1
|
Zhang Z, Liu C, Zhao L, Yao J. Systems biology of dry eye: Unraveling molecular mechanisms through multi-omics integration. Ocul Surf 2024; 36:25-40. [PMID: 39746576 DOI: 10.1016/j.jtos.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/15/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Dry eye disease (DED) is a multifactorial condition with complex and incompletely understood molecular mechanisms. Advances in multi-omics technologies, including genomics, transcriptomics, proteomics, metabolomics, and microbiomics, have provided new insights into the pathophysiology of DED. Genomic analyses have identified key genetic variants linked to immune regulation and lacrimal gland function. Transcriptomic studies reveal upregulated inflammatory pathways in ocular surface tissues, implicating these as core drivers of chronic inflammation. Proteomic research highlights significant alterations in tear protein composition, especially proteins involved in inflammation and tissue repair. Metabolomics studies focus on disrupted lipid metabolism and oxidative stress, which are crucial in maintaining tear film stability. Furthermore, microbiome research has demonstrated reduced microbial diversity and increased pathogenic bacteria, exacerbating inflammatory responses. The integration of multi-omics data allows for the identification of novel biomarkers and therapeutic targets, enabling precision diagnostics and personalized treatments. Therefore, this review highlights the critical importance of multi-omics approaches in deepening our understanding of DED's complex molecular mechanisms and their potential to transform clinical management and therapeutic innovations in this challenging field.
Collapse
Affiliation(s)
- Zhirui Zhang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Changxing Liu
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Lingying Zhao
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jing Yao
- The First Hospital Affiliated to Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
2
|
A transcriptomic analysis of diploid and triploid Atlantic salmon lenses with and without cataracts. Exp Eye Res 2020; 199:108150. [PMID: 32735797 DOI: 10.1016/j.exer.2020.108150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 11/23/2022]
Abstract
To avoid negative environmental impacts of escapees and potential inter-breeding with wild populations, the Atlantic salmon farming industry has and continues to extensively test triploid fish that are sterile. However, they often show differences in performance, physiology, behavior and morphology compared to diploid fish, with increased prevalence of vertebral deformities and ocular cataracts as two of the most severe disorders. Here, we investigated the mechanisms behind the higher prevalence of cataracts in triploid salmon, by comparing the transcriptional patterns in lenses of diploid and triploid Atlantic salmon, with and without cataracts. We assembled and characterized the Atlantic salmon lens transcriptome and used RNA-seq to search for the molecular basis for cataract development in triploid fish. Transcriptional screening showed only modest differences in lens mRNA levels in diploid and triploid fish, with few uniquely expressed genes. In total, there were 165 differentially expressed genes (DEGs) between the cataractous diploid and triploid lens. Of these, most were expressed at lower levels in triploid fish. Differential expression was observed for genes encoding proteins with known function in the retina (phototransduction) and proteins associated with repair and compensation mechanisms. The results suggest a higher susceptibility to oxidative stress in triploid lenses, and that mechanisms connected to the ability to handle damaged proteins are differentially affected in cataractous lenses from diploid and triploid salmon.
Collapse
|
3
|
Ragg S, Key M, Rankin F, WuDunn D. The Effect of Molecular Weight on Passage of Proteins Through the Blood-Aqueous Barrier. Invest Ophthalmol Vis Sci 2019; 60:1461-1469. [PMID: 30951588 DOI: 10.1167/iovs.19-26542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine the effect of molecular weight (MW) on the concentration of plasma-derived proteins in aqueous humor and to estimate the plasma-derived and eye-derived fractions for each protein. Methods Aqueous humor and plasma samples were obtained during cataract surgery on an institutional review board-approved protocol. Protein concentrations were determined by ELISA and quantitative antibody microarrays. A total of 93 proteins were studied, with most proteins analyzed using 27 to 116 aqueous and 6 to 30 plasma samples. Results Plasma proteins without evidence of intraocular expression by sequence tags were used to fit a logarithmic model relating aqueous-plasma ratio (AH:PL) to MW. The log(AH:PL) appears to be well predicted by the log(MW) (P < 0.0001), with smaller proteins such as cystatin C (13 kDa) having a higher AH:PL (1:6) than larger proteins such as albumin (66 kDa, 1:300) and complement component 5 (188 kDa, 1:2500). The logarithmic model was used to calculate the eye-derived intraocular fraction (IOF) for each protein. Based on the IOF, 66 proteins could be categorized as plasma-derived (IOF<20), whereas 10 proteins were primarily derived from eye tissue (IOF >80), and 17 proteins had contribution from both plasma and eye tissue (IOF 20-80). Conclusions Protein concentration of plasma-derived proteins in aqueous is nonlinearly dependent on MW in favor of smaller proteins. Our study demonstrates that for proper interpretation of results, proteomic studies evaluating changes in aqueous humor protein levels should take into account the plasma and eye-derived fractions.
