1
|
Sun B, Zhang Z, Yu Y, Xia F, Ma Y, Ding X, Han X, Wang T, Zhou X, Zhao J. Comparative study of physicochemical properties on corneal stromal lenticules following four decellularization methods. Exp Eye Res 2024; 249:110148. [PMID: 39537007 DOI: 10.1016/j.exer.2024.110148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/16/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
This study compares the physicochemical properties of corneal stromal lenticules following decellularization via four methods. Human corneal stromal lenticules, derived from small incision lenticule extraction surgery, underwent decellularization with sodium dodecyl sulfate (SDS), Triton X-100 (Tx) combined with SDS, trypsin-ethylenediaminetetraacetic acid (TE), or NaCl combined with deoxyribonuclease (DNase), respectively. Lenticule DNA and glycosaminoglycan (GAG) content, immunofluorescence staining of cell nuclei and collagen, transparency, biomechanics, histological structure, and immunogenicity were examined in each group and compared with fresh lenticules. All decellularized groups exhibited effective cell removal, with no significant decrease in GAG content (all P > 0.05). DNA content decreased in all decellularization groups (all P < 0.01), most notably in the SDS and Tx + SDS groups. Additionally, collagen I and IV fluorescence intensity was reduced in the TE group only (P < 0.0001). Histological staining revealed close similarity in collagen arrangement between the Tx + SDS group and fresh lenticules. Collagen fiber density increased while spacing and diameter decreased in all decellularized groups (all P < 0.05), with partial collagen degradation detected in the TE group. Light transmittance remained above 60% in the visible light spectrum in all groups. The Young's modulus or elastic modulus did not decrease significantly among decellularized lenticules (all P > 0.05). Human leukocyte antigen (HLA)-DR, HLA-ABC, and CD45 expression decreased in the Tx + SDS and NaCl + DNase groups (all P < 0.001). Although all four decellularization methods showed varying decellularization efficacy, Tx + SDS effectively removed cells without damaging corneal morphology, extracellular matrix, or biomechanics, indicating its potential for lenticule storage, transplantation, and bio-scaffold fabrication.
Collapse
Affiliation(s)
- Bingqing Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, 200031, China
| | - Zhe Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, 200031, China
| | - Yanze Yu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, 200031, China
| | - Fei Xia
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, 200031, China
| | - Yong Ma
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, 200031, China
| | - Xuan Ding
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, 200031, China
| | - Xiaosong Han
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, 200031, China
| | - Ti Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, 200031, China
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, 200031, China.
| | - Jing Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, 200031, China.
| |
Collapse
|
2
|
Singh RB, Koh S, Sharma N, Woreta FA, Hafezi F, Dua HS, Jhanji V. Keratoconus. Nat Rev Dis Primers 2024; 10:81. [PMID: 39448666 DOI: 10.1038/s41572-024-00565-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Keratoconus is a progressive eye disorder primarily affecting individuals in adolescence and early adulthood. The ectatic changes in the cornea cause thinning and cone-like steepening leading to irregular astigmatism and reduced vision. Keratoconus is a complex disorder with a multifaceted aetiology and pathogenesis, including genetic, environmental, biomechanical and cellular factors. Environmental factors, such as eye rubbing, UV light exposure and contact lens wearing, are associated with disease progression. On the cellular level, a complex interplay of hormonal changes, alterations in enzymatic activity that modify extracellular membrane stiffness, and changes in biochemical and biomechanical signalling pathways disrupt collagen cross-linking within the stroma, contributing to structural integrity loss and distortion of normal corneal anatomy. Clinically, keratoconus is diagnosed through clinical examination and corneal imaging. Advanced imaging platforms have improved the detection of keratoconus, facilitating early diagnosis and monitoring of disease progression. Treatment strategies for keratoconus are tailored to disease severity and progression. In early stages, vision correction with glasses or soft contact lenses may suffice. As the condition advances, rigid gas-permeable contact lenses or scleral lenses are prescribed. Corneal cross-linking has emerged as a pivotal treatment aimed at halting the progression of corneal ectasia. In patients with keratoconus with scarring or contact lens intolerance, surgical interventions are performed.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands
| | - Shizuka Koh
- Department of Innovative Visual Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Namrata Sharma
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Fasika A Woreta
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Farhad Hafezi
- ELZA Institute, Zurich, Switzerland
- EMAGine AG, Zug, Switzerland
