1
|
Baser E, Inandiklioglu N, Aydogan Kırmızı D, Ercan F, Caniklioğlu A, Kara M, Onat T, Yalvac ES. Placental and Umbilical Cord Blood Oxidative Stress Level and Telomere Homeostasis in Early Onset Severe Preeclampsia. Z Geburtshilfe Neonatol 2023; 227:112-119. [PMID: 36216345 DOI: 10.1055/a-1938-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
OBJECTIVE Although the etiopathogenesis of preeclampsia (PE) is unknown, evidence suggests that it may be associated with increased oxidative stress. Studies have shown that oxidative stress can affect DNA fragments called telomeres. However, the interactions of PE, oxidative stress, and telomere length are not clearly known. This study aims to evaluate the oxidative/anti-oxidative stress balance in the placenta and umbilical cord and examine the effect of oxidative stress on telomeres. MATERIALS-METHOD Cord blood and placental samples were collected from 27 pregnant women with severe PE (280/7-336/7 gestational weeks) and 53 healthy pregnant women. Telomere length (TL) was measured by real-time PCR in the cord blood and placenta tissue. Total antioxidant status (TAS) and total oxidant status (TOS) levels were measured in the cord blood and placenta tissue using a colorimetric method. RESULTS No significant differences were found between groups regarding age, BMI, gravida, parity, and newborn gender (p>0.05). Cord blood and placental TL of PE patients were significantly shorter than the control group, while cord blood and placental TAS and TOS levels were higher (p<0.05). The results of a multivariate logistic regression analysis showed that the level of placental TOS in PE patients (OR=1.212, 95% CI=1.068-1.375) was an independent risk factor affecting PE. CONCLUSION This study found that oxidative stress is an independent risk factor in the development of PE and shortens TL in both placental and umbilical cord blood. Future research on telomere homeostasis may offer a new perspective for the treatment of PE.
Collapse
Affiliation(s)
- Emre Baser
- Department of Obstetrics and Gynecology, Yozgat Bozok University, Yozgat, Turkey
| | | | - Demet Aydogan Kırmızı
- Department of Obstetrics and Gynecology, Yozgat Bozok Universty, Medicine of Faculty, Yozgat, Turkey
| | - Fedi Ercan
- Obstetrics and Gynecology, Necmettin Erbakan Universitesi Meram Tip Fakultesi, Konya, Turkey
| | - Ayşen Caniklioğlu
- Department of Biochemistry, Yozgat Bozok University, Faculty of Medicine, Yozgat, Turkey
| | - Mustafa Kara
- Obstetrics and Gynecology, Ahi Evran University Faculty of Medicine, Kirsehir, Turkey
| | - Taylan Onat
- Department of Obstetrics and Gynecology, Yozgat Bozok University, Faculty of Medicine, Yozgat, Turkey
| | - Ethem Serdar Yalvac
- Department of Obstetrics and Gynecology, Yozgat Bozok University, Faculty of Medicine, Yozgat, Turkey
| |
Collapse
|
2
|
Qu H, Khalil RA. Role of ADAM and ADAMTS Disintegrin and Metalloproteinases in Normal Pregnancy and Preeclampsia. Biochem Pharmacol 2022; 206:115266. [PMID: 36191626 DOI: 10.1016/j.bcp.2022.115266] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022]
Abstract
Normal pregnancy (NP) involves intricate processes starting with egg fertilization, proceeding to embryo implantation, placentation and gestation, and culminating in parturition. These pregnancy-related processes require marked uteroplacental and vascular remodeling by proteolytic enzymes and metalloproteinases. A disintegrin and metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS) are members of the zinc-dependent family of proteinases with highly conserved protein structure and sequence homology, which include a pro-domain, and a metalloproteinase, disintegrin and cysteine-rich domain. In NP, ADAMs and ADAMTS regulate sperm-egg fusion, embryo implantation, trophoblast invasion, placental angiogenesis and spiral arteries remodeling through their ectodomain proteolysis of cell surface cytokines, cadherins and growth factors as well as their adhesion with integrins and cell-cell junction proteins. Preeclampsia (PE) is a serious complication of pregnancy characterized by new-onset hypertension (HTN) in pregnancy (HTN-Preg) at or after 20 weeks of gestation, with or without proteinuria. Insufficient trophoblast invasion of the uterine wall, inadequate expansive remodeling of the spiral arteries, reduced uteroplacental perfusion pressure, and placental ischemia/hypoxia are major initiating events in the pathogenesis of PE. Placental ischemia/hypoxia increase the release of reactive oxygen species (ROS), which lead to aberrant expression/activity of certain ADAMs and ADAMTS. In PE, abnormal expression/activity of specific ADAMs and ADAMTS that function as proteolytic sheddases could alter proangiogenic and growth factors, and promote the release of antiangiogenic factors and inflammatory cytokines into the placenta and maternal circulation leading to generalized inflammation, endothelial cell injury and HTN-Preg, renal injury and proteinuria, and further decreases in uteroplacental blood flow, exaggeration of placental ischemia, and consequently fetal growth restriction. Identifying the role of ADAMs and ADAMTS in NP and PE has led to a better understanding of the underlying molecular and vascular pathways, and advanced the potential for novel biomarkers for prediction and early detection, and new approaches for the management of PE.