Collapse
Affiliation(s)
- Susanne Ragg
- Department of Pediatrics, University of Florida College of Medicine-Jacksonville, Jacksonville, Florida, United States.,Center for Computational Diagnostics, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Melissa Key
- Department of Biostatistics, Fairbanks School of Public Health, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States
| | - Fernanda Rankin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Darrell WuDunn
- Department of Ophthalmology, University of Florida College of Medicine-Jacksonville, Jacksonville, Florida, United States.,Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
4
|
Evaluation of TGF-Beta 2 and VEGF α Gene Expression Levels in Epiretinal Membranes and Internal Limiting Membranes in the Course of Retinal Detachments, Proliferative Diabetic Retinopathy, Macular Holes, and Idiopathic Epiretinal Membranes. J Ophthalmol 2018; 2018:8293452. [PMID: 29850215 PMCID: PMC5937441 DOI: 10.1155/2018/8293452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/01/2018] [Accepted: 02/28/2018] [Indexed: 11/28/2022] Open
Abstract
Purpose To evaluate the expression profiles of the VEGFα and TGFβ in the ERMs and ILMs in retinal disorders. Methods In this nonrandomized prospective study, 75 patients (34 females and 41 males) referred to pars plana vitrectomy (PPV) due to different retinal diseases were enrolled to the study. The samples of ERMs and ILMs collected during PPV were immediately put in TRIzol® Reagent (Life Technologies, USA) and stored at −70°C until RNA extraction. Gene expression analysis was done with TaqMan® Gene Expression Assays (Applied Biosystems, USA) following the manufacturer's instructions. Results The gene expression levels of VEGFα as well as of TGFβ2 were significantly higher in ERMs than in ILMs in all studied groups. The level of TGFβ2 expression exhibits a significantly lower values in iERMs as compared with the RRD group (p = 0.043). There were differences in TGFβ2 expression in ILM in groups studied: DR versus RRD, p = 0.003; DR versus iERM, p = 0,047; and iERM versus RRD, p = 0.004. Conclusions Our results revealed that factors associated with angiogenesis and wound healing processes in eyes with RRD, PDR, iERM, and MH were more upregulated in ERMs than in ILMs. This may indicate that ILM is not responsible for reproliferation and its peeling should be avoided in routine PPV.
Collapse
|
5
|
Fan J, Lerner J, Wyatt MK, Cai P, Peterson K, Dong L, Wistow G. The klotho-related protein KLPH (lctl) has preferred expression in lens and is essential for expression of clic5 and normal lens suture formation. Exp Eye Res 2018; 169:111-121. [PMID: 29425878 PMCID: PMC5878992 DOI: 10.1016/j.exer.2018.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/24/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
Abstract
KLPH/lctl belongs to the Klotho family of proteins. Expressed sequence tag analyses unexpectedly revealed that KLPH is highly expressed in the eye lens while northern blots showed that expression is much higher in the eye than in other tissues. In situ hybridization in mouse localized mRNA to the lens, particularly in the equatorial epithelium. Immunofluorescence detected KLPH in lens epithelial cells with highest levels in the germinative/differentiation zone. The gene for KLPH in mouse was deleted by homologous recombination. Littermate knockout (KO) and wild type (WT) mice were compared in a wide panel of pathology examinations and were all grossly normal, showing no systemic effects of the deletion. However, the lens, while superficially normal at young ages, had focusing defects and exhibited age-related cortical cataract by slit lamp examination. Whole-lens imaging showed that KO mice had disorganized lens sutures, forming a loose double-y or x instead of the tight y formation of WT. RNA-seq profiles for KO and WT littermates confirmed the absence of KLPH mRNA in KO lens and also showed complete absence of transcripts for Clic5, a protein associated with cilium/basal body related auditory defects in a mouse model. Immunofluorescence of lens epithelial flat mounts showed that Clic5 localized to cilia/centrosomes. Mice mutant for Clic5 (jitterbug) also had defective sutures. These results suggest that KLPH is required for lens-specific expression of Clic5 and that Clic5 has an important role in the machinery that controls lens fiber cell extension and organization.
