
| | - Zdravka Misic
- Innovation Research and Development, dsm-firmenich, Kaiseraugst, Switzerland
| | - Stefanie Peter
- Research and Development Division, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Stephen Sheehan
- External Development and Manufacturing, Alkermes Pharma Ireland Limited, Dublin 4, Ireland
| |
Collapse
|
3
|
Monaco D, Reynolds GK, Tajarobi P, Litster JD, Salman AD. Modelling the effect of L/S ratio and granule moisture content on the compaction properties in continuous manufacturing. Int J Pharm 2023; 633:122624. [PMID: 36690126 DOI: 10.1016/j.ijpharm.2023.122624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
The pharmaceutical field is currently moving towards continuous manufacturing pursuing reduced waste, consistency, and automation. During continuous manufacturing, it is important to understand how both operating conditions and material properties throughout the process affect the final properties of the product to optimise and control production. In this study of a continuous wet granulation line, the liquid to solid ratio (L/S) and drying times were varied to investigate the effect of the final granule moisture content and the liquid to solid ratio on the properties of the granules during tabletting and the final tensile strength of the tablets. Both variables (L/S and granule moisture) affected the tablet tensile strength with the moisture content having a larger impact. Further analysis using a compaction model, showed that the compactability of the granules was largely unaffected by both L/S and moisture content while the compressibility was influenced by these variables, leading to a difference in the final tablet strength and porosity. The granule porosity was linked to the L/S ratio and used instead for the model fitting. The effect of moisture content and granule porosity was added to the model using a 3d plane relationship between the compressibility constant, the moisture content and porosity of the granules. The tablet tensile strength model, considering the effect of moisture and granule porosity, performed well averaging a root mean squared error across the different conditions of 0.17 MPa.
Collapse
Affiliation(s)
- Daniele Monaco
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| | - Gavin K Reynolds
- Oral Product Development, Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK
| | - Pirjo Tajarobi
- Early Product Development and Manufacture, Pharmaceutical Sciences, AstraZeneca, Gothenburg, Sweden
| | - James D Litster
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Agba D Salman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
4
|
Ge Wang L, Omar C, Litster J, Slade D, Li J, Salman A, Bellinghausen S, Barrasso D, Mitchell N. Model Driven Design for Integrated Twin Screw Granulator and Fluid Bed Dryer via Flowsheet Modelling. Int J Pharm 2022; 628:122186. [PMID: 36130681 DOI: 10.1016/j.ijpharm.2022.122186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/27/2022]
Abstract
This paper presents a flowsheet modelling of an integrated twin screw granulation (TSG) and fluid bed dryer (FBD) process using a Model Driven Design (MDD) approach. The MDD approach is featured by appropriate process models and efficient model calibration workflow to ensure the product quality. The design space exploration is driven by the physics of the process instead of extensive experimental trials. By means of MDD, the mechanistic-based process kernels are first defined for the TSG and FBD processes. With the awareness of the underlying physics, the complementary experiments are carried out with relevance to the kinetic parameters in the defined models. As a result, the experiments are specifically purposeful for model calibration and validation. The L/S ratio (liquid to solid ratio) and inlet air temperature are selected as the Critical Process Parameters (CPPs) in TSG and FBD for model validation, respectively. Global System Analysis (GSA) is further performed to assess the uncertainty of CPPs imposed on the Critical Quality Attributes (CQAs), which provides significant insights to the exploration of the design space considering both TSG and FBD process parameters.
Collapse
Affiliation(s)
- Li Ge Wang
- Siemens Process Systems Engineering, Hammersmith, London, UK; Department of Chemical and Biological Engineering, University of Sheffield, UK
| | - Chalak Omar
- Department of Chemical and Biological Engineering, University of Sheffield, UK
| | - James Litster
- Department of Chemical and Biological Engineering, University of Sheffield, UK.
| | - David Slade
- Siemens Process Systems Engineering, Hammersmith, London, UK
| | - Jianfeng Li
- Siemens Process Systems Engineering, Parsippany, New Jersey, USA
| | - Agba Salman
- Department of Chemical and Biological Engineering, University of Sheffield, UK
| | | | - Dana Barrasso
- Siemens Process Systems Engineering, Hammersmith, London, UK
| | - Niall Mitchell
- Siemens Process Systems Engineering, Hammersmith, London, UK
| |
Collapse
|