Collapse
Affiliation(s)
- Hongmei Qu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA.
| |
Collapse
|
3
|
Rodríguez-Cano AM, González-Ludlow I, Suárez-Rico BV, Montoya-Estrada A, Piña-Ramírez O, Parra-Hernández SB, Reyes-Muñoz E, Estrada-Gutierrez G, Calzada-Mendoza CC, Perichart-Perera O. Ultra-Processed Food Consumption during Pregnancy and Its Association with Maternal Oxidative Stress Markers. Antioxidants (Basel) 2022; 11:antiox11071415. [PMID: 35883909 PMCID: PMC9312096 DOI: 10.3390/antiox11071415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Ultra-processed food (UPF) consumption during gestation may lead to increased oxidative stress (OS) and could affect pregnancy outcomes. This study aims to evaluate the association of UPF consumption during pregnancy with circulating levels of OS markers. Diet was assessed (average of three assessments) in 119 pregnant women enrolled in the OBESO perinatal cohort (Mexico), obtaining quantitative data and the percentage of energy that UPFs (NOVA) contributed to the total diet. Sociodemographic, clinical (pregestational body-mass index and gestational weight gain) and lifestyle data were collected. Maternal circulating levels of OS markers (malondialdehyde (MDA), protein carbonylation (PC), and total antioxidant capacity (TAC)) were determined at the third trimester of pregnancy. Adjusted linear regression models were performed to analyze the association between UPFs and OS markers. UPFs represented 27.99% of the total energy intake. Women with a lower UPF consumption (<75 percentile°) presented a higher intake of fiber, ω-3, ω-6, and a lower ω-6/3 ratio. Linear regression models showed that UPFs were inversely associated with TAC and MDA. Fiber intake was associated with PC. UPF intake during pregnancy may result in an increase in oxidative stress. When providing nutrition care, limiting or avoiding UPFs may be an intervention strategy that could promote a better antioxidant capacity in the body.
Collapse
Affiliation(s)
- Ameyalli M. Rodríguez-Cano
- Section for Postgraduate Studies and Research, Higher School of Medicine, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomas, Miguel Hidalgo, Mexico City 11340, Mexico; (A.M.R.-C.); (C.C.C.-M.)
- Nutrition and Bioprogramming Coordination, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Miguel Hidalgo, Mexico City 11000, Mexico;
| | - Isabel González-Ludlow
- Nutrition and Bioprogramming Coordination, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Miguel Hidalgo, Mexico City 11000, Mexico;
| | - Blanca V. Suárez-Rico
- Community Interventions Research Branch, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Miguel Hidalgo, Mexico City 11000, Mexico;
| | - Araceli Montoya-Estrada
- Gynecological and Perinatal Endocrinology Coordination, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Miguel Hidalgo, Mexico City 11000, Mexico; (A.M.-E.); (E.R.-M.)
| | - Omar Piña-Ramírez
- Bioinformatics and Statistical Analysis Department, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Miguel Hidalgo, Mexico City 11000, Mexico;
| | - Sandra B. Parra-Hernández
- Immunobiochemistry Department, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Miguel Hidalgo, Mexico City 11000, Mexico;
| | - Enrique Reyes-Muñoz
- Gynecological and Perinatal Endocrinology Coordination, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Miguel Hidalgo, Mexico City 11000, Mexico; (A.M.-E.); (E.R.-M.)
