1
|
Choi J, Li J, Ferdous S, Liang Q, Moffitt JR, Chen R. Spatial organization of the mouse retina at single cell resolution by MERFISH. Nat Commun 2023; 14:4929. [PMID: 37582959 PMCID: PMC10427710 DOI: 10.1038/s41467-023-40674-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023] Open
Abstract
The visual signal processing in the retina requires the precise organization of diverse neuronal types working in concert. While single-cell omics studies have identified more than 120 different neuronal subtypes in the mouse retina, little is known about their spatial organization. Here, we generated the single-cell spatial atlas of the mouse retina using multiplexed error-robust fluorescence in situ hybridization (MERFISH). We profiled over 390,000 cells and identified all major cell types and nearly all subtypes through the integration with reference single-cell RNA sequencing (scRNA-seq) data. Our spatial atlas allowed simultaneous examination of nearly all cell subtypes in the retina, revealing 8 previously unknown displaced amacrine cell subtypes and establishing the connection between the molecular classification of many cell subtypes and their spatial arrangement. Furthermore, we identified spatially dependent differential gene expression between subtypes, suggesting the possibility of functional tuning of neuronal types based on location.
Collapse
Affiliation(s)
- Jongsu Choi
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jin Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Salma Ferdous
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Qingnan Liang
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jeffrey R Moffitt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital; Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Rui Chen
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Keeley PW, Patel SS, Reese BE. Cell numbers, cell ratios, and developmental plasticity in the rod pathway of the mouse retina. J Anat 2023; 243:204-222. [PMID: 35292986 PMCID: PMC10335380 DOI: 10.1111/joa.13653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
The precise specification of cellular fate is thought to ensure the production of the correct number of neurons within a population. Programmed cell death may be an additional mechanism controlling cell number, believed to refine the proper ratio of pre- to post-synaptic neurons for a given species. Here, we consider the size of three different neuronal populations in the rod pathway of the mouse retina: rod photoreceptors, rod bipolar cells, and AII amacrine cells. Across a collection of 28 different strains of mice, large variation in the numbers of all three cell types is present. The variation in their numbers is not correlated, so that the ratio of rods to rod bipolar cells, as well as rod bipolar cells to AII amacrine cells, varies as well. Establishing connectivity between such variable pre- and post-synaptic populations relies upon plasticity that modulates process outgrowth and morphological differentiation, which we explore experimentally for both rod bipolar and AII amacrine cells in a mouse retina with elevated numbers of each cell type. While both rod bipolar dendritic and axonal arbors, along with AII lobular arbors, modulate their areal size in relation to local homotypic cell densities, the dendritic appendages of the AII amacrine cells do not. Rather, these processes exhibit a different form of plasticity, regulating the branching density of their overlapping arbors. Each form of plasticity should ensure uniformity in retinal coverage in the presence of the independent specification of afferent and target cell number.
Collapse
Affiliation(s)
- Patrick W. Keeley
- Neuroscience Research InstituteUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Shivam S. Patel
- Neuroscience Research InstituteUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Benjamin E. Reese
- Neuroscience Research InstituteUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
- Department of Psychological & Brain SciencesUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| |
Collapse
|
3
|
Subramanian R, Sahoo D. Boolean implication analysis of single-cell data predicts retinal cell type markers. BMC Bioinformatics 2022; 23:378. [PMID: 36114457 PMCID: PMC9482279 DOI: 10.1186/s12859-022-04915-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022] Open
Abstract
Background The retina is a complex tissue containing multiple cell types that are essential for vision. Understanding the gene expression patterns of various retinal cell types has potential applications in regenerative medicine. Retinal organoids (optic vesicles) derived from pluripotent stem cells have begun to yield insights into the transcriptomics of developing retinal cell types in humans through single cell RNA-sequencing studies. Previous methods of gene reporting have relied upon techniques in vivo using microarray data, or correlational and dimension reduction methods for analyzing single cell RNA-sequencing data computationally. We aimed to develop a state-of-the-art Boolean method that filtered out noise, could be applied to a wide variety of datasets and lent insight into gene expression over differentiation. Results Here, we present a bioinformatic approach using Boolean implication to discover genes which are retinal cell type-specific or involved in retinal cell fate. We apply this approach to previously published retina and retinal organoid datasets and improve upon previously published correlational methods. Our method improves the prediction accuracy of marker genes of retinal cell types and discovers several new high confidence cone and rod-specific genes. Conclusions The results of this study demonstrate the benefits of a Boolean approach that considers asymmetric relationships. We have shown a statistically significant improvement from correlational, symmetric methods in the prediction accuracy of retinal cell-type specific genes. Furthermore, our method contains no cell or tissue-specific tuning and hence could impact other areas of gene expression analyses in cancer and other human diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04915-4.