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Harminder S Dua
- Department of Ophthalmology, University of Nottingham, Nottingham, UK
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Han X, Li M, Zhao J, Sun B, Zhang X, Xu H, Zhou X. Hydroxyproline Concentration and Associated Factors of Preserved Small Incision Lenticule Extraction-Derived Corneal Stromal Lenticules. Cornea 2024; 43:1285-1290. [PMID: 38967494 DOI: 10.1097/ico.0000000000003615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/12/2024] [Indexed: 07/06/2024]
Abstract
PURPOSE To evaluate changes of hydroxyproline concentration and its influencing factors of small incision lenticule extraction (SMILE)-derived corneal stromal lenticules with different preservation methods. METHODS A total of 390 corneal stromal lenticules of 195 patients were derived from SMILE surgeries. Thirty of the lenticules were classified as the fresh (control) group, and the rest were randomly and evenly divided and stored in anhydrous glycerol, silicone oil, Optisol, and cryopreservation for 1 day, 1 week, or 1 month. A hydroxyproline assay kit (ab222941, Abcam) was used to measure the hydroxyproline concentration in each preservation method. Concentrations of MMP-2, TIMP-2, TNFα, TGFβ2, and reactive oxygen species were also evaluated. RESULTS In the anhydrous glycerol group, the concentration of hydroxyproline decreased within 1 week (fresh: 1 dΔ = 0.229, P < 0.001*; 1 d - 1 wΔ = 0.055, P < 0.001*) while that in the silicone oil group remained stable in 1 week (1 d - 1 wΔ = -0.005, P = 0.929) and decreased significantly in 1 m (1 m - 1 wΔ = -0.041, P = 0.003*). The sequence of hydroxyproline concentration in the Optisol group was 1 m > 1 day > 1 week. Hydroxyproline concentration in the cryopreservation group decreased within 1 m. Hydroxyproline concentration was highest in the Optisol group and lowest in the anhydrous glycerol group under the same preservation time. Hydroxyproline concentration was negatively correlated with MMP-2 (r = -0.16, P = 0.421) and TIMP-2 (r = -0.56, P = 0.002*) while MMP-2 and TNFα (r = 0.17, P = 0.242), TIMP-2 and TGFβ2 (r = 0.21, P = 0.207), and TNFα and reactive oxygen species (r = 0.52, P = 0.007*) were positively correlated. CONCLUSIONS More collagen was retained in SMILE lenticules preserved in Optisol under the same preservation time. The mechanism of the changes of collagen in preserved SMILE-derived lenticules and oxidative stress requires additional investigation.
Collapse
Affiliation(s)
- Xiaosong Han
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China ; and
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, China
| | - Meiyan Li
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China ; and
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, China
| | - Jing Zhao
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China ; and
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, China
| | - Bingqing Sun
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China ; and
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, China
| | - Xiaoyu Zhang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China ; and
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, China
| | - Haipeng Xu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China ; and
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, China
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China ; and
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, China
| |
Collapse
|
4
|
Bievel-Radulescu R, Ferrari S, Piaia M, Mandatori D, Pandolfi A, Nubile M, Mastropasqua L, Stanca HT, Ponzin D. Banking of post-SMILE stromal lenticules for additive keratoplasty: A new challenge for eye banks? Int Ophthalmol 2024; 44:355. [PMID: 39182212 PMCID: PMC11345333 DOI: 10.1007/s10792-024-03283-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/17/2024] [Indexed: 08/27/2024]
Abstract
PURPOSE ReLEx (Refractive Lenticule Extraction) Small Incision Lenticule Extraction (SMILE), the second generation of ReLEx Femtosecond Lenticule Extraction (FLEx), is a minimally invasive, flapless procedure designed to treat refractive errors such as myopia, hyperopia, presbyopia, and astigmatism. This review aims to provide a comprehensive overview of the methods for preserving SMILE-derived lenticules and discusses their potential future applications. METHODS A narrative literature review was conducted using PubMed, Scopus, and Web of Science databases, focusing on articles published up to January 2024 and available in English. The authors also evaluated the reference lists of the collected papers to identify any additional relevant research. RESULTS No standardized protocols currently exist for the storage or clinical application of SMILE-derived lenticules. However, these lenticules present a promising resource for therapeutic uses, particularly in addressing the shortage of donor corneal tissues. Their potential applications include inlay and overlay additive keratoplasty, as well as other ocular surface applications. Further research is needed to establish reliable protocols for their preservation and clinical use. CONCLUSION SMILE-derived lenticules offer significant potential as an alternative to donor corneal tissues. Standardizing their storage and application methods could enhance their use in clinical settings.
