1
|
Mani A, Haddad F, Barreda DR, Salinas I. The telencephalon is a neuronal substrate for systemic inflammatory responses in teleosts via polyamine metabolism. Proc Natl Acad Sci U S A 2024; 121:e2404781121. [PMID: 39284055 PMCID: PMC11441480 DOI: 10.1073/pnas.2404781121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/12/2024] [Indexed: 10/02/2024] Open
Abstract
Systemic inflammation elicits sickness behaviors and fever by engaging a complex neuronal circuitry that begins in the preoptic area of the hypothalamus. Ectotherms such as teleost fish display sickness behaviors in response to infection or inflammation, seeking warmer temperatures to enhance survival via behavioral fever responses. To date, the hypothalamus is the only brain region implicated in sickness behaviors and behavioral fever in teleosts. Yet, the complexity of neurobehavioral manifestations underlying sickness responses in teleosts suggests engagement of higher processing areas of the brain. Using in vivo models of systemic inflammation in rainbow trout, we find canonical pyrogenic cytokine responses in the hypothalamus whereas in the telencephalon and the optic tectum il-1b and tnfa expression is decoupled from il-6 expression. Polyamine metabolism changes, characterized by accumulation of putrescine and decreases in spermine and spermidine, are recorded in the telencephalon but not hypothalamus upon systemic injection of bacteria. While systemic inflammation causes canonical behavioral fever in trout, blockade of bacterial polyamine metabolism prior to injection abrogates behavioral fever, polyamine responses, and telencephalic but not hypothalamic cytokine responses. Combined, our work identifies the telencephalon as a neuronal substrate for brain responses to systemic inflammation in teleosts and uncovers the role of polyamines as critical chemical mediators in sickness behaviors.
Collapse
Affiliation(s)
- Amir Mani
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM87131
| | - Farah Haddad
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Daniel R. Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM87131
| |
Collapse
|
2
|
Woodworth MB, Greig LC, Goldberg JL. Intrinsic and Induced Neuronal Regeneration in the Mammalian Retina. Antioxid Redox Signal 2023; 39:1039-1052. [PMID: 37276181 PMCID: PMC10715439 DOI: 10.1089/ars.2023.0309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/14/2023] [Indexed: 06/07/2023]
Abstract
Significance: Retinal neurons are vulnerable to disease and injury, which can result in neuronal death and degeneration leading to irreversible vision loss. The human retina does not regenerate to replace neurons lost to disease or injury. However, cells within the retina of other animals are capable of regenerating neurons, and homologous cells within the mammalian retina could potentially be prompted to do the same. Activating evolutionarily silenced intrinsic regenerative capacity of the mammalian retina could slow, or even reverse, vision loss, leading to an improved quality of life for millions of people. Recent Advances: During development, neurons in the retina are generated progressively by retinal progenitor cells, with distinct neuron types born over developmental time. Many genes function in this process to specify the identity of newly generated neuron types, and these appropriate states of gene expression inform recent regenerative work. When regeneration is initiated in other vertebrates, including birds and fish, specific signaling pathways control the efficiency of regeneration, and these conserved pathways are likely to be important in mammals as well. Critical Issues: Using insights from development and from other animals, limited regeneration from intrinsic cell types has been demonstrated in the mammalian retina, but it is able only to generate a subset of partially differentiated retinal neuron types. Future Directions: Future studies should aim at increasing the efficiency of regeneration, activating regeneration in a targeted fashion across the retina, and improving the ability to generate specific types of retinal neurons to replace those lost to disease or injury. Antioxid. Redox Signal. 39, 1039-1052.
Collapse
Affiliation(s)
- Mollie B. Woodworth
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California, USA
| | - Luciano C. Greig
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California, USA
| | - Jeffrey L. Goldberg
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California, USA
| |
Collapse
|
3
|
Yasuda T, Nakazawa T, Hirakawa K, Matsumoto I, Nagata K, Mori S, Igarashi K, Sagara H, Oda S, Mitani H. Retinal regeneration after injury induced by gamma-ray irradiation during early embryogenesis in medaka, Oryzias latipes. Int J Radiat Biol 2023; 100:131-138. [PMID: 37555698 DOI: 10.1080/09553002.2023.2242932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023]
Abstract
PURPOSE Zebrafish, a small fish model, exhibits a multipotent ability for retinal regeneration after damage throughout its lifetime. Compared with zebrafish, birds and mammals exhibit such a regenerative capacity only during the embryonic period, and this capacity decreases with age. In medaka, another small fish model that has also been used extensively in biological research, the retina's inner nuclear layer (INL) failed to regenerate after injury in the hatchling at eight days postfertilization (dpf). We characterized the regenerative process of the embryonic retina when the retinal injury occurred during the early embryonic period in medaka. METHODS We employed a 10 Gy dose of gamma-ray irradiation to initiate retinal injury in medaka embryos at 3 dpf and performed histopathological analyses up to 21 dpf. RESULTS One day after irradiation, numerous apoptotic neurons were observed in the INL; however, these neurons were rarely observed in the ciliary marginal zone and the photoreceptor layer. Numerous pyknotic cells were clustered in the irradiated retina until two days after irradiation. These disappeared four days after irradiation, but the abnormal bridging structures between the INL and ganglion cell layer (GCL) were present until 11 days after irradiation, and the neural layers were completely regenerated 18 days after irradiation. After gamma-ray irradiation, the spindle-like Müller glial cells in the INL became rounder but did not lose their ability to express SOX2. CONCLUSIONS Irradiated retina at 3 dpf of medaka embryos could be completely regenerated at 18 days after irradiation (21 dpf), although the abnormal layer structures bridging the INL and GCL were transiently formed in the retinas of all the irradiated embryos. Four days after irradiation, embryonic medaka Müller glia were reduced in number but maintained SOX2 expression as in nonirradiated embryos. This finding contrasts with previous reports that 8 dpf medaka larvae could not fully regenerate damaged retinas because of loss of SOX2 expression.
Collapse
Affiliation(s)
- Takako Yasuda
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
- Department of Chemical and Biological Sciences, Japan Women's University, Tokyo, Japan
| | - Takuya Nakazawa
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| | - Kei Hirakawa
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| | - Ikumi Matsumoto
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| | - Kento Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Shunta Mori
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| | - Kento Igarashi
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
- Department of Applied Pharmacology, Kagoshima University, Kagoshima, Japan
| | - Hiroshi Sagara
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
4
|
Mani A, Salinas I. The knowns and many unknowns of CNS immunity in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2022; 131:431-440. [PMID: 36241002 DOI: 10.1016/j.fsi.2022.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Many disease agents infect the central nervous system (CNS) of teleost fish causing severe losses for the fish farming sector. Yet, neurotropic fish pathogens remain poorly documented and immune responses in the teleost CNS essentially unknown. Previously thought to be devoid of an immune system, the mammalian CNS is now recognized to be protected from infection by diverse immune cells that mostly reside in the meningeal lymphatic system. Here we review the current body of work pertaining immune responses in the teleost CNS to infection. We identify important knowledge gaps with regards to CNS immunity in fish and make recommendations for rigorous experimentation and reporting in manuscripts so that fish immunologists can advance this burgeoning field.
Collapse
Affiliation(s)
- Amir Mani
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
5
|
Sharma P, Ramachandran R. Retina regeneration: lessons from vertebrates. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac012. [PMID: 38596712 PMCID: PMC10913848 DOI: 10.1093/oons/kvac012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/24/2022] [Accepted: 06/25/2022] [Indexed: 04/11/2024]
Abstract
Unlike mammals, vertebrates such as fishes and frogs exhibit remarkable tissue regeneration including the central nervous system. Retina being part of the central nervous system has attracted the interest of several research groups to explore its regenerative ability in different vertebrate models including mice. Fishes and frogs completely restore the size, shape and tissue structure of an injured retina. Several studies have unraveled molecular mechanisms underlying retina regeneration. In teleosts, soon after injury, the Müller glial cells of the retina reprogram to form a proliferating population of Müller glia-derived progenitor cells capable of differentiating into various neural cell types and Müller glia. In amphibians, the transdifferentiation of retinal pigment epithelium and differentiation of ciliary marginal zone cells contribute to retina regeneration. In chicks and mice, supplementation with external growth factors or genetic modifications cause a partial regenerative response in the damaged retina. The initiation of retina regeneration is achieved through sequential orchestration of gene expression through controlled modulations in the genetic and epigenetic landscape of the progenitor cells. Several developmental biology pathways are turned on during the Müller glia reprogramming, retinal pigment epithelium transdifferentiation and ciliary marginal zone differentiation. Further, several tumorigenic pathways and gene expression events also contribute to the complete regeneration cascade of events. In this review, we address the various retinal injury paradigms and subsequent gene expression events governed in different vertebrate species. Further, we compared how vertebrates such as teleost fishes and amphibians can achieve excellent regenerative responses in the retina compared with their mammalian counterparts.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, SAS Nagar, Sector 81, Manauli PO, 140306 Mohali, Punjab, India
| | - Rajesh Ramachandran
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, SAS Nagar, Sector 81, Manauli PO, 140306 Mohali, Punjab, India
| |
Collapse
|
6
|
Gene-independent therapeutic interventions to maintain and restore light sensitivity in degenerating photoreceptors. Prog Retin Eye Res 2022; 90:101065. [PMID: 35562270 DOI: 10.1016/j.preteyeres.2022.101065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022]
Abstract
Neurodegenerative retinal diseases are a prime cause of blindness in industrialized countries. In many cases, there are no therapeutic treatments, although they are essential to improve patients' quality of life. A set of disease-causing genes, which primarily affect photoreceptors, has already been identified and is of major interest for developing gene therapies. Nevertheless, depending on the nature and the state of the disease, gene-independent strategies are needed. Various strategies to halt disease progression or maintain function of the retina are under research. These therapeutic interventions include neuroprotection, direct reprogramming of affected photoreceptors, the application of non-coding RNAs, the generation of artificial photoreceptors by optogenetics and cell replacement strategies. During recent years, major breakthroughs have been made such as the first optogenetic application to a blind patient whose visual function partially recovered by targeting retinal ganglion cells. Also, RPE cell transplantation therapies are under clinical investigation and show great promise to improve visual function in blind patients. These cells are generated from human stem cells. Similar therapies for replacing photoreceptors are extensively tested in pre-clinical models. This marks just the start of promising new cures taking advantage of developments in the areas of genetic engineering, optogenetics, and stem-cell research. In this review, we present the recent therapeutic advances of gene-independent approaches that are currently under clinical evaluation. Our main focus is on photoreceptors as these sensory cells are highly vulnerable to degenerative diseases, and are crucial for light detection.