Collapse
Affiliation(s)
- Jianguo Fan
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Lerner
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - M Keith Wyatt
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Phillip Cai
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine Peterson
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lijin Dong
- Genetic Engineering Facility, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Graeme Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Yu-Wai-Man C, Khaw PT. Personalized Medicine in Ocular Fibrosis: Myth or Future Biomarkers. Adv Wound Care (New Rochelle) 2016; 5:390-402. [PMID: 27679750 PMCID: PMC5028906 DOI: 10.1089/wound.2015.0677] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 02/04/2016] [Indexed: 02/06/2023] Open
Abstract
Significance: Fibrosis-related events play a part in the pathogenesis or failure of treatment of virtually all the blinding diseases around the world, and also account for over 40% of all deaths. It is well established that the eye and other tissues of some group of patients, for example Afro-Caribbean people, scar worse than others. However, there is a current lack of reliable biomarkers to stratify the risk of scarring and postsurgical fibrosis in the eye. Recent Advances: Recent studies using genomics, proteomics, metabolomics, clinical phenotyping, and high-resolution in vivo imaging techniques have revealed potential novel biomarkers to identify and stratify patients at risk of scarring in different fibrotic eye diseases. Critical Issues: Most of the studies, to date, have been done in animals or small cohorts of patients and future research is needed to validate these results in large longitudinal human studies. Detailed clinical phenotyping and effective biobanking of patient tissues will also be critical for future biomarker research in ocular fibrosis. Future Directions: The ability to predict the risk of scarring and to tailor the antifibrotic treatment regimen to each individual patient will be an extremely useful tool clinically to prevent undertreating, or exposing patients to unnecessary treatments with potential side effects. An exciting future prospect will be to use new advances in genotyping, namely next-generation whole genome sequencing like RNA-Seq, to develop a customized gene chip in ocular fibrosis. Successful translation of future biomarkers to benefit patient care will also ultimately require a strong collaboration between academics, pharmaceutical, and biotech companies.
Collapse
Affiliation(s)
- Cynthia Yu-Wai-Man
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Peng Tee Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
7
|
Chen Y, Sagar V, Len HS, Peterson K, Fan J, Mishra S, McMurtry J, Wilmarth PA, David LL, Wistow G. γ-Crystallins of the chicken lens: remnants of an ancient vertebrate gene family in birds. FEBS J 2016; 283:1516-30. [PMID: 26913478 DOI: 10.1111/febs.13689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/02/2016] [Accepted: 02/18/2016] [Indexed: 11/30/2022]
Abstract
γ-Crystallins, abundant proteins of vertebrate lenses, were thought to be absent from birds. However, bird genomes contain well-conserved genes for γS- and γN-crystallins. Although expressed sequence tag analysis of chicken eye found no transcripts for these genes, RT-PCR detected spliced transcripts for both genes in chicken lens, with lower levels in cornea and retina/retinal pigment epithelium. The level of mRNA for γS in chicken lens was relatively very low even though the chicken crygs gene promoter had lens-preferred activity similar to that of mouse. Chicken γS was detected by a peptide antibody in lens, but not in other ocular tissues. Low levels of γS and γN proteins were detected in chicken lens by shotgun mass spectroscopy. Water-soluble and water-insoluble lens fractions were analyzed and 1934 proteins (< 1% false discovery rate) were detected, increasing the known chicken lens proteome 30-fold. Although chicken γS is well conserved in protein sequence, it has one notable difference in leucine 16, replacing a surface glutamine conserved in other γ-crystallins, possibly affecting solubility. However, L16 and engineered Q16 versions were both highly soluble and had indistinguishable circular dichroism, tryptophan fluorescence and heat stability (melting temperature Tm ~ 65 °C) profiles. L16 has been present in birds for over 100 million years and may have been adopted for a specific protein interaction in the bird lens. However, evolution has clearly reduced or eliminated expression of ancestral γ-crystallins in bird lenses. The conservation of genes for γS- and γN-crystallins suggests they may have been preserved for reasons unrelated to the bulk properties of the lens.