Collapse
Affiliation(s)
- Raluca Bievel-Radulescu
- Fondazione Banca Degli Occhi del Veneto, Via Paccagnella, 11, 30174, Venice, Italy.
- Department of Ophthalmology, "Carol Davila" University of Medicine and Pharmacy, 030167, Bucharest, Romania.
| | - Stefano Ferrari
- Fondazione Banca Degli Occhi del Veneto, Via Paccagnella, 11, 30174, Venice, Italy
| | - Moreno Piaia
- Fondazione Banca Degli Occhi del Veneto, Via Paccagnella, 11, 30174, Venice, Italy
| | - Domitilla Mandatori
- Department of Medicine and Aging Science, Ophthalmology Clinic, University G. D'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
| | - Assunta Pandolfi
- Department of Medicine and Aging Science, Ophthalmology Clinic, University G. D'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
| | - Mario Nubile
- StemTeCh Group, Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, University G. D'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
| | - Leonardo Mastropasqua
- StemTeCh Group, Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, University G. D'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
| | - Horia Tudor Stanca
- Department of Ophthalmology, "Carol Davila" University of Medicine and Pharmacy, 030167, Bucharest, Romania
| | - Diego Ponzin
- Fondazione Banca Degli Occhi del Veneto, Via Paccagnella, 11, 30174, Venice, Italy
| |
Collapse
|
5
|
Procházková A, Poláchová M, Dítě J, Netuková M, Studený P. Chemical, Physical, and Biological Corneal Decellularization Methods: A Review of Literature. J Ophthalmol 2024; 2024:1191462. [PMID: 38567029 PMCID: PMC10985644 DOI: 10.1155/2024/1191462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
The cornea is one of the most commonly transplanted tissues worldwide. It is used to restore vision when severe visual impairment or blindness occurs in patients with corneal diseases or after trauma. Due to the global shortage of healthy donor corneas, decellularized corneal tissue has significant potential as an alternative to corneal transplantation. It preserves the native and biological ultrastructure of the cornea and, therefore, represents the most promising scaffold. This article discusses different methods of corneal decellularization based on the current literature. We searched PubMed.gov for articles from January 2009 to December 2023 using the following keywords: corneal decellularization, decellularization methods, and corneal transplantation. Although several methods of decellularization of corneal tissue have been reported, a universal standardised protocol of corneal decellularization has not yet been introduced. In general, a combination of decellularization methods has been used for efficient decellularization while preserving the optimal properties of the corneal tissue.
Collapse
Affiliation(s)
- Alexandra Procházková
- Department of Ophthalmology, Kralovske Vinohrady University Hospital and 3rd Medical Faculty, Srobarova 1150/50, Prague 10 100 34, Czech Republic
| | - Martina Poláchová
- Department of Ophthalmology, Kralovske Vinohrady University Hospital and 3rd Medical Faculty, Srobarova 1150/50, Prague 10 100 34, Czech Republic
| | - Jakub Dítě
- Department of Ophthalmology, Kralovske Vinohrady University Hospital and 3rd Medical Faculty, Srobarova 1150/50, Prague 10 100 34, Czech Republic
| | - Magdaléna Netuková
- Department of Ophthalmology, Kralovske Vinohrady University Hospital and 3rd Medical Faculty, Srobarova 1150/50, Prague 10 100 34, Czech Republic
| | - Pavel Studený
- Department of Ophthalmology, Kralovske Vinohrady University Hospital and 3rd Medical Faculty, Srobarova 1150/50, Prague 10 100 34, Czech Republic
| |
Collapse
|
6
|
Chandran C, Santra M, Rubin E, Geary ML, Yam GHF. Regenerative Therapy for Corneal Scarring Disorders. Biomedicines 2024; 12:649. [PMID: 38540264 PMCID: PMC10967722 DOI: 10.3390/biomedicines12030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 05/09/2024] Open
Abstract
The cornea is a transparent and vitally multifaceted component of the eye, playing a pivotal role in vision and ocular health. It has primary refractive and protective functions. Typical corneal dysfunctions include opacities and deformities that result from injuries, infections, or other medical conditions. These can significantly impair vision. The conventional challenges in managing corneal ailments include the limited regenerative capacity (except corneal epithelium), immune response after donor tissue transplantation, a risk of long-term graft rejection, and the global shortage of transplantable donor materials. This review delves into the intricate composition of the cornea, the landscape of corneal regeneration, and the multifaceted repercussions of scar-related pathologies. It will elucidate the etiology and types of dysfunctions, assess current treatments and their limitations, and explore the potential of regenerative therapy that has emerged in both in vivo and clinical trials. This review will shed light on existing gaps in corneal disorder management and discuss the feasibility and challenges of advancing regenerative therapies for corneal stromal scarring.