Collapse
|
4
|
Camerino MJ, Engerbretson IJ, Fife PA, Reynolds NB, Berria MH, Doyle JR, Clemons MR, Gencarella MD, Borghuis BG, Fuerst PG. OFF bipolar cell density varies by subtype, eccentricity, and along the dorsal ventral axis in the mouse retina. J Comp Neurol 2021; 529:1911-1925. [PMID: 33135176 PMCID: PMC8009814 DOI: 10.1002/cne.25064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022]
Abstract
The neural retina is organized along central-peripheral, dorsal-ventral, and laminar planes. Cellular density and distributions vary along the central-peripheral and dorsal-ventral axis in species including primates, mice, fish, and birds. Differential distribution of cell types within the retina is associated with sensitivity to different types of damage that underpin major retinal diseases, including macular degeneration and glaucoma. Normal variation in retinal distribution remains unreported for multiple cell types in widely used research models, including mouse. Here we map the distribution of all known OFF bipolar cell (BC) populations and horizontal cells. We report significant variation in the distribution of OFF BC populations and horizontal cells along the dorsal-ventral and central-peripheral axes of the retina. Distribution patterns are much more pronounced for some populations of OFF BC cells than others and may correspond to the cell type's specialized functions.
Collapse
Affiliation(s)
- Michael J Camerino
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Ian J Engerbretson
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Parker A Fife
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Nathan B Reynolds
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Mikel H Berria
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Jamie R Doyle
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Mellisa R Clemons
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Michael D Gencarella
- WWAMI Medical Education Program, University of Washington School of Medicine, Moscow, Idaho, USA
| | - Bart G Borghuis
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisille, Kentuky, USA
| | - Peter G Fuerst
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- WWAMI Medical Education Program, University of Washington School of Medicine, Moscow, Idaho, USA
| |
Collapse
|
5
|
Interrelationships between Cellular Density, Mosaic Patterning, and Dendritic Coverage of VGluT3 Amacrine Cells. J Neurosci 2021; 41:103-117. [PMID: 33208470 DOI: 10.1523/jneurosci.1027-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 01/15/2023] Open
Abstract
Amacrine cells of the retina are conspicuously variable in their morphologies, their population demographics, and their ensuing functions. Vesicular glutamate transporter 3 (VGluT3) amacrine cells are a recently characterized type of amacrine cell exhibiting local dendritic autonomy. The present analysis has examined three features of this VGluT3 population, including their density, local distribution, and dendritic spread, to discern the extent to which these are interrelated, using male and female mice. We first demonstrate that Bax-mediated cell death transforms the mosaic of VGluT3 cells from a random distribution into a regular mosaic. We subsequently examine the relationship between cell density and mosaic regularity across recombinant inbred strains of mice, finding that, although both traits vary across the strains, they exhibit minimal covariation. Other genetic determinants must therefore contribute independently to final cell number and to mosaic order. Using a conditional KO approach, we further demonstrate that Bax acts via the bipolar cell population, rather than cell-intrinsically, to control VGluT3 cell number. Finally, we consider the relationship between the dendritic arbors of single VGluT3 cells and the distribution of their homotypic neighbors. Dendritic field area was found to be independent of Voronoi domain area, while dendritic coverage of single cells was not conserved, simply increasing with the size of the dendritic field. Bax-KO retinas exhibited a threefold increase in dendritic coverage. Each cell, however, contributed less dendrites at each depth within the plexus, intermingling their processes with those of neighboring cells to approximate a constant volumetric density, yielding a uniformity in process coverage across the population.SIGNIFICANCE STATEMENT Different types of retinal neuron spread their processes across the surface of the retina to achieve a degree of dendritic coverage that is characteristic of each type. Many of these types achieve a constant coverage by varying their dendritic field area inversely with the local density of like-type neighbors. Here we report a population of retinal amacrine cells that do not develop dendritic arbors in relation to the spatial positioning of such homotypic neighbors; rather, this cell type modulates the extent of its dendritic branching when faced with a variable number of overlapping dendritic fields to approximate a uniformity in dendritic density across the retina.
