1
|
Nakazawa Y, Nishizawa F, Kawata S, Sugiyama Y, Nagai N, Yamamoto N, Funakoshi-Tago M. TRPV1 attenuates epithelial-mesenchymal transition via calpain-protein tyrosine phosphatase pathway in lens epithelial cells. Exp Eye Res 2025; 258:110435. [PMID: 40419208 DOI: 10.1016/j.exer.2025.110435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/30/2025] [Accepted: 05/18/2025] [Indexed: 05/28/2025]
Abstract
TRPV1, which is widely expressed throughout the body, is a non-selective cation channel activated by capsaicin. We previously reported that TRPV1 activation suppressed TGFβ2-induced epithelial-mesenchymal transition (EMT) by inhibiting Epidermal Growth Factor Receptor (EGFR) phosphorylation in lens epithelial cells (Sugiyama et al., 2021). However, the detailed molecular mechanism remains unclear. In this study, we focused on the calpain-protein tyrosine phosphatase (PTP) pathway to elucidate the detailed mechanism underlying TRPV1-induced EMT suppression. Calpain and PTP inhibitors mitigated the suppressive effect of capsaicin on TGFβ2-induced EMT in vitro and ex vivo. Finally, we shown that CalpainS1 and PTPN9 overexpression abrogated the effect of capsaicin on EMT in lens epithelial cells. Our findings indicate that calpain and PTP proteins are good candidates for preventing EMT after cataract surgery.
Collapse
Affiliation(s)
| | | | - Sara Kawata
- Faculty of Pharmacy, Keio University, Tokyo, Japan
| | | | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Naoki Yamamoto
- Research Promotion and Support Headquarters, Fujita Health University, Aichi, Japan
| | | |
Collapse
|
2
|
Wei L, Du Y, Gao S, Li D, Zhang K, He W, Lu Y, Zhu X. TGF-β1-induced m6A modifications accelerate onset of nuclear cataract in high myopia by modulating the PCP pathway. Nat Commun 2025; 16:3859. [PMID: 40274784 PMCID: PMC12022316 DOI: 10.1038/s41467-025-58995-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
High myopia is an important cause of visual impairment worldwide, characterized by early-onset nuclear cataracts, whose underlying mechanisms remain largely unexplained. Here, we identify conspicuously polarized and compacted lens fiber alignment, along with a simultaneous rise in N6-methyladenosine (m6A) modifications in patients with highly myopic cataracts (HMC), which is confirmed to be induced by elevated transforming growth factor-β1 (TGF-β1) in lens. Mechanistically, methyltransferase METTL3 and m6A reader insulin-like growth factor 2 mRNA binding protein 3 synergistically enhance planar cell polarity (PCP) signaling by affecting mRNA stability of dishevelled 2. This, in turn, alters proliferation, migration, and polarity formation of human lens epithelial cells. Moreover, Mettl3 conditional knockdown in mice leads to disrupted lens fiber arrangement and alleviates TGF-β1-induced increase in lens nuclear density. Collectively, these findings highlight the significance of m6A-modified PCP pathway in regulating postnatal lens fiber organization, which may hold great promise as a therapeutic target for HMC.
Collapse
Grants
- 82122017, 82271069, 81870642, 81970780, 81470613 and 81670835 National Natural Science Foundation of China (National Science Foundation of China)
- Science and Technology Innovation Action Plan of Shanghai Science and Technology Commission (19441900700 and 21S31904900), Clinical Research Plan of Shanghai Shenkang Hospital Development Center (SHDC2020CR4078, SHDC12019X08, SHDC12020111), Double-E Plan of Eye & ENT Hospital (SYA202006), Shanghai Municipal Key Clinical Specialty Program (shslczdzk01901), and the Fudan University Outstanding 2025 Program.
Collapse
Affiliation(s)
- Ling Wei
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Department of Ophthalmology, Sichuan Provincial People's Hospital, Medical School, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yu Du
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Shunxiang Gao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Keke Zhang
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Wenwen He
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yi Lu
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xiangjia Zhu
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Li J, Ma J, Chen Y, Chen S, Luo L, Cheng H. Biologically Relevant Laminin-511 Moderates the Derivation and Proliferation of Human Lens Epithelial Stem/Progenitor-Like Cells. Invest Ophthalmol Vis Sci 2024; 65:12. [PMID: 39106056 PMCID: PMC11309036 DOI: 10.1167/iovs.65.10.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 04/06/2024] [Indexed: 08/07/2024] Open
Abstract
Purpose The role of specific extracellular matrix (ECM) molecules in lens cell development and regeneration is poorly understood, as appropriate cellular models are lacking. Here, a laminin-based lens cell in vitro induction system was developed to study the role of laminin in human lens epithelial stem/progenitor cell (LES/PC) development. Methods The human embryonic stem cell-based lens induction system followed a three-stage protocol. The expression profile of laminins during lens induction was screened, and laminin-511 (LN511) was tested as a candidate substitute. LN511 induction system cellular and molecular features, including induction efficiency, transcription factor expression related to different lens development stages, ECM alterations, and Hippo/YAP signaling, were evaluated. Results LAMA5, LAMB1, and LAMC1 were highly expressed around the time of LES/PC derivation. We chose LN511 (product of LAMA5, LAMB1, and LAMC1) and found that it considerably enhanced lens cell induction efficiency, compared to that in Matrigel-coated culture, as more and larger lentoid bodies were detected. Notably, LES/PC induction efficiency improved by promoting lens specification-related transcription factor expression and cell proliferation. Transcriptome analysis revealed that compared to those with Matrigel, ECM accumulation and cell adhesion were downregulated in the LN511 system. Hippo/YAP signaling was hypoactive during LES/P-like cell generation, and small molecule inhibitors of YAP/TAZ activity upregulated LES/PC marker expression and promoted the efficiency of LES/P-like cell derivation. Conclusions The laminin isoform LN511 is a reliable substitute for the LES/P-like cell induction system, and LN511-YAP acted as efficient modulators of LES/PC derivation; this contributes to knowledge of the role of the ECM in human lens development.
Collapse
Affiliation(s)
- Jinyan Li
- Department of Ophthalmology, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jingyu Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yijia Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shuyi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hao Cheng
- Department of Ophthalmology, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Upreti A, Padula SL, Weaver JM, Wagner BD, Kneller AM, Petulla AL, Lachke SA, Robinson ML. A Transcriptomics Analysis of the Regulation of Lens Fiber Cell Differentiation in the Absence of FGFRs and PTEN. Cells 2024; 13:1222. [PMID: 39056803 PMCID: PMC11274593 DOI: 10.3390/cells13141222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Adding 50% vitreous humor to the media surrounding lens explants induces fiber cell differentiation and a significant immune/inflammatory response. While Fgfr loss blocks differentiation in lens epithelial explants, this blockage is partially reversed by deleting Pten. To investigate the functions of the Fgfrs and Pten during lens fiber cell differentiation, we utilized a lens epithelial explant system and conducted RNA sequencing on vitreous humor-exposed explants lacking Fgfrs, or Pten or both Fgfrs and Pten. We found that Fgfr loss impairs both vitreous-induced differentiation and inflammation while the additional loss of Pten restores these responses. Furthermore, transcriptomic analysis suggested that PDGFR-signaling in FGFR-deficient explants is required to mediate the rescue of vitreous-induced fiber differentiation in explants lacking both Fgfrs and Pten. The blockage of β-crystallin induction in explants lacking both Fgfrs and Pten in the presence of a PDGFR inhibitor supports this hypothesis. Our findings demonstrate that a wide array of genes associated with fiber cell differentiation are downstream of FGFR-signaling and that the vitreous-induced immune responses also depend on FGFR-signaling. Our data also demonstrate that many of the vitreous-induced gene-expression changes in Fgfr-deficient explants are rescued in explants lacking both Fgfrs and Pten.
Collapse
Affiliation(s)
- Anil Upreti
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA; (A.U.); (S.L.P.); (J.M.W.)
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| | - Stephanie L. Padula
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA; (A.U.); (S.L.P.); (J.M.W.)
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| | - Jacob M. Weaver
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA; (A.U.); (S.L.P.); (J.M.W.)
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| | - Brad D. Wagner
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| | - Allison M. Kneller
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| | - Anthony L. Petulla
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Michael L. Robinson
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA; (A.U.); (S.L.P.); (J.M.W.)
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| |
Collapse
|
5
|
VanSlyke JK, Boswell BA, Musil LS. TGFβ overcomes FGF-induced transinhibition of EGFR in lens cells to enable fibrotic secondary cataract. Mol Biol Cell 2024; 35:ar75. [PMID: 38598298 PMCID: PMC11238076 DOI: 10.1091/mbc.e24-01-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
To cause vision-disrupting fibrotic secondary cataract (PCO), lens epithelial cells that survive cataract surgery must migrate to the posterior of the lens capsule and differentiate into myofibroblasts. During this process, the cells become exposed to the FGF that diffuses out of the vitreous body. In normal development, such relatively high levels of FGF induce lens epithelial cells to differentiate into lens fiber cells. It has been a mystery as to how lens cells could instead undergo a mutually exclusive cell fate, namely epithelial to myofibroblast transition, in the FGF-rich environment of the posterior capsule. We and others have reported that the ability of TGFβ to induce lens cell fibrosis requires the activity of endogenous ErbBs. We show here that lens fiber-promoting levels of FGF induce desensitization of ErbB1 (EGFR) that involves its phosphorylation on threonine 669 mediated by both ERK and p38 activity. Transinhibition of ErbB1 by FGF is overcome by a time-dependent increase in ErbB1 levels induced by TGFβ, the activation of which is increased after cataract surgery. Our studies provide a rationale for why TGFβ upregulates ErbB1 in lens cells and further support the receptor as a therapeutic target for PCO.
Collapse
Affiliation(s)
- Judy K. VanSlyke
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239
| | - Bruce A. Boswell
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239
| | - Linda S. Musil
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
6
|
Li D, Che X, Gao N, Li J. CircSTRBP contributes to H 2O 2-induced lens epithelium cell dysfunction through increasing NOX4 mRNA stability by recruiting IGF2BP1. Exp Eye Res 2024; 241:109817. [PMID: 38340945 DOI: 10.1016/j.exer.2024.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/11/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Previous studies have shown that the development of age-related cataract (ARC) is involved in lens epithelium dysfunction, which is associated with abnormally expressed circular RNAs (circRNAs). The current work aims to probe the role of circSTRBP (hsa_circ_0088,427) in hydrogen peroxide (H2O2)-induced lens epitheliums. Lens epithelium tissues were harvested from ARC or normal subjects (n = 23). CircSTRBP, spermatid perinuclear RNA binding protein (STRBP), and nicotinamide adenine dinucleotide phosphate oxidase subunit 4 (NOX4) levels were measured using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cell proliferation, cycle progression, and apoptosis were assessed using 5-ethynyl-2'-deoxyuridine (EdU), Cell Counting Kit-8 (CCK-8), and flow cytometry assays. Caspase 3 activity, reactive oxygen species (ROS), malondialdehyde (MDA), and Glutathione peroxidases (GSH-PX) levels were detected using corresponding kits. NOX4 protein level was determined using Western blot. The interaction between insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) and circSTRBP or NOX4 was assessed through RNA immunoprecipitation (RIP). CircSTRBP and NOX4 abundances were increased in lens epithelium samples from ARC patients and H2O2-treated SRA01/04 cells. CircSTRBP knockdown might abolish H2O2-triggered SRA01/04 cell proliferation repression and apoptosis and oxidative stress promotion. In mechanism, circSTRBP is bound with IGF2BP1 and improves the stability and expression of NOX4 mRNA in SRA01/04 cells. CircSTRBP facilitated H2O2-induced SRA01/04 cell apoptosis and oxidative stress through by enhancing NOX4 mRNA stability via recruiting IGF2BP1, providing novel insights for ARC progression and treatment.