Collapse
Affiliation(s)
- Christine Chandran
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
| | - Mithun Santra
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
| | - Elizabeth Rubin
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
| | - Moira L. Geary
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
| | - Gary Hin-Fai Yam
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
7
|
Liu Y, He Y, Deng Y, Wang L. Lenticule addition keratoplasty for the treatment of keratoconus: A systematic review and critical considerations. Indian J Ophthalmol 2024; 72:S167-S175. [PMID: 38271413 PMCID: PMC11624644 DOI: 10.4103/ijo.ijo_695_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 01/27/2024] Open
Abstract
Keratoconus is a corneal disorder characterized by the progressive thinning and bulging of the cornea. Currently, the major goal of management is to halt its progression, restore normal corneal strength, prevent acute complications, and save vision. Penetrating keratoplasty and deep anterior lamellar keratoplasty as conventional surgical methods for advanced keratoconus are limited by relatively high rates of immune intolerance, slow post-operational recovery, high costs, and shortage of donor corneas. Recently, the development of lenticule addition keratoplasty enables the restoration of corneal thickness simply by implanting a lenticule into the stromal pocket created with the femtosecond laser, which can originate from cadaver corneas or more appealing, be extracted from patients via a small-incision lenticule extraction (SMILE) surgery. As the first systematic review in this field, we critically review publications on lenticule addition keratoplasty and provide our perspectives on its clinical application and the focus of future research.
Collapse
Affiliation(s)
- Yanling Liu
- Operating Room, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yan He
- Operating Room, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yingping Deng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Lixiang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
8
|
Dong Y, Hou J, Zhang J, Lei Y, Yang X, Sun F. Epithelial thickness remodeling after small incision lenticule intrastromal keratoplasty in correcting hyperopia measured by RTVue OCT. BMC Ophthalmol 2024; 24:13. [PMID: 38191381 PMCID: PMC10773066 DOI: 10.1186/s12886-023-03272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
PURPOSE To characterize the in vivo corneal epithelial thickness (CET) remodeling profile in a population of eyes after small incision lenticule intrastromal keratoplasty (SMI-LIKE) for hyperopia. METHODS The CET profile was measured by RTVue-100 Fourier-domain OCT system across the central 6-mm diameter of the cornea of 17 eyes from 12 subjects (five males and seven females) who accepted corneal stromal lens implantation surgery for correcting hyperopia. The CET were measured at positions with a radius of 0-1.0 mm, 1.0-2.5 mm (divided into eight quadrants) and 2.5-3.0 mm (divided into eight quadrants) from the corneal center. Corneal maximum simulated keratometry (Km) was measured by Pentacam HR anterior segment analyzer to analyze CET changes. The examination data of subjects were collected in four time periods, which were preoperative, short-term postoperative (one week after surgery), mid-term postoperative (the last review within 3-6 months after surgery), and long-term postoperative (the last review over 1-2.5 years after surgery). The changes of CET were compared and analyzed in the four time periods. RESULTS Mean CET in 0-1.0 mm, 1.0-2.5 mm and 2.5-3.0 mm of the cornea decreased in one week after surgery, respectively, as compared to CET in the preoperative period, which turned from 55.06 ± 0.82 μm、54.42 ± 0.75 μm、53.46 ± 0.60 μm to 51.18 ± 1.05 μm (P = 0.005), 49.38 ± 0.70 μm (P = 0.000), 51.29 ± 0.59 μm (P = 0.025). In the mid-term postoperative period, mean CET in 0-1.0 mm and 1.0-2.5 mm areas kept thinner than mean CET in the preoperative period, CET in 0-1.0 mm is 50.59 ± 0.76 μm (P = 0.000),CET in 1.0-2.5 mm is 50.23 ± 0.57 μm (P = 0.000), while mean CET in 2.5-3.0 mm area recovered to the same thickness as the preoperative level, which is 54.36 ± 0.66 μm (P = 1.000), until the long-term period, CET stabilized in the above doughnut pattern. CONCLUSIONS After stromal lenticule implantation for hyperopia, CET showed a remodeled form of thinning in the 0-2.5 mm area and thickening in the 2.5-3.0 mm area, and remained stable within one year after surgery.