| | - Guadalupe Estrada-Gutierrez
- Research Division, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Miguel Hidalgo, Mexico City 11000, Mexico;
| | - Claudia C. Calzada-Mendoza
- Section for Postgraduate Studies and Research, Higher School of Medicine, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomas, Miguel Hidalgo, Mexico City 11340, Mexico; (A.M.R.-C.); (C.C.C.-M.)
| | - Otilia Perichart-Perera
- Nutrition and Bioprogramming Coordination, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Miguel Hidalgo, Mexico City 11000, Mexico;
- Correspondence:
| |
Collapse
|
4
|
Abstract
OBJECTIVE: The aim of the study was to assess the potential role of oxidative stress and lipid status in the onset of preeclampsia.METHODS: 138 high-risk pregnant women were prospectively followed. Assessment of oxidative stress (TAS, TOS, AOPP and SH groups) and lipid status (t-C, LDL-C, HDL-C, TGC, APO-A1, APO-B) was carried out during the pregnancy.RESULTS: 30 women developed preeclampsia. TGC, atherogenic index of plasma, TAS and SH levels were higher in women who subsequently developed preeclampsia (p<0.05).CONCLUSION: Oxidative stress and lipid status disturbance have a potential role in the onset of preeclampsia in high risk pregnancies.
Collapse
|
5
|
Mohamedi Y, Fontanil T, Cal S, Cobo T, Obaya ÁJ. ADAMTS-12: Functions and Challenges for a Complex Metalloprotease. Front Mol Biosci 2021; 8:686763. [PMID: 33996918 PMCID: PMC8119882 DOI: 10.3389/fmolb.2021.686763] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Nineteen members of the ADAMTS family of secreted zinc metalloproteinases are present in the human degradome. A wide range of different functions are being attributed to these enzymes and the number of their known substrates is considerably increasing in recent years. ADAMTSs can participate in processes such as fertility, inflammation, arthritis, neuronal and behavioral disorders, as well as cancer. Since its first annotation in 2001, ADAMTS-12 has been described to participate in different processes displayed by members of this family of proteinases. In this sense, ADAMTS-12 performs essential roles in modulation and recovery from inflammatory processes such as colitis, endotoxic sepsis and pancreatitis. ADAMTS-12 has also been involved in cancer development acting either as a tumor suppressor or as a pro-tumoral agent. Furthermore, participation of ADAMTS-12 in arthritis or in neuronal disorders has also been suggested through degradation of components of the extracellular matrix. In addition, ADAMTS-12 proteinase activity can also be modified by interaction with other proteins and thus, can be an alternative way of modulating ADAMTS-12 functions. In this review we revised the most relevant findings about ADAMTS-12 function on the 20th anniversary of its identification.
Collapse
Affiliation(s)
- Yamina Mohamedi
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | - Tania Fontanil
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain.,Departamento de Investigación, Instituto Ordóñez, Oviedo, Spain
| | - Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Oviedo, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Oviedo, Spain.,Instituto Asturiano de Odontología, Oviedo, Spain
| | - Álvaro J Obaya
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Oviedo, Spain.,Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
6
|
Oxidative stress and mitochondrial dysfunction in early-onset and late-onset preeclampsia. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165961. [PMID: 32916282 DOI: 10.1016/j.bbadis.2020.165961] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Preeclampsia is a pregnancy-specific syndrome with multisystem involvement which leads to foetal, neonatal, and maternal morbidity and mortality. This syndrome is characterized by the onset of clinical signs and symptoms and delivery before (early-onset preeclampsia, eoPE), or after (late-onset preeclampsia, loPE), the 34 weeks of gestation. Preeclampsia is a mitochondrial disorder where its differential involvement in eoPE and loPE is unclear. Mitochondria regulate cell metabolism and are a significant source of reactive oxygen species (ROS). The syncytiotrophoblast in eoPE and loPE show altered mitochondrial structure and function resulting in ROS overproduction, oxidative stress, and cell damage and death. Mitochondrial dysfunction in eoPE may result from altered expression of several molecules, including dynamin-related protein 1 and mitofusins, compared with loPE where these factors are either reduced or unaltered. Equally, mitochondrial fusion/fission dynamics seem differentially modulated in eoPE and loPE. It is unclear whether the electron transport chain and oxidative phosphorylation are differentially altered in these two subgroups of preeclampsia. However, the activity of complex IV (cytochrome c oxidase) and the expression of essential proteins involved in the electron transport chain are reduced, leading to lower oxidative phosphorylation and mitochondrial respiration in the preeclamptic placenta. Interventional studies in patients with preeclampsia using the coenzyme Q10, a key molecule in the electron transport chain, suggest that agents that increase the antioxidative capacity of the placenta may be protective against preeclampsia development. In this review, the mitochondrial dysfunction in both eoPE and loPE is summarized. Therapeutic approaches are discussed in the context of contributing to the understanding of mitochondrial dysfunction in eoPE and loPE.