Collapse
|
7
|
Magner E, Sandoval-Sanchez P, Kramer AC, Thummel R, Hitchcock PF, Taylor SM. Disruption of miR-18a Alters Proliferation, Photoreceptor Replacement Kinetics, Inflammatory Signaling, and Microglia/Macrophage Numbers During Retinal Regeneration in Zebrafish. Mol Neurobiol 2022; 59:2910-2931. [PMID: 35246819 PMCID: PMC9018604 DOI: 10.1007/s12035-022-02783-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Abstract
In mammals, photoreceptor loss causes permanent blindness, but in zebrafish (Danio rerio), photoreceptor loss reprograms Müller glia to function as stem cells, producing progenitors that regenerate photoreceptors. MicroRNAs (miRNAs) regulate CNS neurogenesis, but the roles of miRNAs in injury-induced neuronal regeneration are largely unknown. In the embryonic zebrafish retina, miR-18a regulates photoreceptor differentiation. The purpose of the current study was to determine, in zebrafish, the function of miR-18a during injury-induced photoreceptor regeneration. RT-qPCR, in situ hybridization, and immunohistochemistry showed that miR-18a expression increases throughout the retina between 1 and 5 days post-injury (dpi). To test miR-18a function during photoreceptor regeneration, we used homozygous miR-18a mutants (miR-18ami5012), and knocked down miR-18a with morpholino oligonucleotides. During photoreceptor regeneration, miR-18ami5012 retinas have fewer mature photoreceptors than WT at 7 and 10 dpi, but there is no difference at 14 dpi, indicating that photoreceptor regeneration is delayed. Labeling dividing cells with 5-bromo-2'-deoxyuridine (BrdU) showed that at 7 and 10 dpi, there are excess dividing progenitors in both mutants and morphants, indicating that miR-18a negatively regulates injury-induced proliferation. Tracing 5-ethynyl-2'-deoxyuridine (EdU) and BrdU-labeled cells showed that in miR-18ami5012 retinas excess progenitors migrate to other retinal layers in addition to the photoreceptor layer. Inflammation is critical for photoreceptor regeneration, and RT-qPCR showed that in miR-18ami5012 retinas, inflammatory gene expression and microglia activation are prolonged. Suppressing inflammation with dexamethasone rescues the miR-18ami5012 phenotype. Together, these data show that in the injured zebrafish retina, disruption of miR-18a alters proliferation, inflammation, the microglia/macrophage response, and the timing of photoreceptor regeneration.
Collapse
Affiliation(s)
- Evin Magner
- Plant and Microbial Biology, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Pamela Sandoval-Sanchez
- Department of Biology, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA
| | - Ashley C Kramer
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Ryan Thummel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Peter F Hitchcock
- Department of Ophthalmology and Visual Sciences, University of Michigan, W. K. Kellogg Eye Center, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Scott M Taylor
- Department of Biology, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA.
| |
Collapse
|
8
|
Bradshaw SN, Allison WT. Hagfish to Illuminate the Developmental and Evolutionary Origins of the Vertebrate Retina. Front Cell Dev Biol 2022; 10:822358. [PMID: 35155434 PMCID: PMC8826474 DOI: 10.3389/fcell.2022.822358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
The vertebrate eye is a vital sensory organ that has long fascinated scientists, but the details of how this organ evolved are still unclear. The vertebrate eye is distinct from the simple photoreceptive organs of other non-vertebrate chordates and there are no clear transitional forms of the eye in the fossil record. To investigate the evolution of the eye we can examine the eyes of the most ancient extant vertebrates, the hagfish and lamprey. These jawless vertebrates are in an ideal phylogenetic position to study the origin of the vertebrate eye but data on eye/retina development in these organisms is limited. New genomic and gene expression data from hagfish and lamprey suggest they have many of the same genes for eye development and retinal neurogenesis as jawed vertebrates, but functional work to determine if these genes operate in retinogenesis similarly to other vertebrates is missing. In addition, hagfish express a marker of proliferative retinal cells (Pax6) near the margin of the retina, and adult retinal growth is apparent in some species. This finding of eye growth late into hagfish ontogeny is unexpected given the degenerate eye phenotype. Further studies dissecting retinal neurogenesis in jawless vertebrates would allow for comparison of the mechanisms of retinal development between cyclostome and gnathostome eyes and provide insight into the evolutionary origins of the vertebrate eye.
Collapse
Affiliation(s)
| | - W. Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Campbell LJ, Levendusky JL, Steines SA, Hyde DR. Retinal regeneration requires dynamic Notch signaling. Neural Regen Res 2021; 17:1199-1209. [PMID: 34782554 PMCID: PMC8643038 DOI: 10.4103/1673-5374.327326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Retinal damage in the adult zebrafish induces Müller glia reprogramming to produce neuronal progenitor cells that proliferate and differentiate into retinal neurons. Notch signaling, which is a fundamental mechanism known to drive cell-cell communication, is required to maintain Müller glia in a quiescent state in the undamaged retina, and repression of Notch signaling is necessary for Müller glia to reenter the cell cycle. The dynamic regulation of Notch signaling following retinal damage also directs proliferation and neurogenesis of the Müller glia-derived progenitor cells in a robust regeneration response. In contrast, mammalian Müller glia respond to retinal damage by entering a prolonged gliotic state that leads to additional neuronal death and permanent vision loss. Understanding the dynamic regulation of Notch signaling in the zebrafish retina may aid efforts to stimulate Müller glia reprogramming for regeneration of the diseased human retina. Recent findings identified DeltaB and Notch3 as the ligand-receptor pair that serves as the principal regulators of zebrafish Müller glia quiescence. In addition, multiomics datasets and functional studies indicate that additional Notch receptors, ligands, and target genes regulate cell proliferation and neurogenesis during the regeneration time course. Still, our understanding of Notch signaling during retinal regeneration is limited. To fully appreciate the complex regulation of Notch signaling that is required for successful retinal regeneration, investigation of additional aspects of the pathway, such as post-translational modification of the receptors, ligand endocytosis, and interactions with other fundamental pathways is needed. Here we review various modes of Notch signaling regulation in the context of the vertebrate retina to put recent research in perspective and to identify open areas of inquiry.
Collapse
Affiliation(s)
- Leah J Campbell
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Jaclyn L Levendusky
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Shannon A Steines
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - David R Hyde
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
10
|
Luzio A, Figueiredo M, Matos MM, Coimbra AM, Álvaro AR, Monteiro SM. Effects of short-term exposure to genistein and overfeeding diet on the neural and retinal progenitor competence of adult zebrafish (Danio rerio). Neurotoxicol Teratol 2021; 88:107030. [PMID: 34506931 DOI: 10.1016/j.ntt.2021.107030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 12/25/2022]
Abstract
Neurogenesis is a process that occurs throughout the life of a vertebrate. Among the different factors that may affect the natural occurrence of neurogenesis, obesity seems to decrease the proliferation capacity of progenitor neuronal cells. Conversely, the phytoestrogen genistein is known to attenuate some obesity effects beyond its neuroprotective action. Aiming to improve the understanding of how obesity and genistein trigger an impact on the neural and retinal progenitor competence of adult zebrafish, fish were exposed to genistein (GEN - 2 μg L-1) alone or combined with two dietary groups (control and overfeed - OFD) for up to 9 weeks. Zebrafish were fed once per day with Artemia sp. in the control and GEN (2% of BW, control diet), and three times per day in the OFD and OFD + GEN groups (12% BW, overfeeding diet). To assess obesity induction, BMI, biometric parameters, and PPAR-γ protein were quantified. Afterwards, qRT-PCR and immunohistochemistry were performed to determine the cell proliferation and the presence of stem cells through PCNA and Sox-2. Our findings proved that overfeeding adult zebrafish increased the general growth and induced the development of fatty liver. However, for OFD + GEN, this effect was assuaged through the anti-adipogenic effect of GEN. This finding suggests that phytoestrogens could be beneficial to reduce the negative effects of obesity. Moreover, OF induced negative effects on retinal and brain homeostasis, decreasing the proliferation capacity of progenitor neuronal cells. With regard to retinal progenitor competence, genistein seems to mitigate the negative impacts of obesity, whereas the effects of obesity on the brain were exacerbated by this phytoestrogen which negatively influenced the homeostasis of zebrafish neural progenitor competence. This study highlighted the fact that the effects of phytoestrogens in adult neural progenitor competence are complex and could exhibit dissimilar effects depending on the tissue.
Collapse
Affiliation(s)
- A Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Vila Real, Portugal; Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801 Vila Real, Portugal
| | - M Figueiredo
- Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801 Vila Real, Portugal
| | - M M Matos
- Department of Genetics and Biotechnology, Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Sciences Faculty, University of Lisbon, Lisbon, Portugal
| | - A M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Vila Real, Portugal; Department of Genetics and Biotechnology, Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - A R Álvaro
- Center for Neuroscience and Cell Biology, University of Coimbra (CNBC-UC), 3004-504 Coimbra, Portugal.
| | - S M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Vila Real, Portugal; Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801 Vila Real, Portugal.
| |
Collapse
|
11
|
Prospects for the application of Müller glia and their derivatives in retinal regenerative therapies. Prog Retin Eye Res 2021; 85:100970. [PMID: 33930561 DOI: 10.1016/j.preteyeres.2021.100970] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
Neural cell death is the main feature of all retinal degenerative disorders that lead to blindness. Despite therapeutic advances, progression of retinal disease cannot always be prevented, and once neuronal cell damage occurs, visual loss cannot be reversed. Recent research in the stem cell field, and the identification of Müller glia with stem cell characteristics in the human eye, have provided hope for the use of these cells in retinal therapies to restore vision. Müller glial cells, which are the major structural cells of the retina, play a very important role in retinal homeostasis during health and disease. They are responsible for the spontaneous retinal regeneration observed in zebrafish and lower vertebrates during early postnatal life, and despite the presence of Müller glia with stem cell characteristics in the adult mammalian retina, there is no evidence that they promote regeneration in humans. Like many other stem cells and neurons derived from pluripotent stem cells, Müller glia with stem cell potential do not differentiate into retinal neurons or integrate into the retina when transplanted into the vitreous of experimental animals with retinal degeneration. However, despite their lack of integration, grafted Müller glia have been shown to induce partial restoration of visual function in spontaneous or induced experimental models of photoreceptor or retinal ganglion cell damage. This improvement in visual function observed after Müller cell transplantation has been ascribed to the release of neuroprotective factors that promote the repair and survival of damaged neurons. Due to the development and availability of pluripotent stem cell lines for therapeutic uses, derivation of Müller cells from retinal organoids formed by iPSC and ESC has provided more realistic prospects for the application of these cells to retinal therapies. Several opportunities for research in the regenerative field have also been unlocked in recent years due to a better understanding of the genomic and proteomic profiles of the developing and regenerating retina in zebrafish, providing the basis for further studies of the human retina. In addition, the increased interest on the nature and function of cellular organelle release and the characterization of molecular components of exosomes released by Müller glia, may help us to design new approaches that could be applied to the development of more effective treatments for retinal degenerative diseases.