Collapse
|
6
|
Rzhanova LA, Kuznetsova AV, Aleksandrova MA. Reprogramming of Differentiated Mammalian and Human Retinal Pigment Epithelium: Current Achievements and Prospects. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420040062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
Impairment of the homeostatic and functional integrity of the retina and retinal pigment epithelium (RPE) is the main cause of some degenerative diseases of the human eye, which are accompanied by loss of eyesight. Despite the significant progress made over the past decades in the development of new methods for treatment for this pathology, there are still several complications when using surgical methods for correction of eyesight and so far insurmountable limitations in the applications of modern approaches, such as gene therapy and genetic engineering. One of the promising approaches to the treatment of degenerative diseases of the retina may be an approach based on the application of regenerative capacities of its endogenous cells with high plasticity, in particular, of RPE cells and Müller glia. Currently, vertebrate RPE cells are of great interest as a source of new photoreceptors and other neurons in the degrading retina in vivo. In this regard, the possibilities of their direct reprogramming by genetic, epigenetic, and chemical methods and their combination are being investigated. This review focuses on research in gene-directed reprogramming of vertebrate RPE cells into retinal neurons, with detailed analysis of the genes used as the main reprogramming factors, comparative analysis, and extrapolation of experimental data from animals to humans. Also, this review covers studies on the application of alternative approaches to gene-directed reprogramming, such as chemical-mediated reprogramming with the use of cocktails of therapeutic low-molecular-weight compounds and microRNAs. In general, the research results indicate the complexity of the process for direct reprogramming of human RPE cells into retinal neurons. However, taking into account the results of direct reprogramming of vertebrate cells and the accessibility of human RPE cells for various vectors that deliver a variety of molecules to cells, such as transcription factors, chimeric endonucleases, recombinant proteins, and low-weight molecular compounds, the most optimal combination of factors for the successful conversion of human RPE cells to retinal neurons can be suggested.
Collapse
|
7
|
Lupori L, Sagona G, Fuchs C, Mazziotti R, Stefanov A, Putignano E, Napoli D, Strettoi E, Ciani E, Pizzorusso T. Site-specific abnormalities in the visual system of a mouse model of CDKL5 deficiency disorder. Hum Mol Genet 2020; 28:2851-2861. [PMID: 31108505 PMCID: PMC6736061 DOI: 10.1093/hmg/ddz102] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
CDKL5 deficiency disorder (CDD) is a neurodevelopmental disorder characterized by a severe global developmental delay and early-onset seizures. Notably, patients show distinctive visual abnormalities often clinically diagnosed as cortical visual impairment. However, the involvement of cerebral cortical dysfunctions in the origin of the symptoms is poorly understood. CDD mouse models also display visual deficits, and cortical visual responses can be used as a robust biomarker in CDKL5 mutant mice. A deeper understanding of the circuits underlying the described visual deficits is essential for directing preclinical research and translational approaches. Here, we addressed this question in two ways: first, we performed an in-depth morphological analysis of the visual pathway, from the retina to the primary visual cortex (V1), of CDKL5 null mice. We found that the lack of CDKL5 produced no alteration in the organization of retinal circuits. Conversely, CDKL5 mutants showed reduced density and altered morphology of spines and decreased excitatory synapse marker PSD95 in the dorsal lateral geniculate nucleus and in V1. An increase in the inhibitory marker VGAT was selectively present in V1. Second, using a conditional CDKL5 knockout model, we showed that selective cortical deletion of CDKL5 from excitatory cells is sufficient to produce abnormalities of visual cortical responses, demonstrating that the normal function of cortical circuits is dependent on CDKL5. Intriguingly, these deficits were associated with morphological alterations of V1 excitatory and inhibitory synaptic contacts. In summary, this work proposes cortical circuit structure and function as a critically important target for studying CDD.