Collapse
|
7
|
Dasinger JH, Abais-Battad JM, Mattson DL. Influences of environmental factors during preeclampsia. Am J Physiol Regul Integr Comp Physiol 2020; 319:R26-R32. [PMID: 32432917 DOI: 10.1152/ajpregu.00020.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preeclampsia is a pregnancy-specific disorder that impacts 5-8% of pregnancies and has long-term cardiovascular and metabolic implications for both mother and fetus. The mechanisms are unclear; however, it is believed that preeclampsia is characterized by abnormal vascularization during placentation resulting in the manifestation of clinical signs such as hypertension, proteinuria, and endothelial dysfunction. Although there is no current cure to alleviate the clinical signs, an emerging area of interest in the field is the influence of environmental factors including diet on the risk of preeclampsia. Because preeclampsia has serious cardiovascular implications to both the mother and fetus and most antihypertensive medications are contraindicated in pregnancy, it is important to investigate other potential therapeutic options such as dietary manipulation. The emerging field of nutrigenomics links diet with the gene expression of known pathways such as oxidative stress and inflammation via microbiome-mediated metabolites and could serve as one potential avenue of therapeutic targets for preeclampsia. Although the exact role of nutrition in the pathogenesis of preeclampsia is unknown, this review will focus on known pathways involved in the development of preeclampsia and how dietary intake modulates the microbiome, oxidative stress, and inflammation with an emphasis on nutrigenomics as a potential avenue of further investigation to better understand this pathology.
Collapse
Affiliation(s)
- John Henry Dasinger
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Justine M Abais-Battad
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - David L Mattson
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| |
Collapse
|
8
|
Tang C, Pan J, Li H, He B, Hong L, Teng X, Li D. Cyclosporin A protects trophoblasts from H 2O 2-induced oxidative injury via FAK-Src pathway. Biochem Biophys Res Commun 2019; 518:423-429. [PMID: 31445706 DOI: 10.1016/j.bbrc.2019.07.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/30/2019] [Indexed: 12/23/2022]
Abstract
Oxidative stress is associated with functional disorder of trophoblast cells. Our previous studies have demonstrated that cyclosporin A (CsA) promotes the activity of normal human trophoblast cells. We further investigated the role and mechanism of CsA on oxidative stress in trophoblast cells. JEG-3 cells were co-cultured with H2O2 and CsA. Cell viability and morphology were measured by MTT assay and inverted microscope. Reactive oxygen species (ROS) was analyzed by fluorescence microscopy. Cell mitochondrial membrane potential (MMP) was determined by flow cytometric analysis. Malondialdehyde (MDA) production, superoxide dismutase (SOD) and catalase (CAT) activities were examined using colorimetric assays. The expression and phosphorylation of FAK and Src kinase proteins were examined by western blotting. CsA increased JEG-3 cell viability and reduced the morphologic injury induced by H2O2 treatment. CsA decreased ROS and MDA production, increased SOD and CAT activities, and restored the MMP of H2O2 treated JEG-3 cells. CsA administration suppressed H2O2-induced reduction of FAK and Src phosphorylation. Blocking the activation of FAK or Src attenuated the protective effect of CsA on JEG-3 cells in H2O2-induced oxidative injury. CsA protects JEG-3 cells from H2O2-induced oxidative injury, and the FAK/Src signaling pathway plays an important role in this process.