Collapse
|
12
|
Zupanc GKH. Adult neurogenesis in the central nervous system of teleost fish: from stem cells to function and evolution. J Exp Biol 2021; 224:258585. [PMID: 33914040 DOI: 10.1242/jeb.226357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adult neurogenesis, the generation of functional neurons from adult neural stem cells in the central nervous system (CNS), is widespread, and perhaps universal, among vertebrates. This phenomenon is more pronounced in teleost fish than in any other vertebrate taxon. There are up to 100 neurogenic sites in the adult teleost brain. New cells, including neurons and glia, arise from neural stem cells harbored both in neurogenic niches and outside these niches (such as the ependymal layer and parenchyma in the spinal cord, respectively). At least some, but not all, of the stem cells are of astrocytic identity. Aging appears to lead to stem cell attrition in fish that exhibit determinate body growth but not in those with indeterminate growth. At least in some areas of the CNS, the activity of the neural stem cells results in additive neurogenesis or gliogenesis - tissue growth by net addition of cells. Mathematical and computational modeling has identified three factors to be crucial for sustained tissue growth and correct formation of CNS structures: symmetric stem cell division, cell death and cell drift due to population pressure. It is hypothesized that neurogenesis in the CNS is driven by continued growth of corresponding muscle fibers and sensory receptor cells in the periphery to ensure a constant ratio of peripheral versus central elements. This 'numerical matching hypothesis' can explain why neurogenesis has ceased in most parts of the adult CNS during the evolution of mammals, which show determinate growth.
Collapse
Affiliation(s)
- Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
13
|
Nagashima M, Hitchcock PF. Inflammation Regulates the Multi-Step Process of Retinal Regeneration in Zebrafish. Cells 2021; 10:cells10040783. [PMID: 33916186 PMCID: PMC8066466 DOI: 10.3390/cells10040783] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/20/2022] Open
Abstract
The ability to regenerate tissues varies between species and between tissues within a species. Mammals have a limited ability to regenerate tissues, whereas zebrafish possess the ability to regenerate almost all tissues and organs, including fin, heart, kidney, brain, and retina. In the zebrafish brain, injury and cell death activate complex signaling networks that stimulate radial glia to reprogram into neural stem-like cells that repair the injury. In the retina, a popular model for investigating neuronal regeneration, Müller glia, radial glia unique to the retina, reprogram into stem-like cells and undergo a single asymmetric division to generate multi-potent retinal progenitors. Müller glia-derived progenitors then divide rapidly, numerically matching the magnitude of the cell death, and differentiate into the ablated neurons. Emerging evidence reveals that inflammation plays an essential role in this multi-step process of retinal regeneration. This review summarizes the current knowledge of the inflammatory events during retinal regeneration and highlights the mechanisms whereby inflammatory molecules regulate the quiescence and division of Müller glia, the proliferation of Müller glia-derived progenitors and the survival of regenerated neurons.
Collapse
|
14
|
The involvement of Nile tilapia (Oreochromis niloticus) Neu4 sialidase in neural differentiation during early ontogenesis. Biochimie 2021; 185:105-116. [PMID: 33746065 DOI: 10.1016/j.biochi.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/19/2021] [Accepted: 03/09/2021] [Indexed: 11/21/2022]
Abstract
Neurogenesis is an important process for the formation of the central nervous system during ontogenesis. Mammalian sialidases are involved in neurogenesis through desialylation of sialo-glycoconjugates. However, the significance of fish sialidases, unlike that of mammals, in neurogenesis has not been investigated. The present study focuses on Nile tilapia (Oreochromis niloticus) because of its unique profiles of sialidases related to enzymatic properties, subcellular localization, and tissue-specific gene expression. First, the fish were cultured under aphotic condition, which is known to cause the delayed development of the retina and brain in various fish. Next, we investigate the effect of aphotic condition on the levels of tilapia sialidases. Our results revealed that the tilapia showed a decrease in the number of ganglion cell in the retina. The expression level of neu4 mRNA is up-regulated in the eyes from tilapia reared in Dark accompanied by the increase of retinal differentiation markers. These results indicated that tilapia Neu4 is involved in retinal development in Nile tilapia. Furthermore, we tried to clarify the function of tilapia Neu4 in the neuronal cells using two neuroblast cell lines (SH-SY5Y and Neuro2a cell lines). Tilapia Neu4 decreased sialic acid level of both nuclear glycoproteins as well as glycolipids. Moreover, tilapia Neu4 accelerated neurite formation in both two neural cell lines and, increased the acetylcholinesterase activity, but it did not affect cell proliferation. Collectively, these results suggest that Neu4 accelerates neurite differentiation during ontogenesis in tilapia.
Collapse
|
15
|
Kang S, Larbi D, Andrade M, Reardon S, Reh TA, Wohl SG. A Comparative Analysis of Reactive Müller Glia Gene Expression After Light Damage and microRNA-Depleted Müller Glia-Focus on microRNAs. Front Cell Dev Biol 2021; 8:620459. [PMID: 33614628 PMCID: PMC7891663 DOI: 10.3389/fcell.2020.620459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Müller glia (MG) are the predominant glia in the neural retina and become reactive after injury or in disease. microRNAs (miRNAs) are translational repressors that regulate a variety of processes during development and are required for MG function. However, no data is available about the MG miRNAs in reactive gliosis. Therefore, in this study, we aimed to profile miRNAs and mRNAs in reactive MG 7 days after light damage. Light damage was performed for 8 h at 10,000 lux; this leads to rapid neuronal loss and strong MG reactivity. miRNAs were profiled using the Nanostring platform, gene expression analysis was conducted via microarray. We compared the light damage dataset with the dataset of Dicer deleted MG in order to find similarities and differences. We found: (1) The vast majority of MG miRNAs declined in reactive MG 7 days after light damage. (2) Only four miRNAs increased after light damage, which included miR-124. (3) The top 10 genes found upregulated in reactive MG after light damage include Gfap, Serpina3n, Ednrb and Cxcl10. (4) The miRNA decrease in reactive MG 7 days after injury resembles the profile of Dicer-depleted MG after one month. (5) The comparison of both mRNA expression datasets (light damage and Dicer-cKO) showed 1,502 genes were expressed under both conditions, with Maff , Egr2, Gadd45b, and Atf3 as top upregulated candidates. (6) The DIANA-TarBase v.8 miRNA:RNA interaction tool showed that three miRNAs were found to be present in all networks, i.e., after light damage, and in the combined data set; these were miR-125b-5p, let-7b and let-7c. Taken together, results show there is an overlap of gene regulatory events that occur in reactive MG after light damage (direct damage of neurons) and miRNA-depleted MG (Dicer-cKO), two very different paradigms. This suggests that MG miRNAs play an important role in a ubiquitous MG stress response and manipulating these miRNAs could be a first step to attenuate gliosis.
Collapse
Affiliation(s)
- Seoyoung Kang
- Department of Biological and Vision Sciences, College of Optometry, The State University of New York, New York, NY, United States
| | - Daniel Larbi
- Department of Biological and Vision Sciences, College of Optometry, The State University of New York, New York, NY, United States
| | - Monica Andrade
- Department of Biological and Vision Sciences, College of Optometry, The State University of New York, New York, NY, United States
| | - Sara Reardon
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, WA, United States
| | - Thomas A. Reh
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, WA, United States
| | - Stefanie G. Wohl
- Department of Biological and Vision Sciences, College of Optometry, The State University of New York, New York, NY, United States
| |
Collapse
|
16
|
Issaka Salia O, Mitchell DM. Bioinformatic analysis and functional predictions of selected regeneration-associated transcripts expressed by zebrafish microglia. BMC Genomics 2020; 21:870. [PMID: 33287696 PMCID: PMC7720500 DOI: 10.1186/s12864-020-07273-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Unlike mammals, zebrafish have a remarkable capacity to regenerate a variety of tissues, including central nervous system tissue. The function of macrophages in tissue regeneration is of great interest, as macrophages respond and participate in the landscape of events that occur following tissue injury in all vertebrate species examined. Understanding macrophage populations in regenerating tissue (such as in zebrafish) may inform strategies that aim to regenerate tissue in humans. We recently published an RNA-seq experiment that identified genes enriched in microglia/macrophages in regenerating zebrafish retinas. Interestingly, a small number of transcripts differentially expressed by retinal microglia/macrophages during retinal regeneration did not have predicted orthologs in human or mouse. We reasoned that at least some of these genes could be functionally important for tissue regeneration, but most of these genes have not been studied experimentally and their functions are largely unknown. To reveal their possible functions, we performed a variety of bioinformatic analyses aimed at identifying the presence of functional protein domains as well as orthologous relationships to other species. RESULTS Our analyses identified putative functional domains in predicted proteins for a number of selected genes. For example, we confidently predict kinase function for one gene, cytokine/chemokine function for another, and carbohydrate enzymatic function for a third. Predicted orthologs were identified for some, but not all, genes in species with described regenerative capacity, and functional domains were consistent with identified orthologs. Comparison to other published gene expression datasets suggest that at least some of these genes could be important in regenerative responses in zebrafish and not necessarily in response to microbial infection. CONCLUSIONS This work reveals previously undescribed putative function of several genes implicated in regulating tissue regeneration. This will inform future work to experimentally determine the function of these genes in vivo, and how these genes may be involved in microglia/macrophage roles in tissue regeneration.
Collapse
Affiliation(s)
- Ousseini Issaka Salia
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.,Institute for Modeling Collaboration and Innovation (IMCI), University of Idaho, Moscow, ID, USA.,Present affiliation: Kellog Biological Station and Department of Plant Biology, Michigan State University, 3700 East Gull Lake Drive, Hickory Corners, MI, 49060, USA
| | - Diana M Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
17
|
Sabry DA, El-Badry D. Altered retina and cornea of Clarias gariepinus (Siluriformes: Clariidae) under the effect of bright and dim lights. ZOOLOGIA 2020. [DOI: 10.3897/zoologia.37.e51603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of this study was to investigate the influence of constant bright light on the cornea and retina of Clarias gariepinus (Burchell, 1822) and to examine whether it can change after constant exposure to dim light. Twenty-one adult individuals of C. gariepinus were divided into three groups (n = 7). The first group was maintained under normal light (NL). The second group was exposed to the intense bright light (BL) (3020 Lux) of white light lamps for seven days. The third group was exposed to dim light for seven days (DL) following the previous exposure to intense bright light for seven days. The eyes of each fish group were removed and fixed. The following aspects of the eye were investigated: histopathological, immunohistochemical (GFAP and BAX) staining and biochemical study for lactic dehydrogenase (LDH), superoxide dismutase (SOD), malondialdehyde (MDA) and glucose-6-phosphate-dehydrogenase (G6PDH). Also, isoenzyme electrophoresis of LDH, G6PDH and SOD were performed. The present study found that, seven-days BL exposure caused damage to both cornea and retina. However, after exposure to dim-light after bright light there was partial improvement in corneal and retinal structure and an increase in the assayed SOD and G6PDH levels, along with a reduction in MDA content and activity of LDH. These findings demonstrate a plasticity that may help C. gariepinus survive disturbances in the aquatic environment.