Collapse
Affiliation(s)
- Leonardo Lupori
- BIO@SNS Laboratory, Scuola Normale Superiore, Via Moruzzi 1, Pisa 56124, Italy.,Institute of Neuroscience, National Research Council, Via Moruzzi 1, Pisa 56124, Italy
| | - Giulia Sagona
- Institute of Neuroscience, National Research Council, Via Moruzzi 1, Pisa 56124, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA University of Florence, Area San Salvi-Pad. 26, Florence 50135, Italy.,Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa 56128, Italy
| | - Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40126, Italy
| | - Raffaele Mazziotti
- Institute of Neuroscience, National Research Council, Via Moruzzi 1, Pisa 56124, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA University of Florence, Area San Salvi-Pad. 26, Florence 50135, Italy
| | - Antonia Stefanov
- Institute of Neuroscience, National Research Council, Via Moruzzi 1, Pisa 56124, Italy
| | - Elena Putignano
- Institute of Neuroscience, National Research Council, Via Moruzzi 1, Pisa 56124, Italy
| | - Debora Napoli
- BIO@SNS Laboratory, Scuola Normale Superiore, Via Moruzzi 1, Pisa 56124, Italy.,Institute of Neuroscience, National Research Council, Via Moruzzi 1, Pisa 56124, Italy
| | - Enrica Strettoi
- Institute of Neuroscience, National Research Council, Via Moruzzi 1, Pisa 56124, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40126, Italy
| | - Tommaso Pizzorusso
- BIO@SNS Laboratory, Scuola Normale Superiore, Via Moruzzi 1, Pisa 56124, Italy.,Institute of Neuroscience, National Research Council, Via Moruzzi 1, Pisa 56124, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA University of Florence, Area San Salvi-Pad. 26, Florence 50135, Italy
| |
Collapse
|
8
|
Geisert EE, Williams RW. Using BXD mouse strains in vision research: A systems genetics approach. Mol Vis 2020; 26:173-187. [PMID: 32180682 PMCID: PMC7058434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/04/2020] [Indexed: 11/06/2022] Open
Abstract
We illustrate the growing power of the BXD family of mice (recombinant inbred strains from a cross of C57BL/6J and DBA/2J mice) and companion bioinformatic tools to study complex genome-phenome relations related to glaucoma. Over the past 16 years, our group has integrated powerful murine resources and web-accessible tools to identify networks modulating visual system traits-from photoreceptors to the visual cortex. Recent studies focused on retinal ganglion cells and glaucoma risk factors, including intraocular pressure (IOP), central corneal thickness (CCT), and susceptibility of cellular stress. The BXD family was exploited to define key gene variants and then establish linkage to glaucoma in human cohorts. The power of this experimental approach to precision medicine is highlighted by recent studies that defined cadherin 11 (Cdh11) and a calcium channel (Cacna2d1) as genes modulating IOP, Pou6f2 as a genetic link between CCT and retinal ganglion cell (RGC) death, and Aldh7a1 as a gene that modulates the susceptibility of RGCs to death after elevated IOP. The role of three of these gene variants in glaucoma is discussed, along with the pathways activated in the disease process.