Collapse
Affiliation(s)
- Yingwei Chen
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vatsala Sagar
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hoay-Shuen Len
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine Peterson
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jianguo Fan
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sanghamitra Mishra
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - John McMurtry
- USDA, ARS, Southern Plains Area, East College Station, TX, USA
| | - Phillip A Wilmarth
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Larry L David
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Graeme Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Manthey AL, Terrell AM, Lachke SA, Polson SW, Duncan MK. Development of novel filtering criteria to analyze RNA-sequencing data obtained from the murine ocular lens during embryogenesis. GENOMICS DATA 2014; 2:369-374. [PMID: 25478318 PMCID: PMC4248573 DOI: 10.1016/j.gdata.2014.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Next-generation sequencing of the transcriptome (RNA-Seq) is a powerful method that allows for the quantitative determination of absolute gene expression, and can be used to investigate how these levels change in response to an experimental manipulation or disease condition. The sensitivity of this method allows one to analyze transcript levels of all expressed genes, including low abundance transcripts that encode important regulatory molecules, providing valuable insights into the global effects of experimental manipulations. However, this increased sensitivity can also make it challenging to ascertain which expression changes are biologically significant. Here, we describe a novel set of filtering criteria - based on biological insights and computational approaches - that were applied to prioritize genes for further study from an extensive number of differentially expressed transcripts in lenses lacking Smad interacting protein 1 (Sip1) obtained via RNA-Seq by Manthey and colleagues in Mechanisms of Development (Manthey et al., 2014). Notably, this workflow allowed an original list of over 7,100 statistically significant differentially expressed genes (DEGs) to be winnowed down to 190 DEGs that likely play a biologically significant role in Sip1 function during lens development. Focusing on genes whose expression was upregulated or downregulated in a manner opposite to what normally occurs during lens development, we identified 78 genes that appear to be strongly dependent on Sip1 function. From these data (GEO accession number GSE49949), it appears that Sip1 regulates multiple genes in the lens that are generally distinct from those regulated by Sip1 in other cellular contexts, including genes whose expression is prominent in the early head ectoderm, from which the lens differentiates. Further, the analysis criteria outlined here represent a filtering scheme that can be used to prioritize genes in future RNA-Seq investigations performed at this stage of ocular lens development.
Collapse
Affiliation(s)
- Abby L. Manthey
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Anne M. Terrell
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Shawn W. Polson
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Melinda K. Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
- Corresponding author at: Melinda K. Duncan, Professor, Department of Biological Sciences, University of Delaware, Newark DE 19716.
| |
Collapse
|
9
|
Farkas MH, Grant GR, White JA, Sousa ME, Consugar MB, Pierce EA. Transcriptome analyses of the human retina identify unprecedented transcript diversity and 3.5 Mb of novel transcribed sequence via significant alternative splicing and novel genes. BMC Genomics 2013; 14:486. [PMID: 23865674 PMCID: PMC3924432 DOI: 10.1186/1471-2164-14-486] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 07/15/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The retina is a complex tissue comprised of multiple cell types that is affected by a diverse set of diseases that are important causes of vision loss. Characterizing the transcripts, both annotated and novel, that are expressed in a given tissue has become vital for understanding the mechanisms underlying the pathology of disease. RESULTS We sequenced RNA prepared from three normal human retinas and characterized the retinal transcriptome at an unprecedented level due to the increased depth of sampling provided by the RNA-seq approach. We used a non-redundant reference transcriptome from all of the empirically-determined human reference tracks to identify annotated and novel sequences expressed in the retina. We detected 79,915 novel alternative splicing events, including 29,887 novel exons, 21,757 3' and 5' alternate splice sites, and 28,271 exon skipping events. We also identified 116 potential novel genes. These data represent a significant addition to the annotated human transcriptome. For example, the novel exons detected increase the number of identified exons by 3%. Using a high-throughput RNA capture approach to validate 14,696 of these novel transcriptome features we found that 99% of the putative novel events can be reproducibly detected. Further, 15-36% of the novel splicing events maintain an open reading frame, suggesting they produce novel protein products. CONCLUSIONS To our knowledge, this is the first application of RNA capture to perform large-scale validation of novel transcriptome features. In total, these analyses provide extensive detail about a previously uncharacterized level of transcript diversity in the human retina.
Collapse
Affiliation(s)
- Michael H Farkas
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Gregory R Grant
- Penn Center for Bioinformatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A White
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Maria E Sousa
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Mark B Consugar
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Eric A Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Asato R, Yoshida S, Ogura A, Nakama T, Ishikawa K, Nakao S, Sassa Y, Enaida H, Oshima Y, Ikeo K, Gojobori T, Kono T, Ishibashi T. Comparison of gene expression profile of epiretinal membranes obtained from eyes with proliferative vitreoretinopathy to that of secondary epiretinal membranes. PLoS One 2013; 8:e54191. [PMID: 23372684 PMCID: PMC3553111 DOI: 10.1371/journal.pone.0054191] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/07/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Proliferative vitreoretinopathy (PVR) is a destructive complication of retinal detachment and vitreoretinal surgery which can lead to severe vision reduction by tractional retinal detachments. The purpose of this study was to determine the gene expression profile of epiretinal membranes (ERMs) associated with a PVR (PVR-ERM) and to compare it to the expression profile of less-aggressive secondary ERMs. METHODOLOGY/PRINCIPAL FINDINGS A PCR-amplified complementary DNA (cDNA) library was constructed using the RNAs isolated from ERMs obtained during vitrectomy. The sequence from the 5' end was obtained for randomly selected clones and used to generate expressed sequence tags (ESTs). We obtained 1116 nonredundant clusters representing individual genes expressed in PVR-ERMs, and 799 clusters representing the genes expressed in secondary ERMs. The transcriptome of the PVR-ERMs was subdivided by functional subsets of genes related to metabolism, cell adhesion, cytoskeleton, signaling, and other functions, by FatiGo analysis. The genes highly expressed in PVR-ERMs were compared to those expressed in the secondary ERMs, and these were subdivided by cell adhesion, proliferation, and other functions. Querying 10 cell adhesion-related genes against the STRING database yielded 70 possible physical relationships to other genes/proteins, which included an additional 60 genes that were not detected in the PVR-ERM library. Of these, soluble CD44 and soluble vascular cellular adhesion molecule-1 were significantly increased in the vitreous of patients with PVR. CONCLUSIONS/SIGNIFICANCE Our results support an earlier hypothesis that a PVR-ERM, even from genomic points of view, is an aberrant form of wound healing response. Genes preferentially expressed in PVR-ERMs may play an important role in the progression of PVR and could be served as therapeutic targets.