Collapse
Affiliation(s)
- Yahui Dong
- Jinan Mingshui Eye Hospital, Number 5601, Longquan Road, Zhangqiu District, Jinan, 250200, China
| | - Jie Hou
- Jinan Mingshui Eye Hospital, Number 5601, Longquan Road, Zhangqiu District, Jinan, 250200, China
| | - Jing Zhang
- Jinan Mingshui Eye Hospital, Number 5601, Longquan Road, Zhangqiu District, Jinan, 250200, China
| | - Yulin Lei
- Jinan Mingshui Eye Hospital, Number 5601, Longquan Road, Zhangqiu District, Jinan, 250200, China.
| | - Xinghua Yang
- Jinan Mingshui Eye Hospital, Number 5601, Longquan Road, Zhangqiu District, Jinan, 250200, China
| | - Fangfang Sun
- Jinan Mingshui Eye Hospital, Number 5601, Longquan Road, Zhangqiu District, Jinan, 250200, China
| |
Collapse
|
9
|
Kanclerz P, Khoramnia R, Atchison D. Applications of the pinhole effect in clinical vision science. J Cataract Refract Surg 2024; 50:84-94. [PMID: 38133648 DOI: 10.1097/j.jcrs.0000000000001318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 09/09/2023] [Indexed: 12/23/2023]
Abstract
The pinhole effect is commonly used to discriminate uncorrected refractive error from ocular diseases. A small aperture limits the width of light beams entering the eye, thus increasing the depth of focus. The pinhole effect has also been used in spectacles, contact lenses, corneal inlays, and intraocular lenses (IOLs) to improve reading by compensating for loss of accommodative function. Pinhole spectacles improve near visual acuity, but reduce reading speed, increase interblink interval, and decrease tear break-up time. For contact lenses and IOLs, pinhole devices are usually used in the nondominant eye, which allow compensation of various refractive errors and decrease spectacle dependence. Pinhole corneal inlays are implanted during laser in situ keratomileusis or as a separate procedure. Pinhole IOLs are gaining popularity, particularly as they do not bring a risk of a local inflammatory reaction as corneal inlays do. Disadvantages of using the pinhole effect include high susceptibility to decentration, decrease in retinal luminance levels, and difficulties in performing fundus examinations or surgery in eyes with implanted devices. There are also concerns regarding perceptive issues with different retinal illuminances in the 2 eyes (the Pulfrich effect).