Collapse
Affiliation(s)
- Eldon E. Geisert
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE Atlanta GA, 30322
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, 71 S Manassas St, Memphis TN 38163
| |
Collapse
|
9
|
Keeley PW, Eglen SJ, Reese BE. From random to regular: Variation in the patterning of retinal mosaics. J Comp Neurol 2020; 528:2135-2160. [PMID: 32026463 DOI: 10.1002/cne.24880] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/07/2020] [Accepted: 01/31/2020] [Indexed: 12/23/2022]
Abstract
The various types of retinal neurons are each positioned at their respective depths within the retina where they are believed to be assembled as orderly mosaics, in which like-type neurons minimize proximity to one another. Two common statistical analyses for assessing the spatial properties of retinal mosaics include the nearest neighbor analysis, from which an index of their "regularity" is commonly calculated, and the density recovery profile derived from autocorrelation analysis, revealing the presence of an exclusion zone indicative of anti-clustering. While each of the spatial statistics derived from these analyses, the regularity index and the effective radius, can be useful in characterizing such properties of orderly retinal mosaics, they are rarely sufficient for conveying the natural variation in the self-spacing behavior of different types of retinal neurons and the extent to which that behavior generates uniform intercellular spacing across the mosaic. We consider the strengths and limitations of these and other spatial statistical analyses for assessing the patterning in retinal mosaics, highlighting a number of misconceptions and their frequent misuse. Rather than being diagnostic criteria for determining simply whether a population is "regular," they should be treated as descriptive statistics that convey variation in the factors that influence neuronal positioning. We subsequently apply multiple spatial statistics to the analysis of eight different mosaics in the mouse retina, demonstrating conspicuous variability in the degree of patterning present, from essentially random to notably regular. This variability in patterning has both a developmental as well as a functional significance, reflecting the rules governing the positioning of different types of neurons as the architecture of the retina is assembled, and the distinct mechanisms by which they regulate dendritic growth to generate their characteristic coverage and connectivity.
Collapse
Affiliation(s)
- Patrick W Keeley
- Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, California
| | - Stephen J Eglen
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Benjamin E Reese
- Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, California.,Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| |
Collapse
|
10
|
Assawachananont J, Kim SY, Kaya KD, Fariss R, Roger JE, Swaroop A. Cone-rod homeobox CRX controls presynaptic active zone formation in photoreceptors of mammalian retina. Hum Mol Genet 2019; 27:3555-3567. [PMID: 30084954 DOI: 10.1093/hmg/ddy272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/19/2018] [Indexed: 12/14/2022] Open
Abstract
In the mammalian retina, rod and cone photoreceptors transmit the visual information to bipolar neurons through highly specialized ribbon synapses. We have limited understanding of regulatory pathways that guide morphogenesis and organization of photoreceptor presynaptic architecture in the developing retina. While neural retina leucine zipper (NRL) transcription factor determines rod cell fate and function, cone-rod homeobox (CRX) controls the expression of both rod- and cone-specific genes and is critical for terminal differentiation of photoreceptors. A comprehensive immunohistochemical evaluation of Crx-/- (null), CrxRip/+ and CrxRip/Rip (models of dominant congenital blindness) mouse retinas revealed abnormal photoreceptor synapses, with atypical ribbon shape, number and length. Integrated analysis of retinal transcriptomes of Crx-mutants with CRX- and NRL-ChIP-Seq data identified a subset of differentially expressed CRX target genes that encode presynaptic proteins associated with the cytomatrix active zone (CAZ) and synaptic vesicles. Immunohistochemistry of Crx-mutant retina validated aberrant expression of REEP6, PSD95, MPP4, UNC119, UNC13, RGS7 and RGS11, with some reduction in Ribeye and no significant change in immunostaining of RIMS1, RIMS2, Bassoon and Pikachurin. Our studies demonstrate that CRX controls the establishment of CAZ and anchoring of ribbons, but not the formation of ribbon itself, in photoreceptor presynaptic terminals.