Collapse
Affiliation(s)
- Di Li
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, China.
| | - Xuanyi Che
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ningning Gao
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jing Li
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
7
|
Lin HL, Wang S, Sato K, Zhang YQ, He BT, Xu J, Nakazawa T, Qin YJ, Zhang HY. Uric acid-driven NLRP3 inflammasome activation triggers lens epithelial cell senescence and cataract formation. Cell Death Discov 2024; 10:126. [PMID: 38461179 PMCID: PMC10925029 DOI: 10.1038/s41420-024-01900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024] Open
Abstract
Excessive uric acid (UA) is associated with age-related cataract. A previous study showed that a high UA level in the aqueous humor stimulated the senescence of lens epithelial cells (LECs), leading to cataract progression. To better understand the underlying mechanisms, we investigated UA-driven senescence in human lens tissue samples obtained during surgery, rat lens organ cultures, and in vivo experiments, using senescence-associated β-galactosidase (SA-β-gal) staining, electronic microscopy, Western blotting, and histological analyses. Initially, we identified markedly higher expressions of NLRP3 and caspase-1 in the lens capsules of hyper-uricemic patients compared to normo-uricemic patients. This increase was accompanied by a significant rise in the SA-β-gal positive rate. We next built a cataract model in which rat lenses in an organ culture system were treated with an increasing dosage of UA. Notably, opacification was apparent in the lenses treated with 800 μM of UA starting on the fifth day. Mechanistically, UA treatment not only significantly induced the expression of NLRP3, caspase-1, and IL-1β, but also upregulated the levels of SA-β-gal and the senescence regulators p53 and p21. These effects were fully reversed, and lens opacification was ameliorated by the addition of MCC950, a selective NLRP3 antagonist. Moreover, an in vivo model showed that intravitreal UA injection rapidly induced cataract phenotypes within 21 days, an effect significantly mitigated by co-injection with MCC950. Together, our findings suggest that targeting the UA-induced NLRP3 inflammasome with MCC950 could be a promising strategy for preventing cataract formation associated with inflammageing.
Collapse
Affiliation(s)
- Hong Liang Lin
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sheng Wang
- Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Qiao Zhang
- Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Bei Ting He
- Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Jing Xu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yong Jie Qin
- Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Hong Yang Zhang
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Ye L, Yuan J, Zhu S, Ji S, Dai J. Swimming exercise reverses transcriptomic changes in aging mouse lens. BMC Med Genomics 2024; 17:67. [PMID: 38439070 PMCID: PMC10913554 DOI: 10.1186/s12920-024-01839-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/28/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The benefits of physical activity for the overall well-being of elderly individuals are well-established, the precise mechanisms through which exercise improves pathological changes in the aging lens have yet to be fully understood. METHODS 3-month-old C57BL/6J mice comprised young sedentary (YS) group, while aging mice (18-month-old) were divided into aging sedentary (AS) group and aging exercising (AE) group. Mice in AE groups underwent sequential stages of swimming exercise. H&E staining was employed to observe alterations in lens morphology. RNA-seq analysis was utilized to examine transcriptomic changes. Furthermore, qPCR and immunohistochemistry were employed for validation of the results. RESULTS AE group showed alleviation of histopathological aging changes in AS group. By GSEA analysis of the transcriptomic changes, swimming exercise significantly downregulated approximately half of the pathways that underwent alterations upon aging, where notable improvements were 'calcium signaling pathway', 'neuroactive ligand receptor interaction' and 'cell adhesion molecules'. Furthermore, we revealed a total of 92 differentially expressed genes between the YS and AS groups, of which 10 genes were observed to be mitigated by swimming exercise. The result of qPCR was in consistent with the transcriptome data. We conducted immunohistochemical analysis on Ciart, which was of particular interest due to its dual association as a common aging gene and its significant responsiveness to exercise. The Protein-protein Interaction network of Ciart showed the involvement of the regulation of Rorb and Sptbn5 during the process. CONCLUSION The known benefits of exercise could extend to the aging lens and support further investigation into the specific roles of Ciart-related pathways in aging lens.
Collapse
Affiliation(s)
- Lin Ye
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayue Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shijie Zhu
- School of Medicine, Tongji University, Shanghai, China
| | - Shunmei Ji
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinhui Dai
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
VanSlyke JK, Boswell BA, Musil LS. Tonic ErbB signaling underlies TGFβ-induced activation of ERK and is required for lens cell epithelial to myofibroblast transition. Mol Biol Cell 2024; 35:ar35. [PMID: 38170570 PMCID: PMC10916858 DOI: 10.1091/mbc.e23-07-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Fibrosis is a major, but incompletely understood, component of many diseases. The most common vision-disrupting complication of cataract surgery involves differentiation of residual lens cells into myofibroblasts. In serum-free primary cultures of lens epithelial cells (DCDMLs), inhibitors of either ERK or of ErbB signaling prevent TGFβ from upregulating both early (fibronectin) and late (αSMA) markers of myofibroblast differentiation. TGFβ stimulates ERK in DCDMLs within 1.5 h. Kinase inhibitors of ErbBs, but not of several other growth factor receptors in lens cells, reduce phospho ERK to below basal levels in the absence or presence of TGFβ. This effect is attributable to constitutive ErbB activity playing a major role in regulating the basal levels pERK. Additional studies support a model in which TGFβ-generated reactive oxygen species serve to indirectly amplify ERK signaling downstream of tonically active ErbBs to mediate myofibroblast differentiation. ERK activity is in turn essential for expression of ErbB1 and ErbB2, major inducers of ERK signaling. By mechanistically linking TGFβ, ErbB, and ERK signaling to myofibroblast differentiation, our data elucidate a new role for ErbBs in fibrosis and reveal a novel mode by which TGFβ directs lens cell fate.
Collapse
Affiliation(s)
- Judy K. VanSlyke
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239
| | - Bruce A. Boswell
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239
| | - Linda S. Musil
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
10
|
Perez RC, Yang X, Familari M, Martinez G, Lovicu FJ, Hime GR, de Iongh RU. TOB1 and TOB2 mark distinct RNA processing granules in differentiating lens fiber cells. J Mol Histol 2024; 55:121-138. [PMID: 38165569 DOI: 10.1007/s10735-023-10177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/12/2023] [Indexed: 01/04/2024]
Abstract
Differentiation of lens fiber cells involves a complex interplay of signals from growth factors together with tightly regulated gene expression via transcriptional and post-transcriptional regulators. Various studies have demonstrated that RNA-binding proteins, functioning in ribonucleoprotein granules, have important roles in regulating post-transcriptional expression during lens development. In this study, we examined the expression and localization of two members of the BTG/TOB family of RNA-binding proteins, TOB1 and TOB2, in the developing lens and examined the phenotype of mice that lack Tob1. By RT-PCR, both Tob1 and Tob2 mRNA were detected in epithelial and fiber cells of embryonic and postnatal murine lenses. In situ hybridization showed Tob1 and Tob2 mRNA were most intensely expressed in the early differentiating fibers, with weaker expression in anterior epithelial cells, and both appeared to be downregulated in the germinative zone of E15.5 lenses. TOB1 protein was detected from E11.5 to E16.5 and was predominantly detected in large cytoplasmic puncta in early differentiating fiber cells, often co-localizing with the P-body marker, DCP2. Occasional nuclear puncta were also observed. By contrast, TOB2 was detected in a series of interconnected peri-nuclear granules, in later differentiating fiber cells of the inner cortex. TOB2 did not appear to co-localize with DCP2 but did partially co-localize with an early stress granule marker (EIF3B). These data suggest that TOB1 and TOB2 are involved with different aspects of the mRNA processing cycle in lens fiber cells. In vitro experiments using rat lens epithelial explants treated with or without a fiber differentiating dose of FGF2 showed that both TOB1 and TOB2 were up-regulated during FGF-induced differentiation. In differentiating explants, TOB1 also co-localized with DCP2 in large cytoplasmic granules. Analyses of Tob1-/- mice revealed relatively normal lens morphology but a subtle defect in cell cycle arrest of some cells at the equator and in the lens fiber mass of E13.5 embryos. Overall, these findings suggest that TOB proteins play distinct regulatory roles in RNA processing during lens fiber differentiation.
Collapse
Affiliation(s)
- Rafaela C Perez
- Ocular Development Laboratory, Anatomy & Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Xenia Yang
- Ocular Development Laboratory, Anatomy & Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mary Familari
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Gemma Martinez
- Ocular Development Laboratory, Anatomy & Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Frank J Lovicu
- Molecular and Cellular Biomedicine, School of Medical Sciences and Save Sight Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Gary R Hime
- Stem Cell Genetics Laboratory, Anatomy & Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Robb U de Iongh
- Ocular Development Laboratory, Anatomy & Physiology, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
11
|
Taiyab A, Belahlou Y, Wong V, Pandi S, Shekhar M, Chidambaranathan GP, West-Mays J. Understanding the Role of Yes-Associated Protein (YAP) Signaling in the Transformation of Lens Epithelial Cells (EMT) and Fibrosis. Biomolecules 2023; 13:1767. [PMID: 38136638 PMCID: PMC10741558 DOI: 10.3390/biom13121767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Fibrotic cataracts, posterior capsular opacification (PCO), and anterior subcapsular cataracts (ASC) are mainly attributed to the transforming growth factor-β (TGFβ)-induced epithelial-to-mesenchymal transition (EMT) of lens epithelial cells (LECs). Previous investigations from our laboratory have shown the novel role of non-canonical TGFβ signaling in the progression of EMT in LECs. In this study, we have identified YAP as a critical signaling molecule involved in lens fibrosis. The observed increase in nuclear YAP in capsules of human ASC patients points toward the involvement of YAP in lens fibrosis. In addition, the immunohistochemical (IHC) analyses on ocular sections from mice that overexpress TGFβ in the lens (TGFβtg) showed a co-expression of YAP and α-SMA in the fibrotic plaques when compared to wild-type littermate lenses, which do not. The incubation of rat lens explants with verteporfin, a YAP inhibitor, prevented a TGFβ-induced fiber-like phenotype, α-SMA, and fibronectin expression, as well as delocalization of E-cadherin and β-catenin. Finally, LECs co-incubated with TGFβ and YAP inhibitor did not exhibit an induction in matrix metalloproteinase 2 compared to those LECs treated with TGFβ alone. In conclusion, these data demonstrate that YAP is required for TGFβ-mediated lens EMT and fibrosis.
Collapse
Affiliation(s)
- Aftab Taiyab
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (Y.B.); (V.W.)
| | - Yasmine Belahlou
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (Y.B.); (V.W.)
| | - Vanessa Wong
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (Y.B.); (V.W.)
| | - Saranya Pandi
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai 625020, Tamil Nadu, India; (S.P.); (G.P.C.)
| | - Madhu Shekhar
- Cataract and IOL Services, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Madurai 625020, Tamil Nadu, India;
| | - Gowri Priya Chidambaranathan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai 625020, Tamil Nadu, India; (S.P.); (G.P.C.)
| | - Judith West-Mays
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (Y.B.); (V.W.)
| |
Collapse
|
12
|
Saranya P, Shekhar M, Haripriya A, Muthukkaruppan V, Gowri Priya C. Towards the Identification and Characterization of Putative Adult Human Lens Epithelial Stem Cells. Cells 2023; 12:2727. [PMID: 38067155 PMCID: PMC10706574 DOI: 10.3390/cells12232727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The anterior lens epithelium has the ability to differentiate into lens fibres throughout its life. The present study aims to identify and functionally characterize the adult stem cells in the human lens epithelium. Whole mounts of lens epithelium from donor eyes (normal/cataract) were immunostained for SOX2, gap junction protein alpha 1 (GJA1), PAX6, α, β and γ-crystallins, followed by a confocal analysis. The functional property of adult stem cells was analysed by their sphere forming ability using cultured lens epithelial cells from different zones. Based on marker expression, the lens epithelium was divided into four zones: the central zone, characterized by a small population of PAX6+, GJA1-, β-crystallin- and γ-crystallin- cells; the germinative zone, characterized by PAX6+, GJA1+, β-crystallin- and γ-crystallin-; the transitional zone, characterized by PAX6+, GJA1+, β-crystallin+ and γ-crystallin-; and the equatorial zone, characterized by PAX6+/-, GJA1+, β-crystallin+, and γ-crystallin+ cells. The putative lens epithelial stem cells identified as SOX2+ and GJA1 membrane expression negative cells were located only in the central zone (1.89 ± 0.84%). Compared to the other zones, a significant percentage of spheres were identified in the central zone (1.68 ± 1.04%), consistent with the location of the putative adult lens epithelial stem cells. In the cataractous lens, an absence of SOX2 expression and a significant reduction in sphere forming ability (0.33 ± 0.11%) were observed in the central zone. The above findings confirmed the presence of putative stem cells in the central zone of the adult human lens epithelium and indicated their probable association with cataract development.