Collapse
Affiliation(s)
- ChuanLing Tang
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China.
| | - JiaPing Pan
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Hui Li
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Bin He
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Ling Hong
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - XiaoMing Teng
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - DaJin Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200011, China.
| |
Collapse
|
9
|
Severens-Rijvers CAH, Al-Nasiry S, Vincken A, Haenen G, Winkens B, Ghossein-Doha C, Spaanderman MAE, Peeters LLH. Early-Pregnancy Circulating Antioxidant Capacity and Hemodynamic Adaptation in Recurrent Placental Syndrome: An Exploratory Study. Gynecol Obstet Invest 2019; 84:616-622. [PMID: 31357192 DOI: 10.1159/000501254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/27/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND/AIMS Placental syndromes (PS) refer to pregnancy complications that include gestational hypertension, (pre)eclampsia, HELLP syndrome, and/or placental insufficiency-induced fetal growth restriction. These disorders are characterized by increased oxidative stress. This study aims to test the hypothesis that the abnormal hemodynamic adaptation to pregnancy, typical for early PS pregnancy, is accompanied by abnormal maternal levels of antioxidants relative to those in normal pregnancy. METHODS Before, and at 12, 16, and 20 weeks pregnancy, we measured trolox equivalent antioxidant capacity (TEAC), uric acid (UA), and TEACC (TEAC corrected for UA) in maternal serum of former PS patients, who either developed recurrent PS (rPS; n = 16) or had a normal next pregnancy (non-rPS; n = 23). Concomitantly, we also measured various hemodynamic variables. RESULTS rPS differed from non-rPS by higher TEACC levels before pregnancy (178 vs. 152 µM; p = 0.02) and at 20 weeks pregnancy (180 vs. 160 µM; p = 0.04). Only non-rPS responded to pregnancy by significant rises in hemodynamic measures. CONCLUSION These data indicate that rPS pregnancies are preceded by an increase in antioxidant capacity, presumably induced by subclinical vascular injury and low-grade chronic inflammation.
Collapse
Affiliation(s)
| | - Salwan Al-Nasiry
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Annemiek Vincken
- Department of Family Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Guido Haenen
- Department of Pharmacology and Toxicology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Bjorn Winkens
- Department of Methodology and Statistics, Maastricht University Medical Centre, CAPHRI Research School, Maastricht, The Netherlands
| | - Chahinda Ghossein-Doha
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marc A E Spaanderman
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Louis L H Peeters
- Department of Obstetrics, UMC Utrecht, Division "Vrouw and Baby", Utrecht, The Netherlands
| |
Collapse
|
10
|
Uyanikoglu H, Sak ME, Tatli F, Hilali NG, Sak S, Incebiyik A, Barut MU, Erel O, Gonel A. Serum ischemia modified albumin level and its relationship with the thiol/disulfide balance in placenta percreta patients. J OBSTET GYNAECOL 2018; 38:1073-1077. [PMID: 29884071 DOI: 10.1080/01443615.2018.1450369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The pathogenesis of placenta percreta (PP) is not very well known. This study was designed to analyse the oxidative stress (OS), the thiol/disulphide balance, and ischaemia-modified albumin (IMA) the women with PP. The study included 38 pregnant women with PP and 40 similarly aged healthy pregnant women in their third trimester of gestation. We measured the IMA, native and total thiols, and disulphide concentrations in the maternal sera of all of the participating women. The IMA levels were higher and the native and total thiols were lower in the PP group than in the control group. However, there was no statistical significance with respect to the thiol/disulphide balance between the two groups. The results of this study suggest that an increase in the ischaemia and OS and a decrease in the antioxidant status may contribute to the pathogenesis of PP. Impact statement What is already known on this subject? Placenta percreta (PP) is a serious complication of pregnancy. Although there are several studies investigating the pathophysiological mechanism of PP, whether the pathology results from a lack of decidua or from the over-invasiveness of trophoblasts remains controversial. The pathology of PP is poorly understood. What do the results of this study add? This prospective study has shown an increased ischaemia modified albumin (IMA) and a decreased antioxidant capacity in the patients with placenta percreta. The results from 38 women with PP suggest that the serum concentrations of IMA and the oxidative stress parameters may be able to predict PP in cases of uncertainty. What are the implications of these findings for clinical practice and/or further research? The implication of these findings shed light on understanding the pathogenesis of PP for further research.