Collapse
Affiliation(s)
- Piotr Kanclerz
- From the Helsinki Retina Research Group, University of Helsinki, Finland (Kanclerz); Department of Ophthalmology, Hygeia Clinic, Gdansk, Poland (Kanclerz); The David J. Apple International Laboratory for Ocular Pathology, Department of Ophthalmology, University of Heidelberg, Heidelberg, Germany (Khoramnia); Centre for Vision and Eye Research, Queensland University of Technology, Brisbane, Australia (Atchison)
| | | | | |
Collapse
|
10
|
Chan JS, Han E, Lim CHL, Kurz AC, Shuman J, Liu YC, Riau AK, Mehta JS. Incisional surface quality of electron-beam irradiated cornea-extracted lenticule for stromal keratophakia: high nJ-energy vs. low nJ-energy femtosecond laser. Front Med (Lausanne) 2023; 10:1289528. [PMID: 38162883 PMCID: PMC10754972 DOI: 10.3389/fmed.2023.1289528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Corneal lenticules can be utilized as an additive material for stromal keratophakia. However, following extraction, they must be reimplanted almost immediately or cryopreserved in lenticule banks. Electron-beam (E-beam) irradiated corneas permit room-temperature storage for up to 2 years, enabling keratophakia to be performed on demand. This study aims to compare the performance of high nano Joule (nJ)-energy (VisuMax) and low nJ-energy (FEMTO LDV) femtosecond laser systems on the thickness consistency and surface quality and collagen morphology of lenticules produced from fresh and E-beamed corneas. Methods A total of 24 lenticules with -6.00 dioptre power were cut in fresh human donor corneas and E-beamed corneas with VisuMax and FEMTO LDV. Before extraction, the thickness of the lenticules was measured with anterior segment-optical coherence tomography (AS-OCT). The incisional surface roughness of extracted lenticules was analyzed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Multiphoton microscopy was then used to assess the surface collagen morphometry. Results The E-beamed lenticules that were cut using FEMTO LDV were significantly thicker than the fresh specimens as opposed to those created with VisuMax, which had a similar thickness as the fresh lenticules. On the vertex, they were ∼11% thicker than the fresh lenticules. The surface roughness (Rq) of E-beamed lenticules incised with FEMTO LDV did not differ significantly from the fresh lenticules. This contrasted with the VisuMax-fashioned lenticules, which showed notably smoother surfaces (∼36 and ∼20% lower Rq on anterior and posterior surfaces, respectively) on the E-beamed than the fresh lenticules. The FEMTO LDV induced less cumulative changes to the collagen morphology on the surfaces of both fresh and E-beamed lenticules than the VisuMax. Conclusion It has been previously demonstrated that the low nJ-energy FEMTO LDV produced a smoother cutting surface compared to high nJ-energy VisuMax in fresh lenticules. Here, we showed that this effect was also seen in the E-beamed lenticules. In addition, lower laser energy conferred fewer changes to the lenticular surface collagen morphology. The smaller disparity in surface cutting quality and collagen disturbances on the E-beamed lenticules could be beneficial for the early visual recovery of patients who undergo stromal keratophakia.
Collapse
Affiliation(s)
- Jian S. Chan
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Ophthalmology, National University Health System, Singapore, Singapore
| | - Evelina Han
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Chris H. L. Lim
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Ophthalmology, National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Jeremy Shuman
- Lions World Vision Institute, Tampa, FL, United States
| | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
- Singapore National Eye Centre, Singapore, Singapore
| | - Andri K. Riau
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Jodhbir S. Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
- Singapore National Eye Centre, Singapore, Singapore
| |
Collapse
|
11
|
Xie M, Deng Y, Wang L, Zhang X, Gong R, Tang J. Corneal lenticule implantation combined with PTK and PRK to correct hyperopia. J Fr Ophtalmol 2023; 46:e352-e357. [PMID: 37544781 DOI: 10.1016/j.jfo.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/15/2023] [Indexed: 08/08/2023]
Affiliation(s)
- M Xie
- Department of Ophthalmology, Sichuan University, West China Hospital, No. 37, Guoxue Alley, 610041 Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Y Deng
- Department of Ophthalmology, Sichuan University, West China Hospital, No. 37, Guoxue Alley, 610041 Chengdu, Sichuan, China
| | - L Wang
- Department of Ophthalmology, Sichuan University, West China Hospital, No. 37, Guoxue Alley, 610041 Chengdu, Sichuan, China
| | - X Zhang
- Department of Ophthalmology, Sichuan University, West China Hospital, No. 37, Guoxue Alley, 610041 Chengdu, Sichuan, China
| | - R Gong
- Department of Ophthalmology, Sichuan University, West China Hospital, No. 37, Guoxue Alley, 610041 Chengdu, Sichuan, China
| | - J Tang
- Department of Ophthalmology, Sichuan University, West China Hospital, No. 37, Guoxue Alley, 610041 Chengdu, Sichuan, China.