Collapse
Affiliation(s)
- Ryo Asato
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigeo Yoshida
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- * E-mail:
| | - Atsushi Ogura
- Institute for Genome Research, The University of Tokushima, Tokushima, Japan
| | - Takahito Nakama
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keijiro Ishikawa
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukio Sassa
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Enaida
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Oshima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuho Ikeo
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Mishima, Japan
| | - Takashi Gojobori
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Mishima, Japan
| | - Toshihiro Kono
- Department of Ophthalmology, Chikushi Hospital, Chikusino-shi, Fukuoka University, Fukuoka, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
A single destabilizing mutation (F9S) promotes concerted unfolding of an entire globular domain in gammaS-crystallin. J Mol Biol 2010; 399:320-30. [PMID: 20382156 DOI: 10.1016/j.jmb.2010.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 03/30/2010] [Accepted: 04/01/2010] [Indexed: 11/22/2022]
Abstract
Conformational change and aggregation of native proteins are associated with many serious age-related and neurological diseases. gammaS-Crystallin is a highly stable, abundant structural component of vertebrate eye lens. A single F9S mutation in the N-terminal domain of mouse gammaS-crystallin causes the severe Opj cataract, with disruption of cellular organization and appearance of fibrillar structures in the lens. Although the mutant protein has a near-native fold at room temperature, significant increases in hydrogen/deuterium exchange rates were observed by NMR for all the well-protected beta-sheet core residues throughout the entire N-terminal domain of the mutant protein, resulting in up to a 3.5-kcal/mol reduction in the free energy of the folding/unfolding equilibrium. No difference was detected for the C-terminal domain. At a higher temperature, this effect further increases to allow for a much more uniform exchange rate among the N-terminal core residues and those of the least well-structured surface loops. This suggests a concerted unfolding intermediate of the N-terminal domain, while the C-terminal domain stays intact. Increasing concentrations of guanidinium chloride produced two transitions for the Opj mutant, with an unfolding intermediate at approximately 1 M guanidinium chloride. The consequence of this partial unfolding, whether by elevated temperature or by denaturant, is the formation of thioflavin T staining aggregates, which demonstrated fibril-like morphology by atomic force microscopy. Seeding with the already unfolded protein enhanced the formation of fibrils. The Opj mutant protein provides a model for stress-related unfolding of an essentially normally folded protein and production of aggregates with some of the characteristics of amyloid fibrils.
Collapse
|
12
|
Nakajima E, David LL, Riviere MA, Azuma M, Shearer TR. Human and monkey lenses cultured with calcium ionophore form alphaB-crystallin lacking the C-terminal lysine, a prominent feature of some human cataracts. Invest Ophthalmol Vis Sci 2009; 50:5828-36. [PMID: 19608539 DOI: 10.1167/iovs.09-4015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Elevation of lens calcium occurs in both human and experimental animal cataracts, and opacification may result from calcium-activated proteolysis. The purpose of the present study was to determine whether calcium accumulation in cultured human and Macaca mulatta lenses results in proteolysis of crystallins, the major lens proteins. METHODS Two-dimensional electrophoresis and mass spectrometry were used to construct detailed maps of human and monkey lens crystallins so that proteolysis after calcium accumulation could be monitored and the altered crystallins identified. Human and macaque lenses cultured in A23187 showed elevated lenticular calcium and superficial cortical opacities. The carboxypeptidase E (CPE) gene is expressed in human lens, and its presence in lens fibers was demonstrated by Western blot. To investigate whether CPE could cause similar truncation, purified alphaB-crystallin and CPE were incubated in vitro. RESULTS The major change observed in the crystallins of these cultured lenses was the accumulation of alphaB(1-174)-crystallin resulting from the loss of a C-terminal lysine. This result was significant, because similar appearance of alphaB(1-174) is a prominent change in some human cataracts. alphaB-crystallin and CPE incubation result in the formation of alphaB(1-174)-crystallin. This truncation was specific to alphaB(1-174)-crystallin, since other crystallins were not proteolyzed. Although a weaker activator than zinc, calcium activated CPE in vitro. CONCLUSIONS Since zinc concentrations did not increase during culture in A23187, calcium uptake in the lens may be responsible for CPE activation and alphaB(1-174) formation during cataract.