Collapse
Affiliation(s)
- Pandi Saranya
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai 625020, India; (P.S.); (V.M.)
- Department of Biotechnology, Aravind Medical Research Foundation—Affiliated to Alagappa University, Karaikudi 630003, India
| | - Madhu Shekhar
- Cataract and IOL Services, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Madurai 625020, India;
| | - Aravind Haripriya
- Intraocular Lens and Cataract Services, Aravind Eye Hospital, Chennai 600077, India;
| | - Veerappan Muthukkaruppan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai 625020, India; (P.S.); (V.M.)
| | - Chidambaranathan Gowri Priya
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai 625020, India; (P.S.); (V.M.)
- Department of Biotechnology, Aravind Medical Research Foundation—Affiliated to Alagappa University, Karaikudi 630003, India
| |
Collapse
|
13
|
Taler K, Zatari N, Lone MI, Rotem-Bamberger S, Inbal A. Identification of Small Molecules for Prevention of Lens Epithelium-Derived Cataract Using Zebrafish. Cells 2023; 12:2540. [PMID: 37947618 PMCID: PMC10650733 DOI: 10.3390/cells12212540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Cataract is the leading cause of blindness worldwide. It can be treated by surgery, whereby the damaged crystalline lens is replaced by a synthetic lens. Although cataract surgery is highly effective, a relatively common complication named posterior capsular opacification (PCO) leads to secondary loss of vision. PCO is caused by abnormal proliferation and migration of residual lens epithelial cells (LECs) that were not removed during the surgery, which results in interruption to the passage of light. Despite technical improvements to the surgery, this complication has not been eradicated. Efforts are being made to identify drugs that can be applied post-surgery, to inhibit PCO development. Towards the goal of identifying such drugs, we used zebrafish embryos homozygous for a mutation in plod3 that develop a lens phenotype with characteristics of PCO. Using both biased and unbiased approaches, we identified small molecules that can block the lens phenotype of the mutants. Our findings confirm the relevance of zebrafish plod3 mutants' lens phenotype as a model for lens epithelium-derived cataract and add to our understanding of the molecular mechanisms that contribute to the development of this pathology. This understanding should help in the development of strategies for PCO prevention.
Collapse
Affiliation(s)
| | | | | | | | - Adi Inbal
- Department of Medical Neurobiology, Institute for Medical Research—Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 9112002, Israel; (K.T.); (N.Z.); (M.I.L.); (S.R.-B.)
| |
Collapse
|
14
|
Guo Z, Ma X, Chen X, Zhang RX, Yan H. Oxidative stress-induced temporal activation of ERK1/2 phosphorylates coreceptor of Wnt/β-catenin for myofibroblast formation in human lens epithelial cells. Mol Vis 2023; 29:206-216. [PMID: 38222447 PMCID: PMC10784218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/15/2023] [Indexed: 01/16/2024] Open
Abstract
Purpose Posterior capsular opacification (PCO) is the most common complication postcataract surgery, and its underlying mechanisms involve epithelial-mesenchymal transition (EMT) of remnant lens epithelial cells (LECs) in response to drastic changes in stimuli in the intraocular environment, such as oxidative stress and growth factors. Wnt/β-catenin signaling is a major pathway mediating oxidative stress-induced EMT in LECs, but its interplay with other transduction pathways remains little known in the development of PCO. ERK1/2 signaling is the downstream component of a phosphorelay pathway in response to extracellular stimuli (e.g., reactive oxygen species), and its activation regulates multiple cellular processes, including proliferation and EMT. Thus, this study aimed to investigate how ERK1/2 signaling and Wnt/β-catenin pathway crosstalk in oxidative stress-induced EMT in LECs. Methods Hydrogen peroxide (H2O2) at 50 μM treatment for 48 h was used to establish a moderate oxidative stress-induced EMT model in LECs. ERK1/2 signaling was inhibited using MEK1/2 inhibitor U0126 at 20 μM. Western blotting was used to quantify protein expression of various biomarkers of EMT and phosphorylated components in ERK1/2 and Wnt/β-catenin signaling. LEC proliferation was determined using an EdU staining assay and expression of proliferating cellular nuclear antigen (PCNA). Subcellular localization of biomarker proteins was visualized with immunofluorescent staining. Results Under the moderate level of H2O2-induced EMT in LECs, ERK1/2 signaling was activated, as evidenced by a marked increase in the ratio of phosphorylated ERK1/2 to total ERK1/2 at early (i.e., 5-15 min) and late time points (i.e., 12 h); the canonical Wnt/β-catenin pathway was activated by H2O2 at 48 h. LECs exposed to H2O2 exhibited hyperproliferation and EMT; however, these were restored by inhibition of ERK1/2 signaling demonstrated by reduced DNA synthesis and PCNA expression for cellular proliferation and altered expression of various EMT protein markers, including E-cadherin, α-SMA, and vimentin. More importantly, inhibition of ERK1/2 signaling reduced β-catenin accumulation in the activated Wnt/β-catenin signaling cascade. Specifically, there was significant downregulation in the phosphorylation level of LRP6 at Ser 1490 and GSK-3β at Ser 9, the key coreceptor of Wnt and regulator of β-catenin, respectively. Conclusions ERK1/2 signaling plays a crucial role in the moderate level of oxidative stress-induced EMT in LECs. Pharmacologically blocking ERK1/2 signaling significantly inhibited LEC proliferation and EMT. Mechanistically, ERK1/2 signaling regulated Wnt/β-catenin cascade by phosphorylating Wnt coreceptor LRP6 at Ser 1490 in the plasma membrane. These results shed light on a potential molecular switch of ERK1/2 and Wnt/β-catenin crosstalk underlying the development of PCO.
Collapse
Affiliation(s)
- Zaoxia Guo
- Shaanxi Eye Hospital, Xi'an People’s Hospital (Xi'an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi' an, Shaanxi, China
| | - Xiaopan Ma
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Xi Chen
- Shaanxi Eye Hospital, Xi'an People’s Hospital (Xi'an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi' an, Shaanxi, China
| | - Rui Xue Zhang
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Hong Yan
- Shaanxi Eye Hospital, Xi'an People’s Hospital (Xi'an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi' an, Shaanxi, China
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
15
|
Wishart TFL, Lovicu FJ. Heparan sulfate proteoglycans (HSPGs) of the ocular lens. Prog Retin Eye Res 2023; 93:101118. [PMID: 36068128 DOI: 10.1016/j.preteyeres.2022.101118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) reside in most cells; on their surface, in the pericellular milieu and/or extracellular matrix. In the eye, HSPGs can orchestrate the activity of key signalling molecules found in the ocular environment that promote its development and homeostasis. To date, our understanding of the specific roles played by individual HSPG family members, and the heterogeneity of their associated sulfated HS chains, is in its infancy. The crystalline lens is a relatively simple and well characterised ocular tissue that provides an ideal stage to showcase and model the expression and unique roles of individual HSPGs. Individual HSPG core proteins are differentially localised to eye tissues in a temporal and spatial developmental- and cell-type specific manner, and their loss or functional disruption results in unique phenotypic outcomes for the lens, and other ocular tissues. More recent work has found that different HS sulfation enzymes are also presented in a cell- and tissue-specific manner, and that disruption of these different sulfation patterns affects specific HS-protein interactions. Not surprisingly, these sulfated HS chains have also been reported to be required for lens and eye development, with dysregulation of HS chain structure and function leading to pathogenesis and eye-related phenotypes. In the lens, HSPGs undergo significant and specific changes in expression and function that can drive pathology, or in some cases, promote tissue repair. As master signalling regulators, HSPGs may one day serve as valuable biomarkers, and even as putative targets for the development of novel therapeutics, not only for the eye but for many other systemic pathologies.
Collapse
Affiliation(s)
- Tayler F L Wishart
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, NSW, Australia.
| | - Frank J Lovicu
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
16
|
Upreti A, Padula SL, Tangeman JA, Wagner BD, O’Connell MJ, Jaquish TJ, Palko RK, Mantz CJ, Anand D, Lovicu FJ, Lachke SA, Robinson ML. Lens Epithelial Explants Treated with Vitreous Humor Undergo Alterations in Chromatin Landscape with Concurrent Activation of Genes Associated with Fiber Cell Differentiation and Innate Immune Response. Cells 2023; 12:501. [PMID: 36766843 PMCID: PMC9914805 DOI: 10.3390/cells12030501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Lens epithelial explants are comprised of lens epithelial cells cultured in vitro on their native basement membrane, the lens capsule. Biologists have used lens epithelial explants to study many different cellular processes including lens fiber cell differentiation. In these studies, fiber differentiation is typically measured by cellular elongation and the expression of a few proteins characteristically expressed by lens fiber cells in situ. Chromatin and RNA was collected from lens epithelial explants cultured in either un-supplemented media or media containing 50% bovine vitreous humor for one or five days. Chromatin for ATAC-sequencing and RNA for RNA-sequencing was prepared from explants to assess regions of accessible chromatin and to quantitatively measure gene expression, respectively. Vitreous humor increased chromatin accessibility in promoter regions of genes associated with fiber differentiation and, surprisingly, an immune response, and this was associated with increased transcript levels for these genes. In contrast, vitreous had little effect on the accessibility of the genes highly expressed in the lens epithelium despite dramatic reductions in their mRNA transcripts. An unbiased analysis of differentially accessible regions revealed an enrichment of cis-regulatory motifs for RUNX, SOX and TEAD transcription factors that may drive differential gene expression in response to vitreous.
Collapse
Affiliation(s)
- Anil Upreti
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Stephanie L. Padula
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Jared A. Tangeman
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Brad D. Wagner
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | | | - Tycho J. Jaquish
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Raye K. Palko
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Courtney J. Mantz
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Frank J. Lovicu
- Molecular and Cellular Biomedicine, School of Medical Sciences, and Save Sight Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Michael L. Robinson
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
17
|
Cvekl A, Camerino MJ. Generation of Lens Progenitor Cells and Lentoid Bodies from Pluripotent Stem Cells: Novel Tools for Human Lens Development and Ocular Disease Etiology. Cells 2022; 11:3516. [PMID: 36359912 PMCID: PMC9658148 DOI: 10.3390/cells11213516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
In vitro differentiation of human pluripotent stem cells (hPSCs) into specialized tissues and organs represents a powerful approach to gain insight into those cellular and molecular mechanisms regulating human development. Although normal embryonic eye development is a complex process, generation of ocular organoids and specific ocular tissues from pluripotent stem cells has provided invaluable insights into the formation of lineage-committed progenitor cell populations, signal transduction pathways, and self-organization principles. This review provides a comprehensive summary of recent advances in generation of adenohypophyseal, olfactory, and lens placodes, lens progenitor cells and three-dimensional (3D) primitive lenses, "lentoid bodies", and "micro-lenses". These cells are produced alone or "community-grown" with other ocular tissues. Lentoid bodies/micro-lenses generated from human patients carrying mutations in crystallin genes demonstrate proof-of-principle that these cells are suitable for mechanistic studies of cataractogenesis. Taken together, current and emerging advanced in vitro differentiation methods pave the road to understand molecular mechanisms of cataract formation caused by the entire spectrum of mutations in DNA-binding regulatory genes, such as PAX6, SOX2, FOXE3, MAF, PITX3, and HSF4, individual crystallins, and other genes such as BFSP1, BFSP2, EPHA2, GJA3, GJA8, LIM2, MIP, and TDRD7 represented in human cataract patients.