| |
Collapse
|
12
|
Thirunavukarasu AJ, Han E, Nedumaran AM, Kurz AC, Shuman J, Yusoff NZBM, Liu YC, Foo V, Czarny B, Riau AK, Mehta JS. Electron beam-irradiated donor cornea for on-demand lenticule implantation to treat corneal diseases and refractive error. Acta Biomater 2023; 169:334-347. [PMID: 37532130 DOI: 10.1016/j.actbio.2023.07.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
The cornea is the major contributor to the refractive power of the eye, and corneal diseases are a leading cause of reversible blindness. The main treatment for advanced corneal disease is keratoplasty: allograft transplantation of the cornea. Examples include lenticule implantation to treat corneal disorders (e.g. keratoconus) or correct refractive errors. These procedures are limited by the shelf-life of the corneal tissue, which must be discarded within 2-4 weeks. Electron-beam irradiation is an emerging sterilisation technique, which extends this shelf life to 2 years. Here, we produced lenticules from fresh and electron-beam (E-beam) irradiated corneas to establish a new source of tissue for lenticule implantation. In vitro, in vivo, and ex vivo experiments were conducted to compare fresh and E-beam-irradiated lenticules. Results were similar in terms of cutting accuracy, ultrastructure, optical transparency, ease of extraction and transplantation, resilience to mechanical handling, biocompatibility, and post-transplant wound healing process. Two main differences were noted. First, ∼59% reduction of glycosaminoglycans resulted in greater compression of E-beam-irradiated lenticules post-transplant, likely due to reduced corneal hydration-this appeared to affect keratometry after implantation. Cutting a thicker lenticule would be required to ameliorate the difference in refraction. Second, E-beam-sterilised lenticules exhibited lower Young's modulus which may indicate greater care with handling, although no damage or perforation was caused in our procedures. In summary, E-beam-irradiated corneas are a viable source of tissue for stromal lenticules, and may facilitate on-demand lenticule implantation to treat a wide range of corneal diseases. Our study suggested that its applications in human patients are warranted. STATEMENT OF SIGNIFICANCE: Corneal blindness affects over six million patients worldwide. For patients requiring corneal transplantation, current cadaver-based procedures are limited by the short shelf-life of donor tissue. Electron-beam (E-beam) sterilisation extends this shelf-life from weeks to years but there are few published studies of its use. We demonstrated that E-beam-irradiated corneas are a viable source of lenticules for implantation. We conducted in vitro, in vivo, and ex vivo comparisons of E-beam and fresh corneal lenticules. The only differences exhibited by E-beam-treated lenticules were reduced expression of glycosaminoglycans, resulting in greater tissue compression and lower refraction suggesting that a thicker cut is required to achieve the same optical and refractive outcome; and lower Young's modulus indicating extra care with handling.
Collapse
Affiliation(s)
- Arun J Thirunavukarasu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Evelina Han
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
| | - Anu Maashaa Nedumaran
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | | | | | | | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore
| | - Valencia Foo
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Singapore National Eye Centre, Singapore
| | - Bertrand Czarny
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Andri K Riau
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore.
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; School of Materials Science and Engineering, Nanyang Technological University, Singapore; Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore.
| |
Collapse
|
13
|
Deshmukh R, Ong ZZ, Rampat R, Alió del Barrio JL, Barua A, Ang M, Mehta JS, Said DG, Dua HS, Ambrósio R, Ting DSJ. Management of keratoconus: an updated review. Front Med (Lausanne) 2023; 10:1212314. [PMID: 37409272 PMCID: PMC10318194 DOI: 10.3389/fmed.2023.1212314] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Keratoconus is the most common corneal ectatic disorder. It is characterized by progressive corneal thinning with resultant irregular astigmatism and myopia. Its prevalence has been estimated at 1:375 to 1:2,000 people globally, with a considerably higher rate in the younger populations. Over the past two decades, there was a paradigm shift in the management of keratoconus. The treatment has expanded significantly from conservative management (e.g., spectacles and contact lenses wear) and penetrating keratoplasty to many other therapeutic and refractive modalities, including corneal cross-linking (with various protocols/techniques), combined CXL-keratorefractive surgeries, intracorneal ring segments, anterior lamellar keratoplasty, and more recently, Bowman's layer transplantation, stromal keratophakia, and stromal regeneration. Several recent large genome-wide association studies (GWAS) have identified important genetic mutations relevant to keratoconus, facilitating the development of potential gene therapy targeting keratoconus and halting the disease progression. In addition, attempts have been made to leverage the power of artificial intelligence-assisted algorithms in enabling earlier detection and progression prediction in keratoconus. In this review, we provide a comprehensive overview of the current and emerging treatment of keratoconus and propose a treatment algorithm for systematically guiding the management of this common clinical entity.