Collapse
Affiliation(s)
- Emi Nakajima
- Laboratory of Ocular Sciences, Senju Pharmaceutical Corporation Limited, Beaverton, Oregon 97006, USA.
| | | | | | | | | |
Collapse
|
13
|
Boon CJ, Klevering BJ, Leroy BP, Hoyng CB, Keunen JE, den Hollander AI. The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Prog Retin Eye Res 2009; 28:187-205. [DOI: 10.1016/j.preteyeres.2009.04.002] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Abstract
Peripherin/rds is an integral membrane glycoprotein, mainly located in the rod and cone outer segments. The relevance of this protein to photoreceptor outer segment morphology was first demonstrated in retinal degeneration slow (rds) mice. Thus far, over 90 human peripherin/RDS gene mutations have been identified. These mutations have been associated with a variety of retinal dystrophies, in which there is a remarkable inter- and intrafamilial variation of the retinal phenotype. In this paper, we discuss the characteristics of the peripherin/RDS gene and its protein product. An overview is presented of the broad spectrum of clinical phenotypes caused by human peripherin/RDS gene mutations, ranging from various macular dystrophies to widespread forms of retinal dystrophy such as retinitis pigmentosa. Finally, we review the proposed genotype-phenotype correlation and the pathophysiologic mechanisms underlying this group of retinal dystrophies.
Collapse
|
15
|
Wyatt K, Gao C, Tsai JY, Fariss RN, Ray S, Wistow G. A role for lengsin, a recruited enzyme, in terminal differentiation in the vertebrate lens. J Biol Chem 2008; 283:6607-15. [PMID: 18178558 DOI: 10.1074/jbc.m709144200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lengsin is an eye lens-specific member of the glutamine synthetase (GS) superfamily. Lengsin has no GS activity, suggesting that it has a structural rather than catalytic role in lens. In situ hybridization and immunofluorescence showed that lengsin is expressed in terminally differentiating secondary lens fiber cells. Yeast two-hybrid (Y2H) and recombinant protein experiments showed that full-length lengsin can bind the 2B filament region of vimentin. In affinity chromatography, lengsin also bound the equivalent region of CP49 (BFSP2; phakinin), a related intermediate filament protein specific to the lens. Both the vimentin and CP49 2B fragments bound lengsin in surface plasmon resonance spectroscopy with fast association and slow dissociation kinetics. Lengsin expression correlates with a transition zone in maturing lens fiber cells in which cytoskeleton is reorganized. Lengsin and lens intermediate filament proteins co-localize at the plasma membrane in maturing fiber cells. This suggests that lengsin may act as a component of the cytoskeleton itself or as a chaperone for the reorganization of intermediate filament proteins during terminal differentiation in the lens.
Collapse
Affiliation(s)
- Keith Wyatt
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
16
|
Purkiss AG, Bateman OA, Wyatt K, Wilmarth PA, David LL, Wistow GJ, Slingsby C. Biophysical properties of gammaC-crystallin in human and mouse eye lens: the role of molecular dipoles. J Mol Biol 2007; 372:205-22. [PMID: 17659303 PMCID: PMC2034304 DOI: 10.1016/j.jmb.2007.06.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 06/18/2007] [Accepted: 06/20/2007] [Indexed: 11/22/2022]
Abstract
The eye lens is packed with soluble crystallin proteins, providing a lifetime of transparency and light refraction. gamma-Crystallins are major components of the dense, high refractive index central regions of the lens and generally have high solubility, high stability and high levels of cysteine residues. Human gammaC belongs to a group of gamma-crystallins with a pair of cysteine residues at positions 78 and 79. Unlike other gamma-crystallins it has relatively low solubility, whereas mouse gammaC, which has the exposed C79 replaced with arginine, and a novel mouse splice variant, gammaCins, are both highly soluble. Furthermore, human gammaC is extremely stable, while the mouse orthologs are less stable. Evolutionary pressure may have favoured stability over solubility for human gammaC and the reverse for the orthologs in the mouse. Mutation of C79 to R79, in human gammaC, greatly increased solubility, however, neither form produced crystals. Remarkably, when the human gammaD R36S crystallization cataract mutation was mimicked in human gammaC-crystallin, the solubility of gammaC was dramatically increased, although it still did not crystallize. The highly soluble mouse gammaC-crystallin did crystallize. Its X-ray structure was solved and used in homology modelling of human gammaC, and its mutants C79R and R36S. The human gammaD R36S mutant was also modelled from human gammaD coordinates. Molecular dynamics simulation of the six molecules in the solution state showed that the human gammaCs differed from gammaDs in domain pairing, behaviour that correlates with interface sequence changes. When the fluctuations of the calculated molecular dipoles, for the six structures, over time were analysed, characteristic patterns for soluble gammaC and gammaD proteins were observed. Individual sequence changes that increase or decrease solubility correlated well with changes in the magnitude and direction of these dipoles. It is suggested that changes in surface residues have allowed adaptation for the differing needs of human and mouse lenses.