Collapse
Affiliation(s)
- Aleš Cvekl
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael John Camerino
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
18
|
Gao L, Jin N, Ye Z, Ma T, Huang Y, Li H, Du J, Li Z. A possible connection between reactive oxygen species and the unfolded protein response in lens development: From insight to foresight. Front Cell Dev Biol 2022; 10:820949. [PMID: 36211466 PMCID: PMC9535091 DOI: 10.3389/fcell.2022.820949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
The lens is a relatively special and simple organ. It has become an ideal model to study the common developmental characteristics among different organic systems. Lens development is a complex process influenced by numerous factors, including signals from the intracellular and extracellular environment. Reactive oxygen species (ROS) are a group of highly reactive and oxygen-containing molecules that can cause endoplasmic reticulum stress in lens cells. As an adaptive response to ER stress, lens cells initiate the unfolded protein response (UPR) to maintain normal protein synthesis by selectively increasing/decreasing protein synthesis and increasing the degradation of misfolded proteins. Generally, the UPR signaling pathways have been well characterized in the context of many pathological conditions. However, recent studies have also confirmed that all three UPR signaling pathways participate in a variety of developmental processes, including those of the lens. In this review, we first briefly summarize the three stages of lens development and present the basic profiles of ROS and the UPR. We then discuss the interconnections between lens development and these two mechanisms. Additionally, the potential adoption of human pluripotent stem-cell-based lentoids in lens development research is proposed to provide a novel perspective on future developmental studies.
Collapse
Affiliation(s)
- Lixiong Gao
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ni Jin
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Endocrinology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, The Chinese PLA General Hospital, Beijing, China
| | - Zi Ye
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tianju Ma
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Huang
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongyu Li
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jinlin Du
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhaohui Li
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Zhaohui Li,
| |
Collapse
|
19
|
Liu X, Zhou Q, Huang Y, Fan Z, Duan H, Wang M, Li Z, Xie L. Nicotinamide improves in vitro lens regeneration in a mouse capsular bag model. Stem Cell Res Ther 2022; 13:198. [PMID: 35550648 PMCID: PMC9102750 DOI: 10.1186/s13287-022-02862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
Background Mammalian lens regeneration holds great potential as a cataract therapy. However, the mechanism of mammalian lens regeneration is unclear, and the methods for optimization remain in question.
Methods We developed an in vitro lens regeneration model using mouse capsular bag culture and improved the transparency of the regenerated lens using nicotinamide (NAM). We used D4476 and SSTC3 as a casein kinase 1A inhibitor and agonist, respectively. The expression of lens-specific markers was examined by real-time PCR, immunostaining, and western blotting. The structure of the in vitro regenerated lens was investigated using 3,3′-dihexyloxacarbocyanine iodide (DiOC6) and methylene blue staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and transmission electron microscopy.
Results The in vitro lens regeneration model was developed to mimic the process of in vivo mammalian lens regeneration in a mouse capsular bag culture. In the early stage, the remanent lens epithelial cells proliferated across the posterior capsule and differentiated into lens fiber cells (LFCs). The regenerated lenses appeared opaque after 28 days; however, NAM treatment effectively maintained the transparency of the regenerated lens. We demonstrated that NAM maintained lens epithelial cell survival, promoted the differentiation and regular cellular arrangement of LFCs, and reduced lens-related cell apoptosis. Mechanistically, NAM enhanced the differentiation and transparency of regenerative lenses partly by inhibiting casein kinase 1A activity. Conclusion This study provides a new in vitro model for regeneration study and demonstrates the potential of NAM in in vitro mammalian lens regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02862-8.
Collapse
Affiliation(s)
- Xiaomin Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 26600, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, 26600, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 26600, China
| | - Yusen Huang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 26600, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, 26600, China
| | - Zheng Fan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 26600, China.,Qingdao University Medical College, Qingdao, 26600, China
| | - Haoyun Duan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 26600, China
| | - Menghan Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 26600, China.,Qingdao University Medical College, Qingdao, 26600, China
| | - Zongyi Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 26600, China. .,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, 26600, China.
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 26600, China. .,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, 26600, China.
| |
Collapse
|
20
|
Qi T, Jing R, Ma B, Hu C, Wen C, Shao Y, Pei C. The E3 Ligase RNF157 Inhibits Lens Epithelial Cell Apoptosis by Negatively Regulating p53 in Age-Related Cataracts. Invest Ophthalmol Vis Sci 2022; 63:11. [PMID: 35435923 PMCID: PMC9034709 DOI: 10.1167/iovs.63.4.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Purpose Age-related cataract (ARC) is a major cause of vision impairment worldwide. The E3 ubiquitin ligase RING finger protein 157 (RNF157) is involved in regulating cell survival and downregulated in human cataractous lens samples. However, the function of RNF157 in cataracts remains unclear. This study aimed to determine the role of RNF157 in ARC. Methods Real-time polymerase chain reaction (PCR) and Western blotting were used to analyze the expression of RNF157 in clinical lens capsules, rat cataract models, and oxidative stress cell models. Western blot analysis and flow cytometry were used to evaluate cell apoptosis. Co-IP assay, protein stability assay, and ubiquitination assay were used to detect the interaction between RNF157 and its substrate p53. Results The expression of RNF157 was downregulated in human cataract samples, UVB-induced rat cataract model, and H2O2-treated human lens epithelial cells (LECs). Ectopic expression of RNF157 protected LECs from H2O2-induced apoptosis. In contrast, knockdown of RNF157 enhanced oxidative stress-induced apoptotic cell death. Moreover, silence of RNF157 in the rat ex vivo lens model exacerbated lens opacity. Mechanistically, RNF157 causes ubiquitination and degradation of the tumor antigen p53. Overexpression of p53 eliminated the antiapoptotic effects of RNF157, whereas p53 knockdown rescued RNF157 silencing-induced cell death. Conclusions Our findings revealed that reduced RNF157 expression promoted LEC apoptosis by upregulating p53 in cataracts, suggesting that the regulation of RNF157 expression may serve as a potential therapeutic strategy for cataracts.
Collapse
Affiliation(s)
- Tiantian Qi
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruihua Jing
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Ma
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Conghui Hu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chan Wen
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yongping Shao
- Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Cheng Pei
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
21
|
Zhao G, Pan AY, Feng Y, Rasko JE, Bailey CG, Lovicu FJ. Sprouty and Spred temporally regulate ERK1/2-signaling to suppress TGFβ-induced lens EMT. Exp Eye Res 2022; 219:109070. [DOI: 10.1016/j.exer.2022.109070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/22/2022] [Accepted: 04/04/2022] [Indexed: 11/04/2022]
|
22
|
Thompson B, Davidson EA, Chen Y, Orlicky DJ, Thompson DC, Vasiliou V. Oxidative stress induces inflammation of lens cells and triggers immune surveillance of ocular tissues. Chem Biol Interact 2022; 355:109804. [PMID: 35123994 PMCID: PMC9136680 DOI: 10.1016/j.cbi.2022.109804] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 11/03/2022]
Abstract
Recent reports have challenged the notion that the lens is immune-privileged. However, these studies have not fully identified the molecular mechanism(s) that promote immune surveillance of the lens. Using a mouse model of targeted glutathione (GSH) deficiency in ocular surface tissues, we have investigated the role of oxidative stress in upregulating cytokine expression and promoting immune surveillance of the eye. RNA-sequencing of lenses from postnatal day (P) 1-aged Gclcf/f;Le-CreTg/- (KO) and Gclcf/f;Le-Cre-/- control (CON) mice revealed upregulation of many cytokines (e.g., CCL4, GDF15, CSF1) and immune response genes in the lenses of KO mice. The eyes of KO mice had a greater number of cells in the aqueous and vitreous humors at P1, P20 and P50 than age-matched CON and Gclcw/w;Le-CreTg/- (CRE) mice. Histological analyses revealed the presence of innate immune cells (i.e., macrophages, leukocytes) in ocular structures of the KO mice. At P20, the expression of cytokines and ROS content was higher in the lenses of KO mice than in those from age-matched CRE and CON mice, suggesting that oxidative stress may induce cytokine expression. In vitro administration of the oxidant, hydrogen peroxide, and the depletion of GSH (using buthionine sulfoximine (BSO)) in 21EM15 lens epithelial cells induced cytokine expression, an effect that was prevented by co-treatment of the cells with N-acetyl-l-cysteine (NAC), a antioxidant. The in vivo and ex vivo induction of cytokine expression by oxidative stress was associated with the expression of markers of epithelial-to-mesenchymal transition (EMT), α-SMA, in lens cells. Given that EMT of lens epithelial cells causes posterior capsule opacification (PCO), we propose that oxidative stress induces cytokine expression, EMT and the development of PCO in a positive feedback loop. Collectively these data indicate that oxidative stress induces inflammation of lens cells which promotes immune surveillance of ocular structures.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA
| | - Emily A Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA
| | - David J Orlicky
- Department of Pathology, Anschutz School of Medicine, University of Colorado, Aurora, CO, USA
| | - David C Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA; Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA.
| |
Collapse
|
23
|
Wishart TFL, Lovicu FJ. An Atlas of Heparan Sulfate Proteoglycans in the Postnatal Rat Lens. Invest Ophthalmol Vis Sci 2021; 62:5. [PMID: 34730792 PMCID: PMC8572486 DOI: 10.1167/iovs.62.14.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose The arrangement of lens cells is regulated by ocular growth factors. Although the effects of these inductive molecules on lens cell behavior (proliferation, survival, and fiber differentiation) are well-characterized, the precise mechanisms underlying the regulation of growth factor-mediated signaling in lens remains elusive. Increasing evidence highlights the importance of heparan sulfate proteoglycans (HSPGs) for the signaling regulation of growth factors; however, the identity of the different lens HSPGs and the specific roles they play in lens biology are still unknown. Methods Semiquantitative real-time (RT)‐PCR and immunolabeling were used to characterize the spatial distribution of all known HSPG core proteins and their associated glycosaminoglycans (heparan and chondroitin sulfate) in the postnatal rat lens. Fibroblast growth factor (FGF)-2-treated lens epithelial explants, cultured in the presence of Surfen (an inhibitor of heparan sulfate [HS]-growth factor binding interactions) were used to investigate the requirement for HS in FGF-2-induced proliferation, fiber differentiation, and ERK1/2-signaling. Results The lens expresses all HSPGs. These HSPGs are differentially localized to distinct functional regions of the lens. In vitro, inhibition of HS-sulfation with Surfen blocked FGF-2-mediated ERK1/2-signaling associated with lens epithelial cell proliferation and fiber differentiation, highlighting that these cellular processes are dependent on HS. Conclusions These findings support a requirement for HSPGs in FGF-2 driven lens cell proliferation and fiber differentiation. The identification of specific HSPG core proteins in key functional lens regions, and the divergent expression patterns of closely related HSPGs, suggests that different HSPGs may differentially regulate growth factor signaling networks leading to specific biological events involved in lens growth and maintenance.
Collapse
Affiliation(s)
- Tayler F L Wishart
- School of Medical Sciences, The University of Sydney, New South Wales, Australia
| | - Frank J Lovicu
- School of Medical Sciences, The University of Sydney, New South Wales, Australia.,Save Sight Institute, The University of Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Patel SD, Aryal S, Mennetti LP, Parreno J. Whole mount staining of lenses for visualization of lens epithelial cell proteins. MethodsX 2021; 8:101376. [PMID: 34430272 PMCID: PMC8374519 DOI: 10.1016/j.mex.2021.101376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Whole mount imaging of the lens allows for high spatial resolution visualization of lens epithelial structures by using small molecule fluorescent probes. However, the visualization of specific proteins in lens epithelial cells within whole lenses remains a challenge as the capsule that surrounds the lens does not allow penetration of antibodies. Here we describe a whole mount imaging method that allows us to overcome this challenge by digesting the lens capsules of paraformaldehyde fixed lenses using collagenase. This method enables the penetration of antibodies for effective visualization of proteins in the epithelium of whole lenses.A limitation to lens whole mount imaging is the ability to visualize specific proteins as the collagen capsule surrounding the lens impedes the penetration of antibodies This protocol helps overcome this limitation by a light collagenase digestion of the capsule of fixed lenses prior to immunostaining This method allows for the imaging of specific proteins in the epithelium of the whole lens tissue
Collapse
Affiliation(s)
- Shaili D Patel
- Department of Biological Sciences, University of Delaware USA
| | - Sandeep Aryal
- Department of Biological Sciences, University of Delaware USA
| | | | - Justin Parreno
- Department of Biological Sciences, University of Delaware USA
| |
Collapse
|
25
|
Aberrant TGF-β1 signaling activation by MAF underlies pathological lens growth in high myopia. Nat Commun 2021; 12:2102. [PMID: 33833231 PMCID: PMC8032689 DOI: 10.1038/s41467-021-22041-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/19/2021] [Indexed: 12/27/2022] Open
Abstract
High myopia is a leading cause of blindness worldwide. Myopia progression may lead to pathological changes of lens and affect the outcome of lens surgery, but the underlying mechanism remains unclear. Here, we find an increased lens size in highly myopic eyes associated with up-regulation of β/γ-crystallin expressions. Similar findings are replicated in two independent mouse models of high myopia. Mechanistic studies show that the transcription factor MAF plays an essential role in up-regulating β/γ-crystallins in high myopia, by direct activation of the crystallin gene promoters and by activation of TGF-β1-Smad signaling. Our results establish lens morphological and molecular changes as a characteristic feature of high myopia, and point to the dysregulation of the MAF-TGF-β1-crystallin axis as an underlying mechanism, providing an insight for therapeutic interventions. High myopia is associated with lens changes, but the underlying mechanisms are unclear. Here, the authors show increased equatorial diameter of the lens in subjects affected by high myopia, and find that these changes are associated with an increase in crystallin expression driven by the transcription factor MAF and TGF-β1 signaling.