Collapse
Affiliation(s)
- Juthaporn Assawachananont
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Soo-Young Kim
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Koray D Kaya
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert Fariss
- Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jerome E Roger
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Centre d'Etude et de Recherches Thérapeutiques en Ophthalmologie, Retina France, Orsay, France.,Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Duncan DS, Weiner RL, Weitlauf C, Risner ML, Roux AL, Sanford ER, Formichella CR, Sappington RM. Ccl5 Mediates Proper Wiring of Feedforward and Lateral Inhibition Pathways in the Inner Retina. Front Neurosci 2018; 12:702. [PMID: 30369865 PMCID: PMC6194164 DOI: 10.3389/fnins.2018.00702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/18/2018] [Indexed: 01/08/2023] Open
Abstract
The β-chemokine Ccl5 and its receptors are constitutively expressed in neurons of the murine inner retina. Here, we examined the functional and structural significance of this constitutive Ccl5 signaling on retinal development. We compared outcomes of electrophysiology, ocular imaging and retinal morphology in wild-type mice (WT) and mice with Ccl5 deficiency (Ccl5-/-). Assessment of retinal structure by ocular coherence tomography and histology revealed slight thinning of the inner plexiform layer (IPL) and inner nuclear layer (INL) in Ccl5-/- mice, compared to WT (p < 0.01). Assessment of postnatal timepoints important for development of the INL (P7 and P10) revealed Ccl5-dependent alterations in the pattern and timing of apoptotic pruning. Morphological analyses of major inner retinal cell types in WT, Ccl5-/-, gustducingfp and gustducingfp/Ccl5-/- mice revealed Ccl5-dependent reduction in GNAT3 expression in rod bipolar cells as well as a displacement of their terminals from the IPL into the GCL. RGC dendritic organization and amacrine cell morphology in the IPL was similarly disorganized in Ccl5-/- mice. Examination of the intrinsic electrophysiological properties of RGCs revealed higher spontaneous activity in Ccl5-/- mice that was characterized by higher spiking frequency and a more depolarized resting potential. This hyperactive phenotype could be negated by current clamp and correlated with both membrane resistance and soma area. Overall, our findings identify Ccl5 signaling as a mediator of inner retinal circuitry during development of the murine retina. The apparent role of Ccl5 in retinal development further supports chemokines as trophic modulators of CNS development and function that extends far beyond the inflammatory contexts in which they were first characterized.
Collapse
Affiliation(s)
- D'Anne S Duncan
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rebecca L Weiner
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States.,Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Carl Weitlauf
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Michael L Risner
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Abigail L Roux
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Emily R Sanford
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Cathryn R Formichella
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rebecca M Sappington
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States.,Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
12
|
Corso-Díaz X, Jaeger C, Chaitankar V, Swaroop A. Epigenetic control of gene regulation during development and disease: A view from the retina. Prog Retin Eye Res 2018; 65:1-27. [PMID: 29544768 PMCID: PMC6054546 DOI: 10.1016/j.preteyeres.2018.03.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 12/20/2022]
Abstract
Complex biological processes, such as organogenesis and homeostasis, are stringently regulated by genetic programs that are fine-tuned by epigenetic factors to establish cell fates and/or to respond to the microenvironment. Gene regulatory networks that guide cell differentiation and function are modulated and stabilized by modifications to DNA, RNA and proteins. In this review, we focus on two key epigenetic changes - DNA methylation and histone modifications - and discuss their contribution to retinal development, aging and disease, especially in the context of age-related macular degeneration (AMD) and diabetic retinopathy. We highlight less-studied roles of DNA methylation and provide the RNA expression profiles of epigenetic enzymes in human and mouse retina in comparison to other tissues. We also review computational tools and emergent technologies to profile, analyze and integrate epigenetic information. We suggest implementation of editing tools and single-cell technologies to trace and perturb the epigenome for delineating its role in transcriptional regulation. Finally, we present our thoughts on exciting avenues for exploring epigenome in retinal metabolism, disease modeling, and regeneration.