Collapse
|
18
|
Xu B, Tang X, Jin M, Zhang H, Du L, Yu S, He J. Unifying developmental programs for embryonic and postembryonic neurogenesis in the zebrafish retina. Development 2020; 147:dev.185660. [PMID: 32467236 DOI: 10.1242/dev.185660] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 05/13/2020] [Indexed: 01/14/2023]
Abstract
The zebrafish retina grows for a lifetime. Whether embryonic and postembryonic retinogenesis conform to the same developmental program is an outstanding question that remains under debate. Using single-cell RNA sequencing of ∼20,000 cells of the developing zebrafish retina at four different stages, we identified seven distinct developmental states. Each state explicitly expresses a gene set. Disruption of individual state-specific marker genes results in various defects ranging from small eyes to the loss of distinct retinal cell types. Using a similar approach, we further characterized the developmental states of postembryonic retinal stem cells (RSCs) and their progeny in the ciliary marginal zone. Expression pattern analysis of state-specific marker genes showed that the developmental states of postembryonic RSCs largely recapitulated those of their embryonic counterparts, except for some differences in rod photoreceptor genesis. Thus, our findings reveal the unifying developmental program used by the embryonic and postembryonic retinogenesis in zebrafish.
Collapse
Affiliation(s)
- Baijie Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Xia Tang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Mengmeng Jin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Hui Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Lei Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Shuguang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Jie He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| |
Collapse
|
19
|
Eymann J, Di-Poï N. Glia-Mediated Regenerative Response Following Acute Excitotoxic Damage in the Postnatal Squamate Retina. Front Cell Dev Biol 2020; 8:406. [PMID: 32548121 PMCID: PMC7270358 DOI: 10.3389/fcell.2020.00406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/04/2020] [Indexed: 01/13/2023] Open
Abstract
The retina is a complex tissue responsible for both detection and primary processing of visual stimuli. Although all vertebrate retinas share a similar, multi-layered organization, the ability to regenerate individual retinal cells varies tremendously, being extremely limited in mammals and birds when compared to anamniotes such as fish and amphibians. However, little is yet known about damage response and regeneration of retinal tissues in "non-classical" squamate reptiles (lizards, snakes), which occupy a key phylogenetic position within amniotes and exhibit unique regenerative features in many tissues. Here, we address this gap by establishing and characterizing a model of excitotoxic retinal damage in bearded dragon lizard (Pogona vitticeps). We particularly focus on identifying, at the cellular and molecular level, a putative endogenous cellular source for retinal regeneration, as diverse self-repair strategies have been characterized in vertebrates using a variety of retinal injury and transgenic models. Our findings reveal for the first time that squamates hold the potential for postnatal retinal regeneration following acute injury. Although no changes occur in the activity of physiologically active progenitors recently identified at the peripheral retinal margin of bearded dragon, two distinct successive populations of proliferating cells at central retina respond to neurotoxin treatment. Following an initial microglia response, a second source of proliferating cells exhibit common hallmarks of vertebrate Müller glia (MG) activation, including cell cycle re-entry, dedifferentiation into a progenitor-like phenotype, and re-expression of proneural markers. The observed lizard glial responses, although not as substantial as in anamniotes, appear more robust than the absent or neonatal-limited regeneration reported without exogenous stimulation in other amniotes. Altogether, these results help to complete our evolutionary understanding of regenerative potential of the vertebrate retina, and further highlight the major importance of glial cells in retinal regeneration. Furthermore, our work offers a new powerful vertebrate model to elucidate the developmental and evolutionary bases of retinal regeneration within amniotes. Such new understanding of self-repair mechanisms in non-classical species endowed with regenerative properties may help designing therapeutic strategies for vertebrate retinal diseases.
Collapse
Affiliation(s)
- Julia Eymann
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Nicolas Di-Poï
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Emam A, Yoffe M, Cardona H, Soares D. Retinal morphology in Astyanax mexicanus during eye degeneration. J Comp Neurol 2020; 528:1523-1534. [PMID: 31811648 DOI: 10.1002/cne.24835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/20/2019] [Accepted: 11/24/2019] [Indexed: 12/30/2022]
Abstract
The teleost Astyanax mexicanus is one species extant in two readily available forms. One that lives in Mexican rivers and various convergent forms that live in nearby caves. These fish are born with eyes but in the cavefish, they degenerate during development. It is known that the lens of cavefish undergoes apoptosis and that some cells in the neuroretina also die. It has not been described, however, if glia and various components of the neuroretina form before complete eye degeneration. Here we examined the development of the retina of the closest living ancestor that lives in the rivers and two independently adapted of cavefish. We report that although the neuroretina is smaller and more compact, it has all cell types and layers including amacrine cells and Müller glia. While various makers for photoreceptors are present in the cavefish inner segments, the outer segments of the photoreceptors in cavefish are missing from the earliest stages examined. This shows that the machinery for visual transducing discs might still be present but not organized in one part of the cell. It is interesting to note that the deficiencies in Astyanax cavefish resemble retinal diseases, such as retinitis pigmentosa.
Collapse
Affiliation(s)
- Amany Emam
- Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey
| | - Marina Yoffe
- Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey
| | - Henry Cardona
- Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey
| | - Daphne Soares
- Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey
| |
Collapse
|
21
|
Yan H, Liu Q, Shen X, Liu W, Cui X, Hu P, Yuan Z, Zhang L, Song C, Liu L, Liu Y. Effects of different light conditions on the retinal microstructure and ultrastructure of Dicentrarchus labrax larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:613-628. [PMID: 31797174 DOI: 10.1007/s10695-019-00735-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Light is a key environmental parameter known to influence fish throughout various stages of their life, from embryonic development to sexually mature adults. In a recent study, the effects of different light conditions on the growth of Dicentrarchus labrax larvae were investigated using light-emitting diodes (LEDs) as a light source. Here, pathological examinations were carried out to assess whether variations in light affected the visual system of the larvae, including any negative impacts on the retina or the growth rate. Although light did not affect the total thickness (TT) of the retina, the thickness of the retinal pigment epithelium layer (PRE), photoreceptor layer (PRos/is), outer nuclear layer (ONL), and inner nuclear layer (INL), and the PRE/TT and ONL/TT ratios were all significantly higher in larvae exposed to blue light than in larvae exposed to white light. Additionally, the thickness of PRE and the outer nuclear layer and the RPE/TT and ONL/TT ratios of larvae exposed to 2.0 W m-2 were significantly lower than in larvae exposed to 0.3 W m-2. By contrast, the INL/TT ratio in larvae exposed to 2.0 W m-2 was significantly higher than in larvae exposed to 0.3 W m-2. Additionally, the INL and ganglion cell layer nuclei density of larvae exposed to 2.0 W m-2 were significantly higher than in those exposed to 0.3 W m-2 (p < 0.05). Transmission electron microscopy revealed different levels of abnormalities in the photoreceptor layers in all treatment groups. Considering the growth of the larvae, the results of the study suggest that continuous LED exposure induced damage to photoreceptor cells but was not relevant to the growth performance of D. labrax larvae. Moreover, the results obtained here also support the high plasticity of retinal development in response to altered environmental light conditions.
Collapse
Affiliation(s)
- Hongwei Yan
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Qi Liu
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Xufang Shen
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Wenlei Liu
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Xin Cui
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Pengfei Hu
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Zhen Yuan
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Lei Zhang
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Changbin Song
- Institute of Semiconductors, Chinese Academy of Sciences, No.35, Qinghua East Road, Haidian District, Beijing, 10083, China
| | - Lili Liu
- Institute of Semiconductors, Chinese Academy of Sciences, No.35, Qinghua East Road, Haidian District, Beijing, 10083, China
| | - Ying Liu
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China.
| |
Collapse
|
22
|
Hussein MNA, Cao X, Elokil AA, Huang S. Characterisation of stem and proliferating cells on the retina and lens of loach Misgurnus anguillicaudatus. JOURNAL OF FISH BIOLOGY 2020; 96:102-110. [PMID: 31674006 DOI: 10.1111/jfb.14189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
The eye of the fish has a lifelong persistent neurogenesis unlike eye of mammals, so it's highly interesting to study retinal neurogenesis and its genetic control to give complete knowledge about the cause of this property in fish in comparison to mammals. We performed fluorescent in situ hybridisation for loach Misgurnus anguillicaudatus bmi1, msi1 and sox2 genes, which are used as an indicator of the sites of multipotent stem cells. Proliferating cell nuclear antigen (PCNA), bromodeoxyuridine (BRDU) and KI67 markers were used as indicators of proliferating cells and glial fibrillary acidic protein (GFAP) immunofluorescence was used for detection of the glial property of cells, as well as, immunohistochemistry detected the role of peroxisome proliferator-activated receptor (PPAR)α and γ in retinal neurogenesis. Our results determined that the lens and the retina of loach M. anguillicaudatus contain proliferative and pluripotent stem cells that have both glial and neuroepithelial properties, which add new cells continuously throughout life even without injury-induced proliferation. The PPARα has an essential function in providing energy supply for retinal neurogenesis more than PPARγ.
Collapse
Affiliation(s)
- Mona N A Hussein
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Xiaojuan Cao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, China
| | - Abdelmotaleb A Elokil
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Animal Productions Department, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Songqian Huang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan
| |
Collapse
|
23
|
Midkine-a Is Required for Cell Cycle Progression of Müller Glia during Neuronal Regeneration in the Vertebrate Retina. J Neurosci 2019; 40:1232-1247. [PMID: 31882403 PMCID: PMC7002140 DOI: 10.1523/jneurosci.1675-19.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/27/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022] Open
Abstract
In the retina of zebrafish, Müller glia have the ability to reprogram into stem cells capable of regenerating all classes of retinal neurons and restoring visual function. Understanding the cellular and molecular mechanisms controlling the stem cell properties of Müller glia in zebrafish may provide cues to unlock the regenerative potential in the mammalian nervous system. Midkine is a cytokine/growth factor with multiple roles in neural development, tissue repair, and disease. In the retina of zebrafish, Müller glia have the ability to reprogram into stem cells capable of regenerating all classes of retinal neurons and restoring visual function. Understanding the cellular and molecular mechanisms controlling the stem cell properties of Müller glia in zebrafish may provide cues to unlock the regenerative potential in the mammalian nervous system. Midkine is a cytokine/growth factor with multiple roles in neural development, tissue repair, and disease. In midkine-a loss-of-function mutants of both sexes, Müller glia initiate the appropriate reprogramming response to photoreceptor death by increasing expression of stem cell-associated genes, and entering the G1 phase of the cell cycle. However, transition from G1 to S phase is blocked in the absence of Midkine-a, resulting in significantly reduced proliferation and selective failure to regenerate cone photoreceptors. Failing to progress through the cell cycle, Müller glia undergo reactive gliosis, a pathological hallmark in the injured CNS of mammals. Finally, we determined that the Midkine-a receptor, anaplastic lymphoma kinase, is upstream of the HLH regulatory protein, Id2a, and of the retinoblastoma gene, p130, which regulates progression through the cell cycle. These results demonstrate that Midkine-a functions as a core component of the mechanisms that regulate proliferation of stem cells in the injured CNS. SIGNIFICANCE STATEMENT The death of retinal neurons and photoreceptors is a leading cause of vision loss. Regenerating retinal neurons is a therapeutic goal. Zebrafish can regenerate retinal neurons from intrinsic stem cells, Müller glia, and are a powerful model to understand how stem cells might be used therapeutically. Midkine-a, an injury-induced growth factor/cytokine that is expressed by Müller glia following neuronal death, is required for Müller glia to progress through the cell cycle. The absence of Midkine-a suspends proliferation and neuronal regeneration. With cell cycle progression stalled, Müller glia undergo reactive gliosis, a pathological hallmark of the mammalian retina. This work provides a unique insight into mechanisms that control the cell cycle during neuronal regeneration.