Collapse
|
26
|
Shu DY, Ng K, Wishart TFL, Chui J, Lundmark M, Flokis M, Lovicu FJ. Contrasting roles for BMP-4 and ventromorphins (BMP agonists) in TGFβ-induced lens EMT. Exp Eye Res 2021; 206:108546. [PMID: 33773977 DOI: 10.1016/j.exer.2021.108546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 12/28/2022]
Abstract
Transforming growth factor beta (TGFβ) and bone morphogenetic protein (BMP) signaling play opposing roles in epithelial-mesenchymal transition (EMT) of lens epithelial cells, a cellular process integral to the pathogenesis of fibrotic cataract. We previously showed that BMP-7-induced Smad1/5 signaling blocks TGFβ-induced Smad2/3-signaling and EMT in rat lens epithelial cell explants. To further explore the antagonistic role of BMPs on TGFβ-signaling, we tested the capability of BMP-4 or newly described BMP agonists, ventromorphins, in blocking TGFβ-induced lens EMT. Primary rat lens epithelial explants were treated with exogenous TGFβ2 alone, or in combination with BMP-4 or ventromorphins. Treatment with TGFβ2 induced lens epithelial cells to undergo EMT and transdifferentiate into myofibroblastic cells with upregulated α-SMA and nuclear translocation of Smad2/3 immunofluorescence. BMP-4 was able to suppress this EMT without blocking TGFβ2-nuclear translocation of Smad2/3. In contrast, the BMP agonists, ventromorphins, were unable to block TGFβ2-induced EMT, despite a transient and early ability to significantly reduce TGFβ2-induced nuclear translocation of Smad2/3. This intriguing disparity highlights new complexities in the responsiveness of the lens to differing BMP-related signaling. Further research is required to better understand the antagonistic relationship between TGFβ and BMPs in lens EMT leading to cataract.
Collapse
Affiliation(s)
- Daisy Y Shu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia
| | - Kevin Ng
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | | | - Juanita Chui
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Malin Lundmark
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Mary Flokis
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Frank J Lovicu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
27
|
Zhao Y, Liu S, Li X, Xu Z, Hao L, Cui Z, Bi K, Zhang Y, Liu Z. Cross-talk of Signaling Pathways in the Pathogenesis of Allergic Asthma and Cataract. Protein Pept Lett 2021; 27:810-822. [PMID: 32031062 DOI: 10.2174/0929866527666200207113439] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022]
Abstract
Allergic asthma is a chronic inflammatory disease, which involves many cellular and cellular components. Cataract is a condition that affects the transparency of the lens, which the opacity of the lens caused by any innate or acquired factor degrades its transparency or changes in color. Both of them belong to diseases induced by immune disorders or inflammation. We want to confirm the signaling pathways involved in the regulation of asthma and cataract simultaneously, and provide reference for the later related experiments. So we conducted a scoping review of many databases and searched for studies (Academic research published in Wiley, Springer and Bentham from 2000 to 2019) about the possible relationship between asthma and cataract. It was found that during the onset of asthma and cataract, Rho/Rock signaling pathway, Notch signaling pathway, Wnt/β-catenin signaling pathway, PI3K/AKT signaling pathway, JAK/STAT signaling pathway, MAPK signaling pathway, TGF-β1/Smad signaling pathway and NF-κB signaling pathway are all active, so they may have a certain correlation in pathogenesis. Asthma may be associated with cataract through the eight signaling pathways, causing inflammation or immune imbalance based on allergy that can lead to cataract. According to these studies, we speculated that the three most likely signaling pathways are PI3K/AKT, MAPK and NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yang Zhao
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Sumei Liu
- Department of Stomatology, No. 2 Hospital of Baoding, Baoding 071002, China
| | - Xiangsheng Li
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Zhenzhen Xu
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Lifang Hao
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Zhe Cui
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Kewei Bi
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Yanfen Zhang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China,Offices of Science and Technology, Hebei University, Baoding 071002, China
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| |
Collapse
|
28
|
Lens fiber cell differentiation occurs independently of fibroblast growth factor receptor signaling in the absence of Pten. Dev Biol 2020; 467:1-13. [PMID: 32858001 DOI: 10.1016/j.ydbio.2020.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/21/2022]
Abstract
Fibroblast growth factor receptor (FGFR) signaling patterns multiple tissues in both vertebrates and invertebrates, largely through the activation of intracellular kinases. Recent studies have demonstrated that the phosphatase, PTEN negatively regulates FGFR signaling, such that the loss of PTEN can compensate for reduced FGFR signaling to rescue aspects of normal development. In the developing mouse lens, FGFR signaling promotes cell survival and fiber cell differentiation, and the loss of Pten largely compensates for the loss of Fgfr2 during lens development. To explore this regulatory relationship further, we focused on the phenotypic consequences of Pten loss on lens development and fiber cell differentiation in the absence of all FGFR signaling, both in vivo and in lens epithelial explants. Pten deletion partially rescues primary fiber cell elongation and γ-crystallin accumulation in FGFR-deficient lenses in vivo but fails to rescue cell survival or proliferation. However, in lens epithelial explants, where cells survive without FGFR signaling, Pten deletion rescues vitreous humor-induced lens fiber cell differentiation in the combined absence of Fgfr1, Fgfr2 and Fgfr3. This represents the first evidence that vitreous-initiated signaling cascades, independent of FGFR signaling, can drive mammalian lens fiber cell differentiation, when freed from repression by PTEN.
Collapse
|
29
|
Wormstone IM, Wormstone YM, Smith AJO, Eldred JA. Posterior capsule opacification: What's in the bag? Prog Retin Eye Res 2020; 82:100905. [PMID: 32977000 DOI: 10.1016/j.preteyeres.2020.100905] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022]
Abstract
Cataract, a clouding of the lens, is the most common cause of blindness in the world. It has a marked impact on the wellbeing and productivity of individuals and has a major economic impact on healthcare providers. The only means of treating cataract is by surgical intervention. A modern cataract operation generates a capsular bag, which comprises a proportion of the anterior capsule and the entire posterior capsule. The bag remains in situ, partitions the aqueous and vitreous humours, and in the majority of cases, houses an intraocular lens (IOL). The production of a capsular bag following surgery permits a free passage of light along the visual axis through the transparent intraocular lens and thin acellular posterior capsule. Lens epithelial cells, however, remain attached to the anterior capsule, and in response to surgical trauma initiate a wound-healing response that ultimately leads to light scatter and a reduction in visual quality known as posterior capsule opacification (PCO). There are two commonly-described forms of PCO: fibrotic and regenerative. Fibrotic PCO follows classically defined fibrotic processes, namely hyperproliferation, matrix contraction, matrix deposition and epithelial cell trans-differentiation to a myofibroblast phenotype. Regenerative PCO is defined by lens fibre cell differentiation events that give rise to Soemmerring's ring and Elschnig's pearls and becomes evident at a later stage than the fibrotic form. Both fibrotic and regenerative forms of PCO contribute to a reduction in visual quality in patients. This review will highlight the wealth of tools available for PCO research, provide insight into our current knowledge of PCO and discuss putative management of PCO from IOL design to pharmacological interventions.
Collapse
Affiliation(s)
- I M Wormstone
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| | - Y M Wormstone
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - A J O Smith
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - J A Eldred
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
30
|
Aryal S, Viet J, Weatherbee BAT, Siddam AD, Hernandez FG, Gautier-Courteille C, Paillard L, Lachke SA. The cataract-linked RNA-binding protein Celf1 post-transcriptionally controls the spatiotemporal expression of the key homeodomain transcription factors Pax6 and Prox1 in lens development. Hum Genet 2020; 139:1541-1554. [PMID: 32594240 DOI: 10.1007/s00439-020-02195-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022]
Abstract
The homeodomain transcription factors (TFs) Pax6 (OMIM: 607108) and Prox1 (OMIM: 601546) critically regulate gene expression in lens development. While PAX6 mutations in humans can cause cataract, aniridia, microphthalmia, and anophthalmia, among other defects, Prox1 deletion in mice causes severe lens abnormalities, in addition to other organ defects. Furthermore, the optimal dosage/spatiotemporal expression of these key TFs is essential for development. In lens development, Pax6 expression is elevated in cells of the anterior epithelium compared to fiber cells, while Prox1 exhibits the opposite pattern. Whether post-transcriptional regulatory mechanisms control these precise TF expression patterns is unknown. Here, we report the unprecedented finding that the cataract-linked RNA-binding protein (RBP), Celf1 (OMIM: 601074), post-transcriptionally regulates Pax6 and Prox1 protein expression in lens development. Immunostaining shows that Celf1 lens-specific conditional knockout (Celf1cKO) mice exhibit abnormal elevation of Pax6 protein in fiber cells and abnormal Prox1 protein levels in epithelial cells-directly opposite to their normal expression patterns in development. Furthermore, RT-qPCR shows no change in Pax6 and Prox1 transcript levels in Celf1cKO lenses, suggesting that Celf1 regulates these TFs on the translational level. Indeed, RNA-immunoprecipitation assays using Celf1 antibody indicate that Celf1 protein binds to Pax6 and Prox1 transcripts. Furthermore, reporter assays in Celf1 knockdown and Celf1-overexpression cells demonstrate that Celf1 negatively controls Pax6 and Prox1 translation via their 3' UTRs. These data define a new mechanism of RBP-based post-transcriptional regulation that enables precise control over spatiotemporal expression of Pax6 and Prox1 in lens development, thereby uncovering a new etiological mechanism for Celf1 deficiency-based cataract.
Collapse
Affiliation(s)
- Sandeep Aryal
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Justine Viet
- Institut de Génétique et Développement de Rennes, Univ Rennes, CNRS, IGDR-UMR 6290, 35000, Rennes, France
| | | | - Archana D Siddam
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | | | - Carole Gautier-Courteille
- Institut de Génétique et Développement de Rennes, Univ Rennes, CNRS, IGDR-UMR 6290, 35000, Rennes, France
| | - Luc Paillard
- Institut de Génétique et Développement de Rennes, Univ Rennes, CNRS, IGDR-UMR 6290, 35000, Rennes, France.