Collapse
Affiliation(s)
- Andrew G Purkiss
- Birkbeck College, Department of Crystallography, Institute of Structural Molecular Biology, University of London, Malet Street, London, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Wyatt K, White HE, Wang L, Bateman OA, Slingsby C, Orlova EV, Wistow G. Lengsin is a survivor of an ancient family of class I glutamine synthetases re-engineered by evolution for a role in the vertebrate lens. Structure 2007; 14:1823-34. [PMID: 17161372 PMCID: PMC1868402 DOI: 10.1016/j.str.2006.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 10/11/2006] [Accepted: 10/26/2006] [Indexed: 02/01/2023]
Abstract
Lengsin is a major protein of the vertebrate eye lens. It belongs to the hitherto purely prokaryotic GS I branch of the glutamine synthetase (GS) superfamily, but has no enzyme activity. Like the taxon-specific crystallins, Lengsin is the result of the recruitment of an ancient enzyme to a noncatalytic role in the vertebrate lens. Cryo-EM and modeling studies of Lengsin show a dodecamer structure with important similarities and differences with prokaryotic GS I structures. GS homology regions of Lengsin are well conserved, but the N-terminal domain shows evidence of dynamic evolutionary changes. Compared with birds and fish, most mammals have an additional exon corresponding to part of the N-terminal domain; however, in human, this is a nonfunctional pseudoexon. Genes related to Lengsin are also present in the sea urchin, suggesting that this branch of the GS I family, supplanted by GS II enzymes in vertebrates, has an ancient role in metazoans.
Collapse
Affiliation(s)
- Keith Wyatt
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Nag N, Peterson K, Wyatt K, Hess S, Ray S, Favor J, Bogani D, Lyon M, Wistow G. Endogenous retroviral insertion in Cryge in the mouse No3 cataract mutant. Genomics 2007; 89:512-20. [PMID: 17223009 PMCID: PMC1868556 DOI: 10.1016/j.ygeno.2006.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 12/06/2006] [Accepted: 12/07/2006] [Indexed: 02/03/2023]
Abstract
No3 (nuclear opacity 3) is a novel congenital nuclear cataract in mice. Microsatellite mapping placed the No3 locus on chromosome 1 between D1Mit480 (32cM) and D1Mit7 (41cM), a region containing seven crystallin genes; Cryba2 and the Cryga-Crygf cluster. Although polymorphic variants were observed, no candidate mutations were found for six of the genes. However, DNA walking identified a murine endogenous retrovirus (IAPLTR1: ERVK) insertion in exon 3 of Cryge, disrupting the coding sequence for gammaE-crystallin. Recombinant protein for the mutant gammaE was completely insoluble. The No3 cataract is mild compared with the effects of similar mutations of gammaE. Quantitative RT-PCR showed that gammaE/F mRNA levels are reduced in No3, suggesting that the relatively mild phenotype results from suppression of gammaE levels due to ERVK insertion. However, the severity of cataract is also strain dependent suggesting that genetic background modifiers also play a role in the development of opacity.