Collapse
Affiliation(s)
- Ximena Corso-Díaz
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catherine Jaeger
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vijender Chaitankar
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
13
|
Park HW, Kim HL, Park YS, Kim IB. The Transient Intermediate Plexiform Layer, a Plexiform Layer-like Structure Temporarily Existing in the Inner Nuclear Layer in Developing Rat Retina. Exp Neurobiol 2018. [PMID: 29535567 PMCID: PMC5840459 DOI: 10.5607/en.2018.27.1.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The retina is a highly specialised part of the brain responsible for visual processing. It is well-laminated; three layers containing five different types of neurons are compartmentalised by two synaptic layers. Among the retinal layers, the inner nuclear layer (INL) is composed of horizontal, bipolar, and amacrine cell types. Bipolar cells form one sublayer in the distal half of the IPL, while amacrine cells form another sublayer in the proximal half, without any border-like structure. Here, we report that a plexiform layer-like structure exists temporarily in the border between the bipolar and amacrine sublayers in the INL in the rat retina during retinal development. This transient intermediate plexiform layer (TIPL) appeared at postnatal day (PD) 7 and then disappeared around PD 12. Most apoptotic cells in the INL were found near the TIPL. These results suggest that the TIPL may contribute to the formation of sublayers and the cell number limit in the INL.
Collapse
Affiliation(s)
- Hyung Wook Park
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Hong-Lim Kim
- Integrative Research Support Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yong Soo Park
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Integrative Research Support Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
14
|
Meyer KJ, Anderson MG. Genetic modifiers as relevant biological variables of eye disorders. Hum Mol Genet 2017; 26:R58-R67. [PMID: 28482014 DOI: 10.1093/hmg/ddx180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022] Open
Abstract
From early in the study of mammalian genetics, it was clear that modifiers can have a striking influence on phenotypes. Today, several modifiers have now been studied in enough detail to allow a glimpse of how they function and influence our perspective of disease. With respect to diseases of the eye, some modifiers are an important source of phenotypic variation that can elucidate how genes function in networks to collectively shape ocular anatomy and physiology, thus influencing our understanding of basic biology. Other modifiers represent an opportunity for new therapeutic targets, whose manipulation could be used to mitigate ophthalmic disease. Here, we review progress in the study of genetic modifiers of eye disorders, with examples from mice and humans that together illustrate the ubiquitous nature of genetic modifiers and why they are relevant biological variables in experimental design. Special emphasis is given to ophthalmic modifiers in mice, especially those relevant to selection of genetic background and those that might inadvertently be a source of experimental variability. These modifiers are capable of influencing interpretations of many experiments using targeted genome manipulations such as knockouts or transgenics. Whereas there are fewer examples of modifiers of eye disorders in humans with a molecular identification, there is ample evidence that they exist and should be considered as a relevant biological variable in human genetic studies as well.
Collapse
Affiliation(s)
- Kacie J Meyer
- Department of Molecular Physiology and Biophysics.,Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Michael G Anderson
- Department of Molecular Physiology and Biophysics.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA.,Center for Prevention and Treatment of Visual Loss, Iowa City Veterans Administration Medical Center, Iowa City, IA 52242, USA
| |
Collapse
|
15
|
Nadal-Nicolás FM, Vidal-Sanz M, Agudo-Barriuso M. The aging rat retina: from function to anatomy. Neurobiol Aging 2017; 61:146-168. [PMID: 29080498 DOI: 10.1016/j.neurobiolaging.2017.09.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 01/13/2023]
Abstract
In healthy beings, age is the ultimate reason of cellular malfunction and death. In the rat retina, age causes a functional decline and loss of specific neuronal populations. In this regard, controversial conclusions have been reported for the innermost retina. Here, we have studied the albino and pigmented retina for the duration of the rat life-span. Independent of age (21 days-22 months), the electroretinographic recordings and the volume of the retina and its layers are smaller in albinos. Functionally, aging causes in both strains a loss of cone- and rod-mediated responses. Anatomically, cell density decreases with age because the retina grows linearly with time; no cell loss is observed in the ganglion cell layer; and only in the pigmented rat, there is a decrease in cone photoreceptors. In old animals of both strains, there is gliosis in the superior colliculi and a diminution of the area innervated by retinal ganglion cells. In conclusion, this work provides the basis for further studies linking senescence to neurodegenerative retinal diseases.