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA. .,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
31
|
Gong X, Nie Q, Xiao Y, Xiang JW, Wang L, Liu F, Fu JL, Liu Y, Yang L, Gan Y, Chen H, Luo Z, Qi R, Chen Z, Tang X, Li DWC. Localization Patterns of Sumoylation Enzymes E1, E2 and E3 in Ocular Cell Lines Predict Their Functional Importance. Curr Mol Med 2019; 18:516-522. [PMID: 30636611 DOI: 10.2174/1566524019666190112144436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE It is well established now that protein sumoylation acts as an important regulatory mechanism mediating control of ocular development through regulation of multiple transcription factors. Yet the functional mechanisms of each factor modulated remain to be further explored using the available in vitro systems. In this regard, various ocular cell lines including HLE, FHL124, αTN4-1, N/N1003A and ARPE-19 have been demonstrated to be useful for biochemical and molecular analyses of normal physiology and pathogenesis. We have recently examined that these cell lines express a full set of sumoylation enzymes E1, E2 and E3. Following this study, here we have examined the localization of these enzymes and determined their differential localization patterns in these major ocular cell lines. METHODS The 5 major ocular cell lines were cultured in Dulbecco's modified Eagle's medium (DMEM) containing fetal bovine serum (FBS) or rabbit serum (RBS) and 1% Penicillin- Streptomycin. The localization of the 3 major sumoylation enzymes in the 5 major ocular cell lines were determined with immunohistochemistry. The images were captured with a Zeiss LSM 880 confocal microscope. RESULTS we have obtained the following results: 1) The sumoylation enzymes SAE1, UBC9 and PIAS1 are distributed in both nucleus and cytoplasm, with a much higher level concentrated in the nucleus and the neighboring cellular organelle zone in all cell lines; 2) The sumoylation enzyme UBA2 was highly concentrated in both cytoplasm membrane, cytoskeleton and nucleus of all cell lines; 3) The ligase E3, RanBP2 was exclusively localized in the nucleus with homogeneous distribution. CONCLUSIONS Our results for the first time established the differential localization patterns of the three types of sumoylation enzymes in 5 major ocular cell lines. Our establishment of the differential localization patterns of the three types of sumoylation enzymes in these cell lines help to predict their functional importance of sumoylation in the vision system. Together, our results demonstrate that these cell lines can be used for assay systems to explore the functional mechanisms of sumoylation mediating ocular development and pathogenesis.
Collapse
Affiliation(s)
- Xiaodong Gong
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Qian Nie
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Ling Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Fangyuan Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Jia-Ling Fu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yunfei Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Lan Yang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuwen Gan
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Huimin Chen
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhongwen Luo
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Ruili Qi
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Zhigang Chen
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Xiangcheng Tang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
32
|
Shu DY, Lovicu FJ. Enhanced EGF receptor-signaling potentiates TGFβ-induced lens epithelial-mesenchymal transition. Exp Eye Res 2019; 185:107693. [PMID: 31201806 DOI: 10.1016/j.exer.2019.107693] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/20/2019] [Accepted: 06/08/2019] [Indexed: 02/06/2023]
Abstract
The ocular lens is exposed to numerous growth factors that influence its behavior in diverse ways. While many of these, such as FGF and EGF promote normal cell behavior, TGFβ is unique in that it can also induce lens cell pathology, namely, the epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) leading to fibrotic cataract formation. The present study explores how EGF impacts on TGFβ-induced EMT in the lens. LECs in explants prepared from 21-day-old Wistar rats were treated with either 200 pg/ml TGFβ2, 5 ng/ml EGF, or a combination of these, with or without a 2-h pre-treatment of an EGFR inhibitor (PD153035), MEK inhibitor (U0126) or Smad3 inhibitor (SIS3). Co-treatment of LECs with TGFβ2 and EGF, compared with TGFβ2 alone, resulted in a more pronounced elongation and transdifferentiation of the LECs into myofibroblastic cells, with higher protein levels of mesenchymal cell markers (α-SMA and tropomyosin). Combining EGF with a less potent lower dose of TGFβ2 (50 pg/ml) induced LECs to undergo EMT equivalent to treatment with a higher dose of TGFβ2 (200 pg/ml) within 5 days of culture. EGF alone, nor the lower dose of TGFβ2, were able to induce EMT in LECs within 5 days. Co-treatment of LECs with EGF and TGFβ2 induced a temporal shift in the phosphorylation levels of Smad2/3, ERK1/2 and EGFR and changed the expression patterns of downstream EMT target genes, compared to treatment of LECs with either growth factor alone. Inhibition of EGFR-signaling with PD153035 blocked the EMT response induced by co-treatment with EGF and TGFβ2. Taken together, our data demonstrate that EGF can potentiate TGFβ2 activity to enhance EMT in LECs, further highlighting the importance of EGFR-signaling in cataract formation. By directly blocking EGFR signaling, the activity of both EGF and TGFβ2 can be simultaneously reduced, thereby serving as a potential target for cataract prevention.
Collapse
Affiliation(s)
- Daisy Y Shu
- Discipline of Anatomy and Histology, Bosch Institute, The University of Sydney, NSW, Australia; Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, NSW, Australia
| | - Frank J Lovicu
- Discipline of Anatomy and Histology, Bosch Institute, The University of Sydney, NSW, Australia; Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, NSW, Australia.
| |
Collapse
|
33
|
Menko AS, Walker JL, Stepp MA. Fibrosis: Shared Lessons From the Lens and Cornea. Anat Rec (Hoboken) 2019; 303:1689-1702. [PMID: 30768772 PMCID: PMC6697240 DOI: 10.1002/ar.24088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/23/2018] [Accepted: 09/04/2018] [Indexed: 12/13/2022]
Abstract
Regenerative repair in response to wounding involves cell proliferation and migration. This is followed by the reestablishment of cell structure and organization and a dynamic process of remodeling and restoration of the injured cells' extracellular matrix microenvironment and the integration of the newly synthesized matrix into the surrounding tissue. Fibrosis in the lungs, liver, and heart can lead to loss of life and in the eye to loss of vision. Learning to control fibrosis and restore normal tissue function after injury repair remains a goal of research in this area. Here we use knowledge gained using the lens and the cornea to provide insight into how fibrosis develops and clues to how it can be controlled. The lens and cornea are less complex than other tissues that develop life‐threatening fibrosis, but they are well characterized and research using them as model systems to study fibrosis is leading toward an improved understanding of fibrosis. Here we summarize the current state of the literature and how it is leading to promising new treatments. Anat Rec, 2019. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- A Sue Menko
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Janice L Walker
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, George Washington University, Washington, District of Columbia
| |
Collapse
|
34
|
Zhao Y, Wilmarth PA, Cheng C, Limi S, Fowler VM, Zheng D, David LL, Cvekl A. Proteome-transcriptome analysis and proteome remodeling in mouse lens epithelium and fibers. Exp Eye Res 2019; 179:32-46. [PMID: 30359574 PMCID: PMC6360118 DOI: 10.1016/j.exer.2018.10.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/31/2018] [Accepted: 10/20/2018] [Indexed: 12/21/2022]
Abstract
Epithelial cells and differentiated fiber cells represent distinct compartments in the ocular lens. While previous studies have revealed proteins that are preferentially expressed in epithelial vs. fiber cells, a comprehensive proteomics library comparing the molecular compositions of epithelial vs. fiber cells is essential for understanding lens formation, function, disease and regenerative potential, and for efficient differentiation of pluripotent stem cells for modeling of lens development and pathology in vitro. To compare protein compositions between the lens epithelium and fibers, we employed tandem mass spectrometry (2D-LC/MS) analysis of microdissected mouse P0.5 lenses. Functional classifications of the top 525 identified proteins into gene ontology categories by molecular processes and subcellular localizations, were adapted for the lens. Expression levels of both epithelial and fiber proteomes were compared with whole lens proteome and mRNA levels using E14.5, E16.5, E18.5, and P0.5 RNA-Seq data sets. During this developmental time window, multiple complex biosynthetic and catabolic processes generate the molecular and structural foundation for lens transparency. As expected, crystallins showed a high correlation between their mRNA and protein levels. Comprehensive data analysis confirmed and/or predicted roles for transcription factors (TFs), RNA-binding proteins (e.g. Carhsp1), translational apparatus including ribosomal heterogeneity and initiation factors, microtubules, cytoskeletal [e.g. non-muscle myosin IIA heavy chain (Myh9) and βB2-spectrin (Sptbn2)] and membrane proteins in lens formation and maturation. Our data highlighted many proteins with unknown functions in the lens that were preferentially enriched in epithelium or fibers, setting the stage for future studies to further dissect the roles of these proteins in fiber cell differentiation vs. epithelial cell maintenance. In conclusion, the present proteomic datasets represent the first mouse lens epithelium and fiber cell proteomes, establish comparative analyses of protein and RNA-Seq data, and characterize the major proteome remodeling required to form the mature lens fiber cells.
Collapse
Affiliation(s)
- Yilin Zhao
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Phillip A Wilmarth
- Department of Biochemistry & Molecular Biology, Oregon Health Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Catherine Cheng
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Saima Limi
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Deyou Zheng
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Neurology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Larry L David
- Department of Biochemistry & Molecular Biology, Oregon Health Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Ales Cvekl
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
35
|
Wang Z, Liu CH, Huang S, Chen J. Wnt Signaling in vascular eye diseases. Prog Retin Eye Res 2018; 70:110-133. [PMID: 30513356 DOI: 10.1016/j.preteyeres.2018.11.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022]
Abstract
The Wnt signaling pathway plays a pivotal role in vascular morphogenesis in various organs including the eye. Wnt ligands and receptors are key regulators of ocular angiogenesis both during the eye development and in vascular eye diseases. Wnt signaling participates in regulating multiple vascular beds in the eye including regression of the hyaloid vessels, and development of structured layers of vasculature in the retina. Loss-of-function mutations in Wnt signaling components cause rare genetic eye diseases in humans such as Norrie disease, and familial exudative vitreoretinopathy (FEVR) with defective ocular vasculature. On the other hand, experimental studies in more prevalent vascular eye diseases, such as wet age-related macular degeneration (AMD), diabetic retinopathy (DR), retinopathy of prematurity (ROP), and corneal neovascularization, suggest that aberrantly increased Wnt signaling is one of the causations for pathological ocular neovascularization, indicating the potential of modulating Wnt signaling to ameliorate pathological angiogenesis in eye diseases. This review recapitulates the key roles of the Wnt signaling pathway during ocular vascular development and in vascular eye diseases, and pharmaceutical approaches targeting the Wnt signaling as potential treatment options.
Collapse
Affiliation(s)
- Zhongxiao Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Shuo Huang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States.
| |
Collapse
|
36
|
ERK1/2-mediated EGFR-signaling is required for TGFβ-induced lens epithelial-mesenchymal transition. Exp Eye Res 2018; 178:108-121. [PMID: 30290164 DOI: 10.1016/j.exer.2018.09.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/30/2018] [Accepted: 09/28/2018] [Indexed: 02/02/2023]
Abstract
Epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) plays a critical role in the pathogenesis of fibrotic cataract. Transforming growth factor-beta (TGFβ) is a potent inducer of this fibrotic process in lens. Recent studies in cancer progression have shown that in addition to activating the canonical Smad signaling pathway, TGFβ can also transactivate the epidermal growth factor receptor (EGFR) to enhance invasive cell migration. The present study aims to elucidate the involvement of EGFR-signaling in TGFβ-induced EMT in LECs. Treatment with TGFβ2 induced transdifferentiation of LECs into myofibroblastic cells, typical of an EMT. TGFβ2 induced the phosphorylation of the EGFR and upregulation of Egfr and Hb-egf gene expression. Pharmacologic inhibition of EGFR-signaling using PD153035 inhibited TGFβ-induced EMT, including the upregulation of mesenchymal markers and downregulation of epithelial markers. Crosstalk between TGFβ2-induced EGFR and ERK1/2 was evident, with both pathways impacting on Smad2/3-signaling. Our finding that TGFβ2 transactivates downstream EGFR-signaling reveals a previously unknown mechanism in the pathogenesis of cataract. Understanding the complex interplay between divergent canonical and non-canonical signaling pathways, as well as downstream target genes involved in TGFβ-induced EMT, will enable the development of more effective targeted therapies in the pharmacological treatment of cataract.
Collapse
|
37
|
Umapathy A, Li B, Donaldson PJ, Lim JC. Functional characterisation of glutathione export from the rat lens. Exp Eye Res 2018; 166:151-159. [DOI: 10.1016/j.exer.2017.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/19/2017] [Accepted: 10/10/2017] [Indexed: 02/08/2023]
|
38
|
Growth of hollow cell spheroids in microbead templated chambers. Biomaterials 2017; 143:57-64. [PMID: 28763630 DOI: 10.1016/j.biomaterials.2017.07.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/20/2017] [Accepted: 07/22/2017] [Indexed: 02/02/2023]
Abstract
Cells form hollow, spheroidal structures during the development of many tissues, including the ocular lens, inner ear, and many glands. Therefore, techniques for in vitro formation of hollow spheroids are valued for studying developmental and disease processes. Current in vitro methods require cells to self-organize into hollow morphologies; we explored an alternative strategy based on cell growth in predefined, spherical scaffolds. Our method uses sacrificial, gelatin microbeads to simultaneously template spherical chambers within a hydrogel and deliver cells into the chambers. We use mouse lens epithelial cells to demonstrate that cells can populate the internal surfaces of the chambers within a week to create numerous hollow spheroids. The platform supports manipulation of matrix mechanics, curvature, and biochemical composition to mimic in vivo microenvironments. It also provides a starting point for engineering organoids of tissues that develop from hollow spheroids.