Collapse
|
24
|
Anderson PJ, Mitchell MD, Fedoroff KJ, Chivers DP, Ferrari MCO. The Effects of Selenomethionine on the Escape Behaviours of Fathead Minnows. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 77:62-67. [PMID: 30838428 DOI: 10.1007/s00244-019-00604-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Selenium (Se) is an essential micronutrient for animals and yet becomes toxic with only a small increase in concentration. Toxicological studies have reported various effects of Se on fishes, including developmental impacts and deformities of the musculature and sensory systems. This paper investigates the impact of sublethal concentrations of Se on the ability of the Fathead Minnow (Pimephales promelas) to perform escape responses, a routine behaviour important to predator-prey dynamics. Predation is among the strongest evolutionary driving forces in nature. Changes to this dynamic can have effects that cascade through the ecosystem. We used responses to mechanical and visual stimuli to determine the impact of environmentally relevant concentrations of dietary selenomethionine on the behaviour of minnows. Latency to respond to the stimulus and kinematic performance were assessed. Our results indicated that there was no significant effect of selenomethionine on either the visual response to a threat or burst swimming behaviours of the fast-start response in minnows. Levels of Se in tissues approached that of tissue-specific guidelines set by regulatory bodies across North America. This suggests that current regulations are adequately protecting this key component of predator avoidance in Fathead Minnows.
Collapse
Affiliation(s)
- Philip J Anderson
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Matthew D Mitchell
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Katherine J Fedoroff
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada.
| | - Maud C O Ferrari
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| |
Collapse
|
25
|
Huang HM, Huang CC, Tsai MH, Poon YC, Chang YC. Systemic 7,8-Dihydroxyflavone Treatment Protects Immature Retinas Against Hypoxic-Ischemic Injury via Müller Glia Regeneration and MAPK/ERK Activation. Invest Ophthalmol Vis Sci 2019; 59:3124-3135. [PMID: 30025123 DOI: 10.1167/iovs.18-23792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Perinatal hypoxic-ischemic (HI) injury causes significant damages in the immature retina. The brain-derived neurotrophic factor is well known for its neuroprotective role but has limited clinical applications. A selective agonist of tyrosine kinase receptor B, 7,8-dihydroxyflavone (DHF), is a powerful therapeutic tool, when administered systemically. However, it remains unclear whether DHF treatment can protect the immature retinas against HI injury. Methods Postnatal (P) day 7 rat pups were intraperitoneally injected with DHF or vehicle 2 hours before and 18 hours after being subjected to HI injury. The outcomes were assessed at various timepoints after injury by electroretinography and histologic examinations. Neurogenesis was assessed by double-labeling of retinal sections with 5-bromo-2'-deoxyuridine and different neuronal markers. Results At P8, 24-hours postinjury, brain-derived neurotrophic factor mRNA levels in the retina decreased significantly. DHF treatment partially protected immature retinas at both histologic and functional levels between P14 and P30 but did not prevent apoptosis, inflammation, or damage of the blood-retinal barrier (BRB) at P8. On the other hand, DHF treatment promoted the survival of proliferating inner retinal cells, including Müller glia, and enhanced their transdifferentiation to bipolar cells at P17. Moreover, DHF treatment rescued the levels of extracellular signal-regulated kinase (ERK) phosphorylation, which were significantly decreased after injury. The neuroprotective effects of DHF were markedly eliminated by inhibition of ERK phosphorylation. Conclusions Early systemic DHF treatment has neuroprotective effects against HI injury in immature retinas, possibly via promoting neurogenesis through the tyrosine kinase receptor B/ERK signaling pathway. Chinese Abstract.
Collapse
Affiliation(s)
- Hsiu-Mei Huang
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - Chao-Ching Huang
- Department of Pediatrics, National Cheng Kung University Hospital, No.1, Tainan City, Taiwan.,Department of Pediatrics, Taipei Medical University, College of Medicine, Taipei City, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - Yi-Chieh Poon
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - Ying-Chao Chang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| |
Collapse
|
26
|
Abstract
Purpose Retinal degenerative diseases lead to the death of retinal neurons causing visual impairment and blindness. In lower order vertebrates, the retina and its surrounding tissue contain stem cell niches capable of regenerating damaged tissue. Here we examine these niches and review their capacity to be used as retinal stem/progenitor cells (RSC/RPCs) for retinal repair. Recent Findings Exogenous factors can control the in vitro activation of RSCs/PCs found in several niches within the adult eye including cells in the ciliary margin, the retinal pigment epithelium, iris pigment epithelium as well as the inducement of Müller and amacrine cells within the neural retina itself. Recently, factors have been identified for the activation of adult mammalian Müller cells to a RPC state in vivo. Summary Whereas cell transplantation still holds potential for retinal repair, activation of the dormant native regeneration process may lead to a more successful process including greater integration efficiency and proper synaptic targeting.
Collapse
|
27
|
Miltner AM, Torre AL. Retinal Ganglion Cell Replacement: Current Status and Challenges Ahead. Dev Dyn 2019; 248:118-128. [PMID: 30242792 PMCID: PMC7141838 DOI: 10.1002/dvdy.24672] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022] Open
Abstract
The neurons of the retina can be affected by a wide variety of inherited or environmental degenerations that can lead to vision loss and even blindness. Retinal ganglion cell (RGC) degeneration is the hallmark of glaucoma and other optic neuropathies that affect millions of people worldwide. Numerous strategies are being trialed to replace lost neurons in different degeneration models, and in recent years, stem cell technologies have opened promising avenues to obtain donor cells for retinal repair. Stem cell-based transplantation has been most frequently used for the replacement of rod photoreceptors, but the same tools could potentially be used for other retinal cell types, including RGCs. However, RGCs are not abundant in stem cell-derived cultures, and in contrast to the short-distance wiring of photoreceptors, RGC axons take a long and intricate journey to connect with numerous brain nuclei. Hence, a number of challenges still remain, such as the ability to scale up the production of RGCs and a reliable and functional integration into the adult diseased retina upon transplantation. In this review, we discuss the recent advancements in the development of replacement therapies for RGC degenerations and the challenges that we need to overcome before these technologies can be applied to the clinic. Developmental Dynamics 248:118-128, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adam M. Miltner
- Department of Cell Biology and Human Anatomy, University of California Davis, U.S
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California Davis, U.S
| |
Collapse
|
28
|
Schweikert LE, Grace MS. Altered environmental light drives retinal change in the Atlantic Tarpon (Megalops atlanticus) over timescales relevant to marine environmental disturbance. BMC Ecol 2018; 18:1. [PMID: 29347979 PMCID: PMC5774114 DOI: 10.1186/s12898-018-0157-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/09/2018] [Indexed: 12/13/2022] Open
Abstract
Background For many fish species, retinal function changes between life history stages as part of an encoded developmental program. Retinal change is also known to exhibit plasticity because retinal form and function can be influenced by light exposure over the course of development. Aside from studies of gene expression, it remains largely unknown whether retinal plasticity can provide functional responses to short-term changes in environmental light quality. The aim of this study was to determine whether the structure and function of the fish retina can change in response to altered light intensity and spectrum—not over the course of a developmental regime, but over shorter time periods relevant to marine habitat disturbance. Results The effects of light environment on sensitivity of the retina, as well as on cone photoreceptor distribution were examined in the Atlantic tarpon (Megalops atlanticus) on 2- and 4-month timescales. In a spectral experiment, juvenile M. atlanticus were placed in either ‘red’ or ‘blue’ light conditions (with near identical irradiance), and in an intensity experiment, juveniles were placed in either ‘bright’ or ‘dim’ light conditions (with near identical spectra). Analysis of the retina by electroretinography and anti-opsin immunofluorescence revealed that relative to fish held in the blue condition, those in the red condition exhibited longer-wavelength peak sensitivity and greater abundance of long-wavelength-sensitive (LWS) cone photoreceptors over time. Following pre-test dark adaption of the retina, fish held in the dim light required less irradiance to produce a standard retinal response than fish held in bright light, developing a greater sensitivity to white light over time. Conclusions The results show that structure and function of the M. atlanticus retina can rapidly adjust to changes in environmental light within a given developmental stage, and that such changes are dependent on light quality and the length of exposure. These findings suggest that the fish retina may be resilient to disturbances in environmental light, using retinal plasticity to compensate for changes in light quality over short timescales. Electronic supplementary material The online version of this article (10.1186/s12898-018-0157-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lorian E Schweikert
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Boulevard, Melbourne, FL, 32901, USA.,Department of Biology, Duke University, 130 Science Dr. Durham, Durham, NC, 27583, USA
| | - Michael S Grace
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Boulevard, Melbourne, FL, 32901, USA.
| |
Collapse
|
29
|
Worthington KS, Wiley LA, Kaalberg EE, Collins MM, Mullins RF, Stone EM, Tucker BA. Two-photon polymerization for production of human iPSC-derived retinal cell grafts. Acta Biomater 2017; 55:385-395. [PMID: 28351682 DOI: 10.1016/j.actbio.2017.03.039] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/15/2017] [Accepted: 03/24/2017] [Indexed: 11/16/2022]
Abstract
Recent advances in induced pluripotent stem cell (iPSC) technology have paved the way for the production of patient-specific neurons that are ideal for autologous cell replacement for treatment of neurodegenerative diseases. In the case of retinal degeneration and associated photoreceptor cell therapy, polymer scaffolds are critical for cellular survival and integration; however, prior attempts to materialize this concept have been unsuccessful in part due to the materials' inability to guide cell alignment. In this work, we used two-photon polymerization to create 180μm wide non-degradable prototype photoreceptor scaffolds with varying pore sizes, slicing distances, hatching distances and hatching types. Hatching distance and hatching type were significant factors for the error of vertical pore diameter, while slicing distance and hatching type most affected the integrity and geometry of horizontal pores. We optimized printing parameters in terms of structural integrity and printing time in order to create 1mm wide scaffolds for cell loading studies. We fabricated these larger structures directly on a porous membrane with 3µm diameter pores and seeded them with human iPSC-derived retinal progenitor cells. After two days in culture, cells nested in and extended neuronal processes parallel to the vertical pores of the scaffolds, with maximum cell loading occurring in 25μm diameter pores. These results highlight the feasibility of using this technique as part of an autologous stem cell strategy for restoring vision to patients affected with retinal degenerative diseases. STATEMENT OF SIGNIFICANCE Cell replacement therapy is an important goal for investigators aiming to restore neural function to those suffering from neurodegenerative disease. Cell delivery scaffolds are frequently necessary for the success of such treatments, but traditional biomaterials often fail to facilitate the neuronal orientation and close packing needed to recapitulate the in vivo environment. Here, we use two-photon polymerization to create prototype cell scaffolds with densely packed vertical pores for photoreceptor cell loading and small, interconnected horizontal pores for nutrient diffusion. This study offers a thorough characterization of how two-photon polymerization parameters affect final structural outcomes and printing time. Our findings demonstrate the feasibility of using two-photon polymerization to create scaffolds that can align neuronal cells in 3D and are large enough to be used for transplantation. In future work, these scaffolds could comprise biodegradable materials with tunable microstructure, elastic modulus and degradation time; a significant step towards a promising treatment option for those suffering from late-stage neurodegeneration, including retinal degenerative blindness.