Collapse
Affiliation(s)
- Nabanita Nag
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Katherine Peterson
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Keith Wyatt
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Sonja Hess
- Proteomics & Mass Spectrometry Facility, NIDDK, National Institutes of Health, Bethesda, MD 20892 USA
| | - Sugata Ray
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Jack Favor
- Institute of Mammalian Genetics, GSF-National Research Center for Environment and Health, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Germany
| | - Debora Bogani
- Medical Research Council, Harwell, Didcot, OX11 0RD, UK
| | - Mary Lyon
- Medical Research Council, Harwell, Didcot, OX11 0RD, UK
| | - Graeme Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
19
|
Grassi F, Moretto N, Rivetti C, Cellai S, Betti M, Márquez AJ, Maraini G, Ottonello S. Structural and functional properties of lengsin, a pseudo-glutamine synthetase in the transparent human lens. Biochem Biophys Res Commun 2006; 350:424-9. [PMID: 17010935 DOI: 10.1016/j.bbrc.2006.09.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 09/14/2006] [Indexed: 11/19/2022]
Abstract
Lengsin (LGS) is an abundant transcript in the human lens, encoding a predicted polypeptide similar to glutamine synthetase (GS). We show that a major alternatively spliced product of LGS codes for a 57kDa polypeptide that assembles into a catalytically inactive dodecamer, cross-reacts with anti-GS antibodies, and is expressed at high levels in transparent, but not cataractous, human lenses. Based on this characteristic oligomeric organization, preferential expression in the transparent lens, and amyloid-beta association previously reported for GS, a potential chaperone-like role of LGS has been investigated. We find that LGS has six binding sites for the hydrophobic surface probe bis-ANS and relieves cellular toxicity caused by amyloid-beta expression in a folding-impaired yeast mutant. While documenting the structural similarity between LGS and prokaryotic GS-I, the data rule out any involvement of lengsin in glutamine biosynthesis and suggest an unrelated role that may be important for lens homeostasis and transparency.
Collapse
Affiliation(s)
- Francesca Grassi
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Viale G.P. Usberti 23/A, I-43100 Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Choy KW, Wang CC, Ogura A, Lau TK, Rogers MS, Ikeo K, Gojobori T, Tang LY, Lam DSC, Chung TKH, Pang CP. Molecular characterization of the developmental gene in eyes: through data-mining on integrated transcriptome databases. Clin Biochem 2006; 39:224-30. [PMID: 16427038 DOI: 10.1016/j.clinbiochem.2005.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Revised: 11/03/2005] [Accepted: 12/13/2005] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Our aim was to utilize publicly available and proprietary sources to discover candidate genes important for ocular development. DESIGN AND METHODS The collated information on our 5092 non-redundant clusters was grouped and functional annotation was conducted using gene ontology (FatiGO) for categorizing them with respect to molecular function. The web-based viewer technological platform (H-InvDB) was employed for transcription analyses of in-house high quality fetal eye Expressed Sequence Tags (ESTs). Eye-specific ESTs were also analyzed across species by using EMBEST. RESULTS According to adult eye cDNA libraries, nucleic acid binding and cell structure/cytoskeletal protein genes were the most abundant among the ESTs of fetal eyes. Using cDNA assembly in H-InvDB, 20 (80%) of the 25 most commonly expressed genes in the human eye are also expressed in extraocular tissues. The crystalline gamma S gene is highly expressed in the eye, but not in other tissues. We used EMBEST to compare human fetal eye and octopus eye ESTs and the expression similarity was low (1.6%). This indicated that our fetal eye library contains genes necessary for the developmental process and biological function of the eye, which may not be expressed in the fully developed octopus eyes. The human fetal eye cDNA library also contained highly abundant eye tissue genes, including alphaA-crystallin, eukaryotic translation elongation factor 1 alpha 1 (EEF1A1), bestrophin (VMD2), cystatin C, and transforming growth factor, beta-induced (BIGH3). CONCLUSIONS Our annotated EST set provides a valuable resource for gene discovery and functional genomic analysis. This display will help to appreciate the strengths and weaknesses of the different technological platforms, so that in future studies the maximum amount of beneficial information can be derived from the appropriate use of each method.
Collapse
Affiliation(s)
- K W Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Goldberg AFX. Role of Peripherin/rds in Vertebrate Photoreceptor Architecture and Inherited Retinal Degenerations. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 253:131-75. [PMID: 17098056 DOI: 10.1016/s0074-7696(06)53004-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The vertebrate photoreceptor outer segment (OS) is a highly structured and dynamic organelle specialized to transduce light signals. The elaborate membranous architecture of the OS requires peripherin/rds (P/rds), an integral membrane protein and tetraspanin protein family member. Gene-level defects in P/rds cause a broad variety of late-onset progressive retinal degenerations in humans and dysmorphic photoreceptors in murine and Xenopus models. Although proposed to fulfill numerous roles related to OS structural stability and renewal, P/rds molecular function remains uncertain. An increasingly resolved model of this protein's oligomeric structure can account for disease inheritance patterns and severity in some instances. Nonetheless, the pathogenic mechanisms underlying the uniquely broad spectrum of retinal diseases associated with P/rds defects are not currently well understood. Recent findings point to the possibility that P/rds acts as a multifunctional scaffolding protein for OS architecture and that partial-loss-of-function mutations contribute to the hallmark phenotypic heterogeneity associated with inherited defects in RDS.
Collapse
|