Collapse
|
39
|
Shu DY, Wojciechowski MC, Lovicu FJ. Bone Morphogenetic Protein-7 Suppresses TGFβ2-Induced Epithelial-Mesenchymal Transition in the Lens: Implications for Cataract Prevention. Invest Ophthalmol Vis Sci 2017; 58:781-796. [PMID: 28152139 PMCID: PMC5295783 DOI: 10.1167/iovs.16-20611] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose Epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is a key pathologic mechanism underlying cataract. Two members of the transforming growth factor-β (TGFβ) superfamily, TGFβ and bone morphogenetic protein-7 (BMP-7) have functionally distinct roles in EMT. While TGFβ is a potent inducer of EMT, BMP-7 counteracts the fibrogenic activity of TGFβ. We examine the modulating effect of BMP-7 on TGFβ-induced EMT in LECs. Methods Rat lens epithelial explants were treated exogenously with TGFβ2 alone or in combination with BMP-7 for up to 5 days. Expression levels of E-cadherin, β-catenin, α-smooth muscle actin (α-SMA), and phosphorylated downstream Smads were determined using immunofluorescence and Western blotting. Reverse transcriptase quantitative PCR (RT-qPCR) was used to study gene expression levels of EMT markers and downstream BMP target genes, including the Inhibitors of differentiation (Id). Results Transforming growth factor-β2 induced LECs to transdifferentiate into myofibroblastic cells. Addition of BMP-7 suppressed TGFβ2-induced α-SMA protein levels and mesenchymal gene expression, with retention of E-cadherin and β-catenin expression to the cell membrane. Addition of BMP-7 prevented lens capsular wrinkling and cellular loss associated with TGFβ2-induced EMT over the 5-day treatment period. The inhibitory effect of BMP-7 was accompanied by an early induction of pSmad1/5 and suppression of TGFβ2-induced pSmad2/3. Treatment with TGFβ2 alone suppressed gene expression of Id2/3 and addition of BMP-7 restored Id2/3 expression. Conclusions Exogenous administration of BMP-7 abrogated TGFβ2-induced EMT in rat lens epithelial explants. Understanding the complex interplay between the TGFβ- and BMP-7–associated Smad signaling pathways and their downstream target genes holds therapeutic promise in cataract prevention.
Collapse
Affiliation(s)
- Daisy Y Shu
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, New South Wales, Australia 2Save Sight Institute, University of Sydney, New South Wales, Australia
| | - Magdalena C Wojciechowski
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, New South Wales, Australia
| | - Frank J Lovicu
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, New South Wales, Australia 2Save Sight Institute, University of Sydney, New South Wales, Australia
| |
Collapse
|
40
|
Taiyab A, Korol A, Deschamps PA, West-Mays JA. β-Catenin/CBP-Dependent Signaling Regulates TGF-β-Induced Epithelial to Mesenchymal Transition of Lens Epithelial Cells. Invest Ophthalmol Vis Sci 2017; 57:5736-5747. [PMID: 27787561 PMCID: PMC5089212 DOI: 10.1167/iovs.16-20162] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose Transforming growth factor-β–induced epithelial–mesenchymal transition (EMT) is one of the main causes of posterior capsular opacification (PCO) or secondary cataract; however, the signaling events involved in TGF-β–induced PCO have not been fully characterized. Here, we focus on examining the role of β-catenin/cyclic AMP response element–binding protein (CREB)-binding protein (CBP) and β-catenin/T-cell factor (TCF)-dependent signaling in regulating cytoskeletal dynamics during TGF-β–induced EMT in lens epithelial explants. Methods Rat lens epithelial explants were cultured in medium M199 in the absence of serum. Explants were treated with TGF-β2 in the presence or absence of the β-catenin/CBP interaction inhibitor, ICG-001, or the β-catenin/TCF interaction inhibitor, PNU-74654. Western blot and immunofluorescence experiments were carried out and analyzed. Results An increase in the expression of fascin, an actin-bundling protein, was observed in the lens explants upon stimulation with TGF-β, and colocalized with F-actin filaments. Inhibition of β-catenin/CBP interactions, but not β-catenin/TCF interactions, led to a decrease in TGF-β–induced fascin and stress fiber formation, as well as a decrease in the expression of known markers of EMT, α-smooth muscle actin (α-SMA) and matrix metalloproteinase 9 (MMP9). In addition, inhibition of β-catenin/CBP–dependent signaling also prevented TGF-β–induced downregulation of epithelial cadherin (E-cadherin) in lens explants. Conclusions We show that β-catenin/CBP–dependent signaling regulates fascin, MMP9, and α-SMA expression during TGF-β–induced EMT. We demonstrate that β-catenin/CBP–dependent signaling is crucial for TGF-β–induced EMT in the lens.
Collapse
Affiliation(s)
- Aftab Taiyab
- Department of Pathology and Molecular Medicine, McMaster Health Sciences Centre, Hamilton, Ontario, Canada
| | - Anna Korol
- Department of Pathology and Molecular Medicine, McMaster Health Sciences Centre, Hamilton, Ontario, Canada
| | - Paula A Deschamps
- Department of Pathology and Molecular Medicine, McMaster Health Sciences Centre, Hamilton, Ontario, Canada
| | - Judith A West-Mays
- Department of Pathology and Molecular Medicine, McMaster Health Sciences Centre, Hamilton, Ontario, Canada
| |
Collapse
|
41
|
Boswell BA, Korol A, West-Mays JA, Musil LS. Dual function of TGFβ in lens epithelial cell fate: implications for secondary cataract. Mol Biol Cell 2017; 28:907-921. [PMID: 28209733 PMCID: PMC5385940 DOI: 10.1091/mbc.e16-12-0865] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 12/29/2022] Open
Abstract
The most common vision-disrupting complication of cataract surgery is posterior capsule opacification (PCO; secondary cataract). PCO is caused by residual lens cells undergoing one of two very different cell fates: either transdifferentiating into myofibroblasts or maturing into lens fiber cells. Although TGFβ has been strongly implicated in lens cell fibrosis, the factors responsible for the latter process have not been identified. We show here for the first time that TGFβ can induce purified primary lens epithelial cells within the same culture to undergo differentiation into either lens fiber cells or myofibroblasts. Marker analysis confirmed that the two cell phenotypes were mutually exclusive. Blocking the p38 kinase pathway, either with direct inhibitors of the p38 MAP kinase or a small-molecule therapeutic that also inhibits the activation of p38, prevented TGFβ from inducing epithelial-myofibroblast transition and cell migration but did not prevent fiber cell differentiation. Rapamycin had the converse effect, linking MTOR signaling to induction of fiber cell differentiation by TGFβ. In addition to providing novel potential therapeutic strategies for PCO, our findings extend the so-called TGFβ paradox, in which TGFβ can induce two disparate cell fates, to a new epithelial disease state.
Collapse
Affiliation(s)
- Bruce A Boswell
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239
| | - Anna Korol
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, ON L8N 3Z5, Canada
| | - Judith A West-Mays
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, ON L8N 3Z5, Canada
| | - Linda S Musil
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239
| |
Collapse
|
42
|
Chung I, Hah YS, Ju S, Kim JH, Yoo WS, Cho HY, Yoo JM, Seo SW, Choi WS, Kim SJ. Ultraviolet B Radiation Stimulates the Interaction between Nuclear Factor of Activated T Cells 5 (NFAT5) and Nuclear Factor-Kappa B (NF-κB) in Human Lens Epithelial Cells. Curr Eye Res 2017. [PMID: 28632030 DOI: 10.1080/02713683.2016.1270327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Nuclear factor-kappa B (NF-κB) has been proposed as a therapeutic target for the treatment of cataracts. The authors investigated the relationship between nuclear factor of activated T cells 5 (NFAT5) and NF-κB in ultraviolet B (UVB)-irradiated human lens epithelial (HLE) cells. METHODS Human lens epithelial B-3 (HLE-B3) cells were exposed to UVB light at a dose of 10 mJ/cm2 and then incubated for 24 h. Cell viability was assessed by using the Cell Counting Kit-8 (CCK-8) assay. Gene expression level of NFAT5 was determined using real-time quantitative polymerase chain reaction (qPCR). Protein expression levels of NFAT5, NF-κB p65, and α-smooth muscle actin (α-SMA) and the association of NFAT5 with the NF-κB p65 subunit were measured by Western blot analysis and a co-immunoprecipitation assay, respectively. The cellular distribution of NFAT5 and NF-κB p65 was examined by triple immunofluorescence staining. RESULTS At 24 h after UVB exposure, cell viability significantly decreased in a dose-dependent manner, and UVB light (15 and 20 mJ/cm2) significantly increased the ROS generation. UVB irradiation increased NFAT5 mRNA and protein levels and increased phosphorylation of NF-κB in HLE-B3 cells. α-SMA protein levels were increased in the irradiated cells. In addition, NFAT5 and NF-κB translocated from the cytoplasm to the nucleus, and binding between the p65 subunit and NFAT5 was increased. CONCLUSIONS Exposure to UVB radiation induces nuclear translocation and stimulates binding between NFAT5 and NF-κB proteins in HLE-B3 cells. These interactions may form part of the biochemical mechanism of cataractogenesis in UVB-irradiated HLECs.
Collapse
Affiliation(s)
- Inyoung Chung
- a Department of Ophthalmology, Institute of Health Sciences , Gyeongsang National University School of Medicine, Gyeongsang National University Hospital , Jinju , Korea
| | - Young-Sool Hah
- b Biomedical Research Institute , Gyeongsang National University Hospital, Institute of Health Sciences , Jinju , Korea
| | - SunMi Ju
- c Division of Pulmonology and Allergy, Department of Internal Medicine , Gyeongsang National University School of Medicine, Gyeongsang National University Hospital , Jinju , Korea
| | - Ji-Hye Kim
- a Department of Ophthalmology, Institute of Health Sciences , Gyeongsang National University School of Medicine, Gyeongsang National University Hospital , Jinju , Korea
| | - Woong-Sun Yoo
- a Department of Ophthalmology, Institute of Health Sciences , Gyeongsang National University School of Medicine, Gyeongsang National University Hospital , Jinju , Korea
| | - Hee-Young Cho
- b Biomedical Research Institute , Gyeongsang National University Hospital, Institute of Health Sciences , Jinju , Korea
| | - Ji-Myong Yoo
- a Department of Ophthalmology, Institute of Health Sciences , Gyeongsang National University School of Medicine, Gyeongsang National University Hospital , Jinju , Korea
| | - Seong-Wook Seo
- a Department of Ophthalmology, Institute of Health Sciences , Gyeongsang National University School of Medicine, Gyeongsang National University Hospital , Jinju , Korea
| | - Wan-Sung Choi
- d Department of Anatomy and Neurobiology, Institute of Health Sciences , Gyeongsang National University School of Medicine , Jinju , Korea
| | - Seong-Jae Kim
- a Department of Ophthalmology, Institute of Health Sciences , Gyeongsang National University School of Medicine, Gyeongsang National University Hospital , Jinju , Korea
| |
Collapse
|
43
|
Jarrin M, Young L, Wu W, Girkin JM, Quinlan RA. In vivo, Ex Vivo, and In Vitro Approaches to Study Intermediate Filaments in the Eye Lens. Methods Enzymol 2016; 568:581-611. [DOI: 10.1016/bs.mie.2015.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
44
|
Xie Q, McGreal R, Harris R, Gao CY, Liu W, Reneker LW, Musil LS, Cvekl A. Regulation of c-Maf and αA-Crystallin in Ocular Lens by Fibroblast Growth Factor Signaling. J Biol Chem 2015; 291:3947-58. [PMID: 26719333 DOI: 10.1074/jbc.m115.705103] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Indexed: 12/20/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling regulates a multitude of cellular processes, including cell proliferation, survival, migration, and differentiation. In the vertebrate lens, FGF signaling regulates fiber cell differentiation characterized by high expression of crystallin proteins. However, a direct link between FGF signaling and crystallin gene transcriptional machinery remains to be established. Previously, we have shown that the bZIP proto-oncogene c-Maf regulates expression of αA-crystallin (Cryaa) through binding to its promoter and distal enhancer, DCR1, both activated by FGF2 in cell culture. Herein, we identified and characterized a novel FGF2-responsive region in the c-Maf promoter (-272/-70, FRE). Both c-Maf and Cryaa regulatory regions contain arrays of AP-1 and Ets-binding sites. Chromatin immunoprecipitation (ChIP) assays established binding of c-Jun (an AP-1 factor) and Etv5/ERM (an Ets factor) to these regions in lens chromatin. Analysis of temporal and spatial expression of c-Jun, phospho-c-Jun, and Etv5/ERM in wild type and ERK1/2 deficient lenses supports their roles as nuclear effectors of FGF signaling in mouse embryonic lens. Collectively, these studies show that FGF signaling up-regulates expression of αA-crystallin both directly and indirectly via up-regulation of c-Maf. These molecular mechanisms are applicable for other crystallins and genes highly expressed in terminally differentiated lens fibers.