Collapse
Affiliation(s)
- Kristan S Worthington
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, 375 Newton Road, Iowa City, IA 52242, USA.
| | - Luke A Wiley
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, 375 Newton Road, Iowa City, IA 52242, USA.
| | - Emily E Kaalberg
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, 375 Newton Road, Iowa City, IA 52242, USA.
| | - Malia M Collins
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, 375 Newton Road, Iowa City, IA 52242, USA.
| | - Robert F Mullins
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, 375 Newton Road, Iowa City, IA 52242, USA.
| | - Edwin M Stone
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, 375 Newton Road, Iowa City, IA 52242, USA.
| | - Budd A Tucker
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, 375 Newton Road, Iowa City, IA 52242, USA.
| |
Collapse
|
30
|
Canto-Soler V, Flores-Bellver M, Vergara MN. Stem Cell Sources and Their Potential for the Treatment of Retinal Degenerations. Invest Ophthalmol Vis Sci 2017; 57:ORSFd1-9. [PMID: 27116661 PMCID: PMC6892419 DOI: 10.1167/iovs.16-19127] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Stem cells offer unprecedented opportunities for the development of strategies geared toward the treatment of retinal degenerative diseases. A variety of cellular sources have been investigated for various potential clinical applications, including tissue regeneration, disease modeling, and screening for non–cell-based therapeutic agents. As the field transitions from more than a decade of preclinical research to the first phase I/II clinical trials, we provide a concise overview of the stem cell sources most commonly used, weighing their therapeutic potential on the basis of their technical strengths/limitations, their ethical implications, and the extent of the progress achieved to date. This article serves as a framework for further in-depth analyses presented in the following chapters of this Special Issue.
Collapse
|
31
|
Walsh CE, Hitchcock PF. Progranulin regulates neurogenesis in the developing vertebrate retina. Dev Neurobiol 2017; 77:1114-1129. [PMID: 28380680 PMCID: PMC5568971 DOI: 10.1002/dneu.22499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
Abstract
We evaluated the expression and function of the microglia‐specific growth factor, Progranulin‐a (Pgrn‐a) during developmental neurogenesis in the embryonic retina of zebrafish. At 24 hpf pgrn‐a is expressed throughout the forebrain, but by 48 hpf pgrn‐a is exclusively expressed by microglia and/or microglial precursors within the brain and retina. Knockdown of Pgrn‐a does not alter the onset of neurogenic programs or increase cell death, however, in its absence, neurogenesis is significantly delayed—retinal progenitors fail to exit the cell cycle at the appropriate developmental time and postmitotic cells do not acquire markers of terminal differentiation, and microglial precursors do not colonize the retina. Given the link between Progranulin and cell cycle regulation in peripheral tissues and transformed cells, we analyzed cell cycle kinetics among retinal progenitors following Pgrn‐a knockdown. Depleting Pgrn‐a results in a significant lengthening of the cell cycle. These data suggest that Pgrn‐a plays a dual role during nervous system development by governing the rate at which progenitors progress through the cell cycle and attracting microglial progenitors into the embryonic brain and retina. Collectively, these data show that Pgrn‐a governs neurogenesis by regulating cell cycle kinetics and the transition from proliferation to cell cycle exit and differentiation. © 2017 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 77: 1114–1129, 2017
Collapse
Affiliation(s)
- Caroline E Walsh
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, 48105.,Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, 48105
| | - Peter F Hitchcock
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, 48105.,Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, 48105
| |
Collapse
|
32
|
Tang X, Gao J, Jia X, Zhao W, Zhang Y, Pan W, He J. Bipotent progenitors as embryonic origin of retinal stem cells. J Cell Biol 2017; 216:1833-1847. [PMID: 28465291 PMCID: PMC5461025 DOI: 10.1083/jcb.201611057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/01/2017] [Accepted: 04/03/2017] [Indexed: 01/24/2023] Open
Abstract
In lower vertebrates, retinal stem cells (RSCs) capable of producing all retinal cell types are a resource for retinal tissue growth throughout life. However, the embryonic origin of RSCs remains largely elusive. Using a Zebrabow-based clonal analysis, we characterized the RSC niche in the ciliary marginal zone of zebrafish retina and illustrate that blood vessels associated with RSCs are required for the maintenance of actively proliferating RSCs. Full lineage analysis of RSC progenitors reveals lineage patterns of RSC production. Moreover, in vivo lineage analysis demonstrates that these RSC progenitors are the direct descendants of a set of bipotent progenitors in the medial epithelial layer of developing optic vesicles, suggesting the involvement of the mixed-lineage states in the RSC lineage specification.
Collapse
Affiliation(s)
- Xia Tang
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianan Gao
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinling Jia
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wencao Zhao
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Yijie Zhang
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weijun Pan
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Jie He
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
33
|
Vetter ML, Hitchcock PF. Report on the National Eye Institute Audacious Goals Initiative: Replacement of Retinal Ganglion Cells from Endogenous Cell Sources. Transl Vis Sci Technol 2017; 6:5. [PMID: 28316878 PMCID: PMC5354473 DOI: 10.1167/tvst.6.2.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 12/22/2022] Open
Abstract
This report emerges from a workshop convened by the National Eye Institute (NEI) as part of the "Audacious Goals Initiative" (AGI). The workshop addressed the replacement of retinal ganglion cells (RGCs) from exogenous and endogenous sources, and sought to identify the gaps in our knowledge and barriers to progress in devising cellular replacement therapies for diseases where RGCs die. Here, we briefly review relevant literature regarding common diseases associated with RGC death, the genesis of RGCs in vivo, strategies for generating transplantable RGCs in vitro, and potential endogenous cellular sources to regenerate these cells. These topics provided the clinical and scientific context for the discussion among the workshop participants and are relevant to efforts that may lead to therapeutic approaches for replacing RGCs. This report also summarizes the content of the workshop discussion, which focused on: (1) cell sources for RGC replacement and regeneration, (2) optimizing integration, survival, and synaptogenesis of new RGCs, and (3) approaches for assessing the outcomes of RGC replacement therapies. We conclude this report with a summary of recommendations, based on the workshop discussions, which may guide vision scientists seeking to develop therapies for replacing RGCs in humans.
Collapse
Affiliation(s)
- Monica L Vetter
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Peter F Hitchcock
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA ; Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
34
|
Regulation of Stem Cell Properties of Müller Glia by JAK/STAT and MAPK Signaling in the Mammalian Retina. Stem Cells Int 2017; 2017:1610691. [PMID: 28194183 PMCID: PMC5282447 DOI: 10.1155/2017/1610691] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/21/2016] [Indexed: 12/15/2022] Open
Abstract
In humans and other mammals, the neural retina does not spontaneously regenerate, and damage to the retina that kills retinal neurons results in permanent blindness. In contrast to embryonic stem cells, induced pluripotent stem cells, and embryonic/fetal retinal stem cells, Müller glia offer an intrinsic cellular source for regenerative strategies in the retina. Müller glia are radial glial cells within the retina that maintain retinal homeostasis, buffer ion flux associated with phototransduction, and form the blood/retinal barrier within the retina proper. In injured or degenerating retinas, Müller glia contribute to gliotic responses and scar formation but also show regenerative capabilities that vary across species. In the mammalian retina, regenerative responses achieved to date remain insufficient for potential clinical applications. Activation of JAK/STAT and MAPK signaling by CNTF, EGF, and FGFs can promote proliferation and modulate the glial/neurogenic switch. However, to achieve clinical relevance, additional intrinsic and extrinsic factors that restrict or promote regenerative responses of Müller glia in the mammalian retina must be identified. This review focuses on Müller glia and Müller glial-derived stem cells in the retina and phylogenetic differences among model vertebrate species and highlights some of the current progress towards understanding the cellular mechanisms regulating their regenerative response.
Collapse
|
35
|
Abstract
Sensing and responding to our environment requires functional neurons that act in concert. Neuronal cell loss resulting from degenerative diseases cannot be replaced in humans, causing a functional impairment to integrate and/or respond to sensory cues. In contrast, zebrafish (Danio rerio) possess an endogenous capacity to regenerate lost neurons. Here, we will focus on the processes that lead to neuronal regeneration in the zebrafish retina. Dying retinal neurons release a damage signal, tumor necrosis factor α, which induces the resident radial glia, the Müller glia, to reprogram and re-enter the cell cycle. The Müller glia divide asymmetrically to produce a Müller glia that exits the cell cycle and a neuronal progenitor cell. The arising neuronal progenitor cells undergo several rounds of cell divisions before they migrate to the site of damage to differentiate into the neuronal cell types that were lost. Molecular and immunohistochemical studies have predominantly provided insight into the mechanisms that regulate retinal regeneration. However, many processes during retinal regeneration are dynamic and require live-cell imaging to fully discern the underlying mechanisms. Recently, a multiphoton imaging approach of adult zebrafish retinal cultures was developed. We will discuss the use of live-cell imaging, the currently available tools and those that need to be developed to advance our knowledge on major open questions in the field of retinal regeneration.
Collapse
Affiliation(s)
- Manuela Lahne
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - David R Hyde
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
36
|
Morrow JM, Lazic S, Dixon Fox M, Kuo C, Schott RK, de A Gutierrez E, Santini F, Tropepe V, Chang BSW. A second visual rhodopsin gene, rh1-2, is expressed in zebrafish photoreceptors and found in other ray-finned fishes. ACTA ACUST UNITED AC 2016; 220:294-303. [PMID: 27811293 DOI: 10.1242/jeb.145953] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/25/2016] [Indexed: 12/19/2022]
Abstract
Rhodopsin (rh1) is the visual pigment expressed in rod photoreceptors of vertebrates that is responsible for initiating the critical first step of dim-light vision. Rhodopsin is usually a single copy gene; however, we previously discovered a novel rhodopsin-like gene expressed in the zebrafish retina, rh1-2, which we identified as a functional photosensitive pigment that binds 11-cis retinal and activates in response to light. Here, we localized expression of rh1-2 in the zebrafish retina to a subset of peripheral photoreceptor cells, which indicates a partially overlapping expression pattern with rh1 We also expressed, purified and characterized Rh1-2, including investigation of the stability of the biologically active intermediate. Using fluorescence spectroscopy, we found the half-life of the rate of retinal release of Rh1-2 following photoactivation to be more similar to that of the visual pigment rhodopsin than to the non-visual pigment exo-rhodopsin (exorh), which releases retinal around 5 times faster. Phylogenetic and molecular evolutionary analyses show that rh1-2 has ancient origins within teleost fishes, is under similar selective pressure to rh1, and likely experienced a burst of positive selection following its duplication and divergence from rh1 These findings indicate that rh1-2 is another functional visual rhodopsin gene, which contradicts the prevailing notion that visual rhodopsin is primarily found as a single copy gene within ray-finned fishes. The reasons for retention of this duplicate gene, as well as possible functional consequences for the visual system, are discussed.