Collapse
Affiliation(s)
- Hacer Uyanikoglu
- a Department of Obstetrics and Gynecology, Faculty of Medicine , Harran University , Sanliurfa , Turkey
| | - Muhammet Erdal Sak
- a Department of Obstetrics and Gynecology, Faculty of Medicine , Harran University , Sanliurfa , Turkey
| | - Faik Tatli
- b Department of General Surgery, Faculty of Medicine , Harran University , Sanliurfa , Turkey
| | - Nese Gul Hilali
- a Department of Obstetrics and Gynecology, Faculty of Medicine , Harran University , Sanliurfa , Turkey
| | - Sibel Sak
- a Department of Obstetrics and Gynecology, Faculty of Medicine , Harran University , Sanliurfa , Turkey
| | - Adnan Incebiyik
- a Department of Obstetrics and Gynecology, Faculty of Medicine , Harran University , Sanliurfa , Turkey
| | - Mert Ulas Barut
- a Department of Obstetrics and Gynecology, Faculty of Medicine , Harran University , Sanliurfa , Turkey
| | - Ozcan Erel
- c Department of Clinical Biochemistry, Faculty of Medicine , Yıldirim Beyazit University , Ankara , Turkey
| | - Ataman Gonel
- d Department of Clinical Biochemistry, Faculty of Medicine , Harran University , Sanliurfa , Turkey
| |
Collapse
|
11
|
|
12
|
Activated neuro-oxidative and neuro-nitrosative pathways at the end of term are associated with inflammation and physio-somatic and depression symptoms, while predicting outcome characteristics in mother and baby. J Affect Disord 2017; 223:49-58. [PMID: 28719808 DOI: 10.1016/j.jad.2017.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/17/2017] [Accepted: 07/05/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To examine oxidative & nitrosative stress (O&NS) biomarkers at the end of term in relation to perinatal affective symptoms, neuro-immune biomarkers and pregnancy-related outcome variables. METHODS We measured plasma advanced oxidation protein products (AOPP), nitric oxide metabolites (NOx), total radical trapping antioxidant parameter (TRAP), -sulfhydryl (-SH), peroxides (LOOH) and paraoxonase (PON)1 activity in pregnant women with and without prenatal depression and non-pregnant controls. RESULTS Pregnancy is accompanied by significantly increased AOPP and NOx, and lowered TRAP, -SH and LOOH. Increased O&NS and lowered LOOH and -SH levels are associated with prenatal depressive and physio-somatic symptoms (fatigue, pain, dyspepsia, gastro-intestinal symptoms). Increased AOPP and NOx are significantly associated with lowered -SH, TRAP and zinc, and with increased haptoglobin and C-reactive protein levels. Increased O&NS and lowered TRAP and PON 1 activity, at the end of term predict mother (e.g. hyperpigmentation, labor duration, caesarian section, cord length, breast milk flow) and baby (e.g. sleep and feeding problems) outcome characteristics. CONCLUSIONS Pregnancy is accompanied by interrelated signs of O&NS, lowered antioxidant defenses and activated neuro-immune pathways. Increased O&NS at the end of term is associated with perinatal depressive and physio-somatic symptoms and may predict obstetric and behavioral complications in mother and baby.
Collapse
|
13
|
Vishnyakova PA, Volodina MA, Tarasova NV, Marey MV, Kan NE, Khodzhaeva ZS, Vysokikh MY, Sukhikh GT. Alterations in antioxidant system, mitochondrial biogenesis and autophagy in preeclamptic myometrium. BBA CLINICAL 2017; 8:35-42. [PMID: 28736722 PMCID: PMC5512187 DOI: 10.1016/j.bbacli.2017.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/25/2017] [Accepted: 06/26/2017] [Indexed: 01/16/2023]
Abstract
Preeclampsia is a pregnancy complication which causes significant maternal and fetal morbidity and mortality worldwide. Although intensive research has been performed in the last 40 years, the pathology of preeclampsia is still poorly understood. The present work is a comparative study of the myometrium of women with normal pregnancy, and those with late- and early-onset preeclampsia (n = 10 for each group). We observed significant changes in the levels of antioxidant enzymes, markers of mitochondrial biogenesis and autophagy proteins in preeclamptic myometrium. Levels of superoxide dismutase 1 and catalase were lower in both preeclamptic groups than the control group. In late-onset preeclampsia, expression levels of essential mitochondria-related proteins VDAC1, TFAM, hexokinase 1, PGC-1α and PGC-1β, and autophagy marker LC3A, were significantly elevated. In the myometrium of the early-onset preeclampsia group OPA1 and Bcl-2 were up-regulated compared to those of the control (p < 0.05). These findings suggest that crucial molecular changes in the maternal myometrium occur with the development of preeclampsia.