Collapse
Affiliation(s)
- Qing Xie
- From the Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Rebecca McGreal
- From the Departments of Ophthalmology and Visual Sciences and
| | - Raven Harris
- Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Chun Y Gao
- Laboratory of Molecular and Developmental Biology, National Eye Institute, Bethesda, Maryland 20892
| | - Wei Liu
- From the Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Lixing W Reneker
- Department of Ophthalmology, Mason Eye Institute, University of Missouri, Columbia, Missouri 65212, and
| | - Linda S Musil
- Department of Biochemistry and Molecular Biology, Oregon Health Science University, Portland, Oregon 97239
| | - Ales Cvekl
- From the Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461,
| |
Collapse
|
45
|
Cvekl A, McGreal R, Liu W. Lens Development and Crystallin Gene Expression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:129-67. [PMID: 26310154 DOI: 10.1016/bs.pmbts.2015.05.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The eye and lens represent excellent models to understand embryonic development at cellular and molecular levels. Initial 3D formation of the eye depends on a reciprocal invagination of the lens placode/optic vesicle to form the eye primordium, i.e., the optic cup partially surrounding the lens vesicle. Subsequently, the anterior part of the lens vesicle gives rise to the lens epithelium, while the posterior cells of the lens vesicle differentiate into highly elongated lens fibers. Lens fiber differentiation involves cytoskeletal rearrangements, cellular elongation, accumulation of crystallin proteins, production of extracellular matrix for the lens capsule, and degradation of organelles. This chapter summarizes recent advances in lens development and provides insights into the regulatory mechanisms and differentiation at the level of chromatin structure and dynamics, the emerging field of noncoding RNAs, and novel strategies to fill the gaps in our understanding of lens development.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA.
| | - Rebecca McGreal
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Wei Liu
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
46
|
Wormstone IM, Eldred JA. Experimental models for posterior capsule opacification research. Exp Eye Res 2015; 142:2-12. [PMID: 25939555 DOI: 10.1016/j.exer.2015.04.021] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/28/2022]
Abstract
Millions of people worldwide are blinded due to cataract formation. At present the only means of treating a cataract is through surgical intervention. A modern cataract operation involves the creation of an opening in the anterior lens capsule to allow access to the fibre cells, which are then removed. This leaves in place a capsular bag that comprises the remaining anterior capsule and the entire posterior capsule. In most cases, an intraocular lens is implanted into the capsular bag during surgery. This procedure initially generates good visual restoration, but unfortunately, residual lens epithelial cells undergo a wound-healing response invoked by surgery, which in time commonly results in a secondary loss of vision. This condition is known as posterior capsule opacification (PCO) and exhibits classical features of fibrosis, including hyperproliferation, migration, matrix deposition, matrix contraction and transdifferentiation into myofibroblasts. These changes alone can cause visual deterioration, but in a significant number of cases, fibre differentiation is also observed, which gives rise to Soemmering's ring and Elschnig's pearl formation. Elucidating the regulatory factors that govern these events is fundamental in the drive to develop future strategies to prevent or delay visual deterioration resulting from PCO. A range of experimental platforms are available for the study of PCO that range from in vivo animal models to in vitro human cell and tissue culture models. In the current review, we will highlight some of the experimental models used in PCO research and provide examples of key findings that have resulted from these approaches.
Collapse
Affiliation(s)
| | - Julie Ann Eldred
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
47
|
Identification and characterization of FGF2-dependent mRNA: microRNA networks during lens fiber cell differentiation. G3-GENES GENOMES GENETICS 2013; 3:2239-55. [PMID: 24142921 PMCID: PMC3852386 DOI: 10.1534/g3.113.008698] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) and fibroblast growth factor (FGF) signaling regulate a wide range of cellular functions, including cell specification, proliferation, migration, differentiation, and survival. In lens, both these systems control lens fiber cell differentiation; however, a possible link between these processes remains to be examined. Herein, the functional requirement for miRNAs in differentiating lens fiber cells was demonstrated via conditional inactivation of Dicer1 in mouse (Mus musculus) lens. To dissect the miRNA-dependent pathways during lens differentiation, we used a rat (Rattus norvegicus) lens epithelial explant system, induced by FGF2 to differentiate, followed by mRNA and miRNA expression profiling. Transcriptome and miRNome analysis identified extensive FGF2-regulated cellular responses that were both independent and dependent on miRNAs. We identified 131 FGF2-regulated miRNAs. Seventy-six of these miRNAs had at least two in silico predicted and inversely regulated target mRNAs. Genes modulated by the greatest number of FGF-regulated miRNAs include DNA-binding transcription factors Nfib, Nfat5/OREBP, c-Maf, Ets1, and N-Myc. Activated FGF signaling influenced bone morphogenetic factor/transforming growth factor-β, Notch, and Wnt signaling cascades implicated earlier in lens differentiation. Specific miRNA:mRNA interaction networks were predicted for c-Maf, N-Myc, and Nfib (DNA-binding transcription factors); Cnot6, Cpsf6, Dicer1, and Tnrc6b (RNA to miRNA processing); and Ash1l, Med1/PBP, and Kdm5b/Jarid1b/Plu1 (chromatin remodeling). Three miRNAs, including miR-143, miR-155, and miR-301a, down-regulated expression of c-Maf in the 3′-UTR luciferase reporter assays. These present studies demonstrate for the first time global impact of activated FGF signaling in lens cell culture system and predicted novel gene regulatory networks connected by multiple miRNAs that regulate lens differentiation.
Collapse
|
48
|
Gupta M, Korol A, West-Mays JA. Nuclear translocation of myocardin-related transcription factor-A during transforming growth factor beta-induced epithelial to mesenchymal transition of lens epithelial cells. Mol Vis 2013; 19:1017-28. [PMID: 23687438 PMCID: PMC3654857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 05/04/2013] [Indexed: 10/25/2022] Open
Abstract
PURPOSE Transforming growth factor beta (TGFβ) is a known inducer of epithelial to mesenchymal transition (EMT), and studies in other systems have shown that nuclear localization of the myocardin-related transcription factor (MRTF) is downstream of TGFβ. In the following study, we investigated whether nuclear translocation of MRTF-A or MRTF-B is involved in TGFβ-induced EMT of lens epithelial cells (LECs). We further investigated the relationship between matrix metalloproteinase-2 and -9 (MMP-2/9) and MRTF in the EMT of LECs. METHODS Rat lens explant cultures were used as the model system. Explants were treated with TGFβ, an MMP-2/9 inhibitor, or actin binding drugs and immunostained for alpha smooth muscle actin (αSMA), MRTF-A, and MRTF-B. Cytoplasmic and nuclear intensities of cells were measured using ImageJ. Production of αSMA was measured using western blot analysis and ImageJ. RESULTS Untreated explant cells exhibited little αSMA expression, and MRTF-A and B were found to reside primarily in the cytosol. However, when stimulated with TGFβ, a significantly greater number of cells exhibited nuclear expression of MRTF-A, accompanied by an increase in αSMA expression. However, MRTF-B remained in the cytoplasm following TGFβ treatment. Cotreatment with an MMP-2/9 inhibitor and TGFβ resulted in reduced MRTF-A nuclear localization and αSMA expression compared to cells treated with TGFβ alone. CONCLUSIONS Our results are the first to demonstrate the expression of MRTF-A in LECs and that its nuclear translocation can be stimulated by TGFβ. Our data further suggest that MMP-2 and -9 are involved in the translocation of MRTF-A in LECs during TGFβ-induced EMT.
Collapse
|
49
|
Bao XL, Song H, Chen Z, Tang X. Wnt3a promotes epithelial-mesenchymal transition, migration, and proliferation of lens epithelial cells. Mol Vis 2012; 18:1983-90. [PMID: 22876125 PMCID: PMC3413413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 07/15/2012] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Posterior capsular opacification (PCO) is caused mainly by the epithelial-mesenchymal transition (EMT), proliferation, and migration of human lens epithelial (HLE) cells. wingless (Wnt) signaling has been implicated in the fibrotic process by inducing EMT and increasing the proliferation of epithelial cells. This study investigated the role of Wnt3a in PCO formation. METHODS Wnt3a was overexpressed in the HLE B-3 cell line by transfected Wnt3a-pcDNA3 plasmid. The expressions of Wnt/β-catenin signaling component proteins, including β-catenin, E-cadherin, fibronectin, c-Myc, and cyclin D1, were detected by western blot analysis and immunocytofluorescence to confirm the efficiency of transfection efficiency and analyze the effects of overexpression. HLE migration ability was evaluated by transwell migration and wound healing assays, whereas HLE proliferation was analyzed by MTT [3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide] assay and flow cytometry. RESULTS Overexpression of Wnt3a resulted in upregulated expression of β-catenin, c-Myc, and cyclin D1. Expression of the lens epithelial marker E-cadherin was down-regulated in Wnt3a-overexpressing HLE B-3 cells, whereas that of the mesenchymal marker fibronectin was upregulated. In addition, the morphology of HLE B-3 cells changed from the classic spindle shape to an irregular form. Overexpression of Wnt3a could enhance the ability of migration as determined by transwell migration and wound healing assays as well as promoted the proliferation of HLE B-3 cells by MTT assay and flow cytometry analysis. CONCLUSIONS Wnt3a can induce EMT, migration, and proliferation of HLE cells and may be a valuable therapeutic target for the prevention and treatment of PCO.
Collapse
|
50
|
Jarrin M, Pandit T, Gunhaga L. A balance of FGF and BMP signals regulates cell cycle exit and Equarin expression in lens cells. Mol Biol Cell 2012; 23:3266-74. [PMID: 22718906 PMCID: PMC3418319 DOI: 10.1091/mbc.e12-01-0075] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The roles of BMP and FGF during the transition of proliferating lens epithelial cells to differentiated primary lens fiber cells are examined. The results show that proliferation, cell cycle exit, and early differentiation of primary lens fiber cells are regulated by counterbalancing BMP and FGF signals. In embryonic and adult lenses, a balance of cell proliferation, cell cycle exit, and differentiation is necessary to maintain physical function. The molecular mechanisms regulating the transition of proliferating lens epithelial cells to differentiated primary lens fiber cells are poorly characterized. To investigate this question, we used gain- and loss-of-function analyses to modulate fibroblast growth factor (FGF) and/or bone morphogenetic protein (BMP) signals in chick lens/retina explants. Here we show that FGF activity plays a key role for proliferation independent of BMP signals. Moreover, a balance of FGF and BMP signals regulates cell cycle exit and the expression of Ccdc80 (also called Equarin), which is expressed at sites where differentiation of lens fiber cells occurs. BMP activity promotes cell cycle exit and induces Equarin expression in an FGF-dependent manner. In contrast, FGF activity is required but not sufficient to induce cell cycle exit or Equarin expression. Furthermore, our results show that in the absence of BMP activity, lens cells have increased cell cycle length or are arrested in the cell cycle, which leads to decreased cell cycle exit. Taken together, these findings suggest that proliferation, cell cycle exit, and early differentiation of primary lens fiber cells are regulated by counterbalancing BMP and FGF signals.
Collapse
Affiliation(s)
- Miguel Jarrin
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|