Collapse
Affiliation(s)
- James M Morrow
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada, M5S 3G5.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada, M5S 3B2
| | - Savo Lazic
- Department of Molecular Genetics, University of Toronto, Toronto, Canada, M5S 1A8
| | - Monica Dixon Fox
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada, M5S 3G5
| | - Claire Kuo
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada, M5S 3G5
| | - Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada, M5S 3B2
| | - Eduardo de A Gutierrez
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada, M5S 3B2
| | - Francesco Santini
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Vincent Tropepe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada, M5S 3G5.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada, M5T 3A9.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada, M5S 3B2
| | - Belinda S W Chang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada, M5S 3G5 .,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada, M5S 3B2.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada, M5S 3B2
| |
Collapse
|
37
|
Hamon A, Roger JE, Yang XJ, Perron M. Müller glial cell-dependent regeneration of the neural retina: An overview across vertebrate model systems. Dev Dyn 2016; 245:727-38. [PMID: 26661417 PMCID: PMC4900950 DOI: 10.1002/dvdy.24375] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/12/2015] [Accepted: 11/22/2015] [Indexed: 12/21/2022] Open
Abstract
Retinal dystrophies are a major cause of blindness for which there are currently no curative treatments. Transplantation of stem cell‐derived neuronal progenitors to replace lost cells has been widely investigated as a therapeutic option. Another promising strategy would be to trigger self‐repair mechanisms in patients, through the recruitment of endogenous cells with stemness properties. Accumulating evidence in the past 15 year0s has revealed that several retinal cell types possess neurogenic potential, thus opening new avenues for regenerative medicine. Among them, Müller glial cells have been shown to be able to undergo a reprogramming process to re‐acquire a stem/progenitor state, allowing them to proliferate and generate new neurons for repair following retinal damages. Although Müller cell–dependent spontaneous regeneration is remarkable in some species such as the fish, it is extremely limited and ineffective in mammals. Understanding the cellular events and molecular mechanisms underlying Müller cell activities in species endowed with regenerative capacities could provide knowledge to unlock the restricted potential of their mammalian counterparts. In this context, the present review provides an overview of Müller cell responses to injury across vertebrate model systems and summarizes recent advances in this rapidly evolving field. Developmental Dynamics 245:727–738, 2016. © 2015 The Authors. Developmental Dynamics published by Wiley Periodicals, Inc. The present review provides an overview of Müller cell responses to injury across vertebrate model systems and summarizes recent advances in this rapidly evolving field.
Collapse
Affiliation(s)
- Annaïg Hamon
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Jérôme E Roger
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Xian-Jie Yang
- Stein Eye Institute, University of California Los Angeles, Los Angeles, California
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France.,Stein Eye Institute, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
38
|
Taylor SM, Alvarez-Delfin K, Saade CJ, Thomas JL, Thummel R, Fadool JM, Hitchcock PF. The bHLH Transcription Factor NeuroD Governs Photoreceptor Genesis and Regeneration Through Delta-Notch Signaling. Invest Ophthalmol Vis Sci 2015; 56:7496-515. [PMID: 26580854 PMCID: PMC4654396 DOI: 10.1167/iovs.15-17616] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/06/2015] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Photoreceptor genesis in the retina requires precise regulation of progenitor cell competence, cell cycle exit, and differentiation, although information around the mechanisms that govern these events currently is lacking. In zebrafish, the basic helix-loop-helix (bHLH) transcription factor NeuroD governs photoreceptor genesis, but the signaling pathways through which NeuroD functions are unknown. The purpose of this study was to identify these pathways, and during photoreceptor genesis, Notch signaling was investigated as the putative mediator of NeuroD function. METHODS In embryos, genetic mosaic analysis was used to determine if NeuroD functions is cell- or non-cell-autonomous. Morpholino-induced NeuroD knockdown, CRISPR/Cas9 mutation, and pharmacologic and transgenic approaches were used, followed by in situ hybridization, immunocytochemistry, and quantitative RT-PCR (qRT-PCR), to identify mechanisms through which NeuroD functions. In adults, following photoreceptor ablation and NeuroD knockdown, similar methods as above were used to identify NeuroD function during photoreceptor regeneration. RESULTS In embryos, NeuroD function is non-cell-autonomous, NeuroD knockdown increases Notch pathway gene expression, Notch inhibition rescues the NeuroD knockdown-induced deficiency in cell cycle exit but not photoreceptor maturation, and Notch activation and CRISPR/Cas9 mutation of neurod recapitulate NeuroD knockdown. In adults, NeuroD knockdown prevents cell cycle exit and photoreceptor regeneration and increases Notch pathway gene expression, and Notch inhibition rescues this phenotype. CONCLUSIONS These data demonstrate that during embryonic development, NeuroD governs photoreceptor genesis via non-cell-autonomous mechanisms and that, during photoreceptor development and regeneration, Notch signaling is a mechanistic link between NeuroD and cell cycle exit. In contrast, during embryonic development, NeuroD governs photoreceptor maturation via mechanisms that are independent of Notch signaling.
Collapse
Affiliation(s)
- Scott M. Taylor
- Department of Ophthalmology and Visual Sciences University of Michigan, W. K. Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Karen Alvarez-Delfin
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States
| | - Carole J. Saade
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States
| | - Jennifer L. Thomas
- Departments of Anatomy/Cell Biology and Ophthalmology, Wayne State University, Detroit, Michigan, United States
| | - Ryan Thummel
- Departments of Anatomy/Cell Biology and Ophthalmology, Wayne State University, Detroit, Michigan, United States
| | - James M. Fadool
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States
| | - Peter F. Hitchcock
- Department of Ophthalmology and Visual Sciences University of Michigan, W. K. Kellogg Eye Center, Ann Arbor, Michigan, United States
| |
Collapse
|
39
|
Kugler M, Schlecht A, Fuchshofer R, Kleiter I, Aigner L, Tamm ER, Braunger BM. Heterozygous modulation of TGF-β signaling does not influence Müller glia cell reactivity or proliferation following NMDA-induced damage. Histochem Cell Biol 2015. [PMID: 26215132 DOI: 10.1007/s00418-015-1354-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The stimulation of progenitor or stem cells proliferation in the retina could be a therapeutic avenue for the treatment of various ocular neurodegenerative disorders. Müller glia cells have been discussed to represent a progenitor cell population in the adult retina. In the brain, TGF-β signaling regulates the fate of stem cells; however, its role in the vertebrate retina is unclear. We therefore investigated whether manipulation of the TGF-β signaling pathway is sufficient to promote Müller glia cell proliferation and subsequently their trans-differentiation into retinal neurons. To this end, we used mice with heterozygous deficiency of the essential TGF-β receptor type II or of the inhibitory protein SMAD7, in order to down- or up-regulate the activity of TGF-β signaling, respectively. Excitotoxic damage was applied by intravitreal N-methyl-D-aspartate injection, and BrdU pulse experiments were used to label proliferative cells. Although we successfully stimulated Müller glia cell reactivity, our findings indicate that a moderate modulation of TGF-β signaling is not sufficient to provoke Müller glia cell proliferation. Hence, TGF-β signaling in the retina might not be the essential causative factor to maintain mammalian Müller cells in a quiescent, non-proliferative state that prevents a stem cell-like function.
Collapse
Affiliation(s)
- Martina Kugler
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Anja Schlecht
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Ingo Kleiter
- Department of Neurology, St. Josef-Hospital, Bochum, Germany
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ernst R Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Barbara M Braunger
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
40
|
Ontogenic retinal changes in three ecologically distinct elopomorph fishes (Elopomorpha:Teleostei) correlate with light environment and behavior. Vis Neurosci 2015; 32:E005. [DOI: 10.1017/s0952523815000024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractUnlike the mammalian retina, the teleost fish retina undergoes persistent neurogenesis from intrinsic stem cells. In marine teleosts, most cone photoreceptor genesis occurs early in the embryonic and larval stages, and rods are added primarily during and after metamorphosis. This study demonstrates a developmental paradigm in elopomorph fishes in which retinas are rod-dominated in larvae, but undergo periods of later cone genesis. Retinal characteristics were compared at different developmental stages among three ecologically distinct elopomorph fishes—ladyfish (Elops saurus), bonefish (Albula vulpes), and speckled worm eel (Myrophis punctatus). The objectives were to improve our understanding of (1) the developmental strategy in the elopomorph retina, (2) the functional architecture of the retina as it relates to ecology, and (3) how the light environment influences photoreceptor genesis. Photoreceptor morphologies, distributions, and spectral absorption were studied at larval, juvenile, and adult stages. Premetamorphic retinas in all three species are rod-dominated, but the retinas of these species undergo dramatic change over the course of development, resulting in juvenile and adult retinal characteristics that correlate closely with ecology. Adult E. saurus has high rod densities, grouped photoreceptors, a reflective tapetum, and longer-wavelength photopigments, supporting vision in turbid, low-light conditions. Adult A. vulpes has high cone densities, low rod densities, and shorter-wavelength photopigments, supporting diurnal vision in shallow, clear water. M. punctatus loses cones during metamorphosis, develops new cones after settlement, and maintains high rod but low cone densities, supporting primarily nocturnal vision. M. punctatus secondary cone genesis occurs rapidly throughout the retina, suggesting a novel mechanism of vertebrate photoreceptor genesis. Finally, in postsettlement M. punctatus, the continuous presence or absence of visible light modulates rod distribution but does not affect secondary cone genesis, suggesting some degree of developmental plasticity influenced by the light environment.
Collapse
|
41
|
|
42
|
Liu B, Hunter DJ, Smith AA, Chen S, Helms JA. The capacity of neural crest-derived stem cells for ocular repair. ACTA ACUST UNITED AC 2014; 102:299-308. [DOI: 10.1002/bdrc.21077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/22/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Bo Liu
- Division of Plastic and Reconstructive Surgery; Department of Surgery School of Medicine; Stanford University; Stanford California
| | - Daniel J. Hunter
- Division of Plastic and Reconstructive Surgery; Department of Surgery School of Medicine; Stanford University; Stanford California
| | - Andrew A. Smith
- Division of Plastic and Reconstructive Surgery; Department of Surgery School of Medicine; Stanford University; Stanford California
| | - Serafine Chen
- Division of Plastic and Reconstructive Surgery; Department of Surgery School of Medicine; Stanford University; Stanford California
| | - Jill A. Helms
- Division of Plastic and Reconstructive Surgery; Department of Surgery School of Medicine; Stanford University; Stanford California
| |
Collapse
|
43
|
Matsushita T, Fujihara A, Royall L, Kagiwada S, Kosaka M, Araki M. Immediate differentiation of neuronal cells from stem/progenitor-like cells in the avian iris tissues. Exp Eye Res 2014; 123:16-26. [DOI: 10.1016/j.exer.2014.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 01/19/2023]
|
44
|
Miyake A, Araki M. Retinal stem/progenitor cells in the ciliary marginal zone complete retinal regeneration: a study of retinal regeneration in a novel animal model. Dev Neurobiol 2014; 74:739-56. [PMID: 24488715 DOI: 10.1002/dneu.22169] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 01/24/2014] [Accepted: 01/26/2014] [Indexed: 01/02/2023]
Abstract
Our research group has extensively studied retinal regeneration in adult Xenopus laevis. However, X. laevis does not represent a suitable model for multigenerational genetics and genomic approaches. Instead, Xenopus tropicalis is considered as the ideal model for these studies, although little is known about retinal regeneration in X. tropicalis. In the present study, we showed that a complete retina regenerates at approximately 30 days after whole retinal removal. The regenerating retina was derived from the stem/progenitor cells in the ciliary marginal zone (CMZ), indicating a novel mode of vertebrate retinal regeneration, which has not been previously reported. In a previous study, we showed that in X. laevis, retinal regeneration occurs primarily through the transdifferentiation of retinal pigmented epithelial (RPE) cells. RPE cells migrate to the retinal vascular membrane and reform a new epithelium, which then differentiates into the retina. In X. tropicalis, RPE cells also migrated to the vascular membrane, but transdifferentiation was not evident. Using two tissue culture models of RPE tissues, it was shown that in X. laevis RPE culture neuronal differentiation and reconstruction of the retinal three-dimensional (3-D) structure were clearly observed, while in X. tropicalis RPE culture neither ßIII tubulin-positive cells nor 3-D retinal structure were seen. These results indicate that the two Xenopus species are excellent models to clarify the cellular and molecular mechanisms of retinal regeneration, as these animals have contrasting modes of regeneration; one mode primarily involves RPE cells and the other mode involves stem/progenitor cells in the CMZ.