Collapse
Affiliation(s)
- Francisco M Nadal-Nicolás
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca) and Departamento de Oftalmología Facultad de Medicina, Universidad de Murcia, Murcia, Spain.
| | - Manuel Vidal-Sanz
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca) and Departamento de Oftalmología Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Marta Agudo-Barriuso
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca) and Departamento de Oftalmología Facultad de Medicina, Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
16
|
Pérez de Sevilla Müller L, Azar SS, de Los Santos J, Brecha NC. Prox1 Is a Marker for AII Amacrine Cells in the Mouse Retina. Front Neuroanat 2017; 11:39. [PMID: 28529477 PMCID: PMC5418924 DOI: 10.3389/fnana.2017.00039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/18/2017] [Indexed: 12/18/2022] Open
Abstract
The transcription factor Prox1 is expressed in multiple cells in the retina during eye development. This study has focused on neuronal Prox1 expression in the inner nuclear layer (INL) of the adult mouse retina. Prox1 immunostaining was evaluated in vertical retinal sections and whole mount preparations using a specific antibody directed to the C-terminus of Prox1. Strong immunostaining was observed in numerous amacrine cell bodies and in all horizontal cell bodies in the proximal and distal INL, respectively. Some bipolar cells were also weakly immunostained. Prox1-immunoreactive amacrine cells expressed glycine, and they formed 35 ± 3% of all glycinergic amacrine cells. Intracellular Neurobiotin injections into AII amacrine cells showed that all gap junction-coupled AII amacrine cells express Prox1, and no other Prox1-immunostained amacrine cells were in the immediate area surrounding the injected AII amacrine cell. Prox1-immunoreactive amacrine cell bodies were distributed across the retina, with their highest density (3887 ± 160 cells/mm2) in the central retina, 0.5 mm from the optic nerve head, and their lowest density (3133 ± 350 cells/mm2) in the mid-peripheral retina, 2 mm from the optic nerve head. Prox1-immunoreactive amacrine cell bodies comprised ~9.8% of the total amacrine cell population, and they formed a non-random mosaic with a regularity index (RI) of 3.4, similar to AII amacrine cells in the retinas of other mammals. Together, these findings indicate that AII amacrine cells are the predominant and likely only amacrine cell type strongly expressing Prox1 in the adult mouse retina, and establish Prox1 as a marker of AII amacrine cells.
Collapse
Affiliation(s)
- Luis Pérez de Sevilla Müller
- Departments of Neurobiology, Medicine and Ophthalmology, David Geffen School of Medicine at Los Angeles, University of California, Los AngelesLos Angeles, CA, USA
| | - Shaghauyegh S Azar
- Departments of Neurobiology, Medicine and Ophthalmology, David Geffen School of Medicine at Los Angeles, University of California, Los AngelesLos Angeles, CA, USA
| | - Janira de Los Santos
- Departments of Neurobiology, Medicine and Ophthalmology, David Geffen School of Medicine at Los Angeles, University of California, Los AngelesLos Angeles, CA, USA
| | - Nicholas C Brecha
- Departments of Neurobiology, Medicine and Ophthalmology, David Geffen School of Medicine at Los Angeles, University of California, Los AngelesLos Angeles, CA, USA.,Stein Eye Institute, David Geffen School of Medicine at Los Angeles, University of California, Los AngelesLos Angeles, CA, USA.,CURE Digestive Diseases Research Center, David Geffen School of Medicine at Los Angeles, University of California, Los AngelesLos Angeles, CA, USA.,Veterans Administration Greater Los Angeles Health SystemLos Angeles, CA, USA
| |
Collapse
|