Collapse
Affiliation(s)
- Polina A. Vishnyakova
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4, Oparina street, Moscow 117997, Russia
- Belozerskii Institute of Physico-chemical Biology, Moscow State University, Leninskie gory 1, Moscow 119992, Russia
| | - Maria A. Volodina
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4, Oparina street, Moscow 117997, Russia
| | - Nadezhda V. Tarasova
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4, Oparina street, Moscow 117997, Russia
| | - Maria V. Marey
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4, Oparina street, Moscow 117997, Russia
| | - Natalya E. Kan
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4, Oparina street, Moscow 117997, Russia
| | - Zulfiya S. Khodzhaeva
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4, Oparina street, Moscow 117997, Russia
| | - Mikhail Yu. Vysokikh
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4, Oparina street, Moscow 117997, Russia
- Belozerskii Institute of Physico-chemical Biology, Moscow State University, Leninskie gory 1, Moscow 119992, Russia
| | - Gennady T. Sukhikh
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4, Oparina street, Moscow 117997, Russia
| |
Collapse
|
14
|
Polymorphism of ERCC1 rs3212986 in Chinese Han women with preeclampsia. Pregnancy Hypertens 2017; 10:192-195. [PMID: 29153678 DOI: 10.1016/j.preghy.2017.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 08/13/2017] [Accepted: 08/26/2017] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the association between polymorphism of rs3212986 in ERCC1 and susceptibility to preeclampsia in the Chinese Han population. STUDY DESIGN Samples of 642 preeclampsia patients and 877 controls were genotyped for rs3212986 using TaqMan allele discrimination assays. The genetic and allelic distributions between the groups were compared by Pearson's χ2 test. RESULT There was no difference in the genotypic and allelic distributions between cases and controls (P>0.05). Statistical difference in genotypic frequencies of rs3212986 was observed between early-onset and late-onset preeclampsia (χ2=6.985, P=0.030). When subdivided into TT/GG+GT groups, a significant difference was found between early-onset and late-onset preeclampsia (χ2=6.528, P=0.011, OR=2.011, 95%CI 1.167-3.465). CONCLUSION The polymorphisms of rs3212986 showed no association with the risk of preeclampsia in the Chinese Han population. However, the difference in the genotypic distribution between early-onset and late-onset preeclampsia suggest the need for future studies.
Collapse
|
15
|
Jin X, Xu Z, Cao J, Shao P, Zhou M, Qin Z, Liu Y, Yu F, Zhou X, Ji W, Cai W, Ma Y, Wang C, Shan N, Yang N, Chen X, Li Y. Proteomics analysis of human placenta reveals glutathione metabolism dysfunction as the underlying pathogenesis for preeclampsia. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1207-1214. [PMID: 28705740 DOI: 10.1016/j.bbapap.2017.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/19/2022]
Abstract
Hypertensive disorder in pregnancy (HDP) refers to a series of diseases that cause the hypertension during pregnancy, including HDP, preeclampsia (PE) and eclampsia. This study screens differentially expressed proteins of placenta tissues in PE cases using 2D LC-MS/MS quantitative proteomics strategy. A total of 2281 proteins are quantified, of these, 145 altering expression proteins are successfully screened between PE and control cases (p<0.05). Bioinformatics analysis suggests that these proteins are mainly involved in many biological processes, such as oxidation reduction, mitochondrion organization, and acute inflammatory response. Especially, the glutamine metabolic process related molecules, GPX1, GPX3, SMS, GGCT, GSTK1, NFκB, GSTT2, SOD1 and GCLM, are involved in the switching process from oxidized glutathione (GSSG) conversion to the reduced glutathione (GSH) by glutathione, mercapturic acid and arginine metabolism process. Results of this study revealed that glutathione metabolism disorder of placenta tissues may contribute to the occurrence of PE disease.
Collapse
Affiliation(s)
- Xiaohan Jin
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China; Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, China
| | - Zhongwei Xu
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China; Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, China
| | - Jin Cao
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, China
| | - Ping Shao
- Women and Children Health Care Center, Tianjin 300070, China
| | - Maobin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China
| | - Zhe Qin
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, China
| | - Yan Liu
- Tianjin First Center Hospital, Tianjin 300192, China
| | - Fang Yu
- Obstetrics and Gynecology Department, Pingjin Hospital, Tianjin 300162, China
| | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China
| | - Wenjie Ji
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China
| | - Wei Cai
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China
| | - Yongqiang Ma
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China
| | - Chengyan Wang
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, China
| | - Nana Shan
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, China
| | - Ning Yang
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China
| | - Xu Chen
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300100, China.
| | - Yuming Li
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China.
| |
Collapse
|