Collapse
Affiliation(s)
- Ayumi Miyake
- Department of Biological Sciences, Developmental Neurobiology Laboratory, Nara Women's University, Nara, 630-8506, Japan
| | | |
Collapse
|
45
|
Zhao JJ, Ouyang H, Luo J, Patel S, Xue Y, Quach J, Sfeir N, Zhang M, Fu X, Ding S, Chen S, Zhang K. Induction of retinal progenitors and neurons from mammalian Müller glia under defined conditions. J Biol Chem 2014; 289:11945-11951. [PMID: 24523410 DOI: 10.1074/jbc.m113.532671] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Vision impairment caused by loss of retinal neurons affects millions of people worldwide, and currently, there is no effective treatment. Müller glia of mammalian retina may represent an under-recognized and potential source for regeneration of a wide range of retinal cell types, including retinal ganglion cells and photoreceptors. Here, we demonstrated that mouse Müller glia cells have the capacity to be reprogrammed into the retinal neuronal cell fate and are competent to give rise to photoreceptors under a defined culture condition. Inactivation of p53 released proliferation restriction of Müller glia and significantly enhanced the induction of retinal progenitor from Müller glia in culture. Moreover, following the ocular transplantation, the Müller glia-derived progenitors were differentiated toward the fates of photoreceptors and retinal ganglion cells. Together, these results demonstrate the feasibility of using Müller glia as a potential source for retinal repair and regeneration.
Collapse
Affiliation(s)
- Jack Jiagang Zhao
- Department of Ophthalmology and Institute for Genomic Medicine, University of California, San Diego, La Jolla, California 92093.
| | - Hong Ouyang
- Department of Ophthalmology and Institute for Genomic Medicine, University of California, San Diego, La Jolla, California 92093
| | - Jing Luo
- Department of Ophthalmology and Institute for Genomic Medicine, University of California, San Diego, La Jolla, California 92093; Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 41001, China
| | - Sherrina Patel
- Department of Ophthalmology and Institute for Genomic Medicine, University of California, San Diego, La Jolla, California 92093
| | - Yuanchao Xue
- Department of Cellular and Molecular Medicine and Institute for Genomic Medicine, University of California, San Diego, La Jolla, California 92093
| | - John Quach
- Department of Ophthalmology and Institute for Genomic Medicine, University of California, San Diego, La Jolla, California 92093
| | - Nicole Sfeir
- Department of Ophthalmology and Institute for Genomic Medicine, University of California, San Diego, La Jolla, California 92093
| | - Meixia Zhang
- Molecular Medicine Research Center, West China Hospital, Chengdu, Sichuan 610041, China
| | - Xiangdong Fu
- Department of Cellular and Molecular Medicine and Institute for Genomic Medicine, University of California, San Diego, La Jolla, California 92093
| | - Sheng Ding
- Gladstone Institutes, University of California, San Francisco, San Francisco, California 94158-2261
| | - Shaochen Chen
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093
| | - Kang Zhang
- Department of Ophthalmology and Institute for Genomic Medicine, University of California, San Diego, La Jolla, California 92093; Veterans Administration Healthcare System, San Diego, California 92161.
| |
Collapse
|
46
|
Raymond PA, Colvin SM, Jabeen Z, Nagashima M, Barthel LK, Hadidjojo J, Popova L, Pejaver VR, Lubensky DK. Patterning the cone mosaic array in zebrafish retina requires specification of ultraviolet-sensitive cones. PLoS One 2014; 9:e85325. [PMID: 24465536 PMCID: PMC3897441 DOI: 10.1371/journal.pone.0085325] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/25/2013] [Indexed: 12/17/2022] Open
Abstract
Cone photoreceptors in teleost fish are organized in precise, crystalline arrays in the epithelial plane of the retina. In zebrafish, four distinct morphological/spectral cone types occupy specific, invariant positions within a regular lattice. The cone lattice is aligned orthogonal and parallel to circumference of the retinal hemisphere: it emerges as cones generated in a germinal zone at the retinal periphery are incorporated as single-cell columns into the cone lattice. Genetic disruption of the transcription factor Tbx2b eliminates most of the cone subtype maximally sensitive to ultraviolet (UV) wavelengths and also perturbs the long-range organization of the cone lattice. In the tbx2b mutant, the other three cone types (red, green, and blue cones) are specified in the correct proportion, differentiate normally, and acquire normal, planar polarized adhesive interactions mediated by Crumbs 2a and Crumbs 2b. Quantitative image analysis of cell adjacency revealed that the cones in the tbx2b mutant primarily have two nearest neighbors and align in single-cell-wide column fragments that are separated by rod photoreceptors. Some UV cones differentiate at the dorsal retinal margin in the tbx2b mutant, although they are severely dysmorphic and are eventually eliminated. Incorporating loss of UV cones during formation of cone columns at the margin into our previously published mathematical model of zebrafish cone mosaic formation (which uses bidirectional interactions between planar cell polarity proteins and anisotropic mechanical stresses in the plane of the retinal epithelium to generate regular columns of cones parallel to the margin) reproduces many features of the pattern disruptions seen in the tbx2b mutant.
Collapse
Affiliation(s)
- Pamela A. Raymond
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (PAR); (DKL)
| | - Steven M. Colvin
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Zahera Jabeen
- Department of Physics, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mikiko Nagashima
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Linda K. Barthel
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jeremy Hadidjojo
- Department of Physics, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lilia Popova
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Vivek R. Pejaver
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David K. Lubensky
- Department of Physics, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (PAR); (DKL)
| |
Collapse
|
47
|
Layer PG, Araki M, Vogel-Höpker A. New concepts for reconstruction of retinal and pigment epithelial tissues. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.10.42] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Lenkowski JR, Raymond PA. Müller glia: Stem cells for generation and regeneration of retinal neurons in teleost fish. Prog Retin Eye Res 2014; 40:94-123. [PMID: 24412518 DOI: 10.1016/j.preteyeres.2013.12.007] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/28/2013] [Accepted: 12/30/2013] [Indexed: 12/31/2022]
Abstract
Adult zebrafish generate new neurons in the brain and retina throughout life. Growth-related neurogenesis allows a vigorous regenerative response to damage, and fish can regenerate retinal neurons, including photoreceptors, and restore functional vision following photic, chemical, or mechanical destruction of the retina. Müller glial cells in fish function as radial-glial-like neural stem cells. During adult growth, Müller glial nuclei undergo sporadic, asymmetric, self-renewing mitotic divisions in the inner nuclear layer to generate a rod progenitor that migrates along the radial fiber of the Müller glia into the outer nuclear layer, proliferates, and differentiates exclusively into rod photoreceptors. When retinal neurons are destroyed, Müller glia in the immediate vicinity of the damage partially and transiently dedifferentiate, re-express retinal progenitor and stem cell markers, re-enter the cell cycle, undergo interkinetic nuclear migration (characteristic of neuroepithelial cells), and divide once in an asymmetric, self-renewing division to generate a retinal progenitor. This daughter cell proliferates rapidly to form a compact neurogenic cluster surrounding the Müller glia; these multipotent retinal progenitors then migrate along the radial fiber to the appropriate lamina to replace missing retinal neurons. Some aspects of the injury-response in fish Müller glia resemble gliosis as observed in mammals, and mammalian Müller glia exhibit some neurogenic properties, indicative of a latent ability to regenerate retinal neurons. Understanding the specific properties of fish Müller glia that facilitate their robust capacity to generate retinal neurons will inform and inspire new clinical approaches for treating blindness and visual loss with regenerative medicine.
Collapse
Affiliation(s)
- Jenny R Lenkowski
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA.
| | - Pamela A Raymond
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
49
|
Hidalgo M, Locker M, Chesneau A, Perron M. Stem Cells and Regeneration in the Xenopus Retina. STEM CELL BIOLOGY AND REGENERATIVE MEDICINE 2014. [DOI: 10.1007/978-1-4939-0787-8_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Yip HK. Retinal stem cells and regeneration of vision system. Anat Rec (Hoboken) 2013; 297:137-60. [PMID: 24293400 DOI: 10.1002/ar.22800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/14/2022]
Abstract
The vertebrate retina is a well-characterized model for studying neurogenesis. Retinal neurons and glia are generated in a conserved order from a pool of mutlipotent progenitor cells. During retinal development, retinal stem/progenitor cells (RPC) change their competency over time under the influence of intrinsic (such as transcriptional factors) and extrinsic factors (such as growth factors). In this review, we summarize the roles of these factors, together with the understanding of the signaling pathways that regulate eye development. The information about the interactions between intrinsic and extrinsic factors for retinal cell fate specification is useful to regenerate specific retinal neurons from RPCs. Recent studies have identified RPCs in the retina, which may have important implications in health and disease. Despite the recent advances in stem cell biology, our understanding of many aspects of RPCs in the eye remains limited. PRCs are present in the developing eye of all vertebrates and remain active in lower vertebrates throughout life. In mammals, however, PRCs are quiescent and exhibit very little activity and thus have low capacity for retinal regeneration. A number of different cellular sources of RPCs have been identified in the vertebrate retina. These include PRCs at the retinal margin, pigmented cells in the ciliary body, iris, and retinal pigment epithelium, and Müller cells within the retina. Because PRCs can be isolated and expanded from immature and mature eyes, it is possible now to study these cells in culture and after transplantation in the degenerated retinal tissue. We also examine current knowledge of intrinsic RPCs, and human embryonic stems and induced pluripotent stem cells as potential sources for cell transplant therapy to regenerate the diseased retina.
Collapse
Affiliation(s)
- Henry K Yip
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Adminstrative Region, People's Republic of China; Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Adminstrative Region, People's Republic of China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Adminstrative Region, People's Republic of China
| |
Collapse
|