Collapse
Affiliation(s)
- Rashmi Deshmukh
- Department of Cornea and Refractive Surgery, LV Prasad Eye Institute, Hyderabad, India
| | - Zun Zheng Ong
- Department of Ophthalmology, Queen’s Medical Centre, Nottingham, United Kingdom
| | - Radhika Rampat
- Department of Ophthalmology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Jorge L. Alió del Barrio
- Cornea, Cataract and Refractive Surgery Unit, Vissum (Miranza Group), Alicante, Spain
- Division of Ophthalmology, School of Medicine, Universidad Miguel Hernández, Alicante, Spain
| | - Ankur Barua
- Birmingham and Midland Eye Centre, Birmingham, United Kingdom
| | - Marcus Ang
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Singapore
| | - Jodhbir S. Mehta
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Singapore
| | - Dalia G. Said
- Department of Ophthalmology, Queen’s Medical Centre, Nottingham, United Kingdom
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Harminder S. Dua
- Department of Ophthalmology, Queen’s Medical Centre, Nottingham, United Kingdom
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Renato Ambrósio
- Department of Cornea and Refractive Surgery, Instituto de Olhos Renato Ambrósio, Rio de Janeiro, Brazil
- Department of Ophthalmology, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Darren Shu Jeng Ting
- Birmingham and Midland Eye Centre, Birmingham, United Kingdom
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
14
|
Ghiasi M, Hashemi M, Salimi A, Jadidi K, Tavallaie M, Aghamollaei H. Combination of natural scaffolds and conditional medium to induce the differentiation of adipose-derived mesenchymal stem cells into keratocyte-like cells and its safety evaluation in the animal cornea. Tissue Cell 2023; 82:102117. [PMID: 37267821 DOI: 10.1016/j.tice.2023.102117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/04/2023]
Abstract
Keratocytes are the main cellular components of the corneal stroma. This cell is quiescent and cannot be cultured easily. The aim of this study was to investigate differentiate human adipose mesenchymal stem cells (hADSCs) into corneal keratocyte cells by combining natural scaffolds and conditioned medium (CM) and evaluating their safety in the rabbit's cornea. Keratocytes were cultured in an optimal culture medium and this medium was collected and kept as a CM. hADSCs were cultured on the decellularized human small incision lenticule extraction (SMILE) lenticule (SL), amniotic membrane (AM), and collagen-coated plates, and were exposed to keratocyte-CM (KCM) for 7, 14, and 21 days. Differentiation was evaluated using Real-time PCR and immunocytochemistry (ICC). hADSCs were cultured on the SL scaffolds and implanted in the corneal stroma of 8 New Zealand male rabbits. Rabbits were followed for 3 months and the safety was evaluated by clinical and histological variables. Real-time PCR results showed a significant increase in the expression of keratocyte-specific markers on the 21 day of differentiation compared to the control group. ICC also confirmed the induction of differentiation. Implantation of SLs containing differentiated cells in the cornea of animals showed no serious complications including neovascularization, corneal opacity, inflammation, or signs of tissue rejection. Furthermore, the evaluation of the presence of keratocyte-like cells after three months in the rabbit stroma was confirmed by Real-time PCR and immunohistochemistry (IHC) analysis. Our results showed that combination of combination of corneal extracellular matrix and KCM can induced keratocytes differentiation of hADSC and can be introduced as a alternative method to supply the required keratocytes in corneal tissue engineering.
Collapse
Affiliation(s)
- Mohsen Ghiasi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Science Research Center, Farhikhtegan Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahmood Tavallaie
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Aghamollaei
- Chemical Injures Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Liu S, Yu L, Zhao Y, Zhou X. Changes in the posterior corneal surface after femtosecond laser-assisted lenticule intrastromal keratoplasty (LIKE) performed into a pocket (SMI-LIKE) or under a flap (FS-LIKE). EYE AND VISION (LONDON, ENGLAND) 2023; 10:23. [PMID: 37122005 PMCID: PMC10150533 DOI: 10.1186/s40662-023-00337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 03/16/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND To compare the changes in posterior corneal surface after small-incision lenticule intrastromal keratoplasty (SMI-LIKE) and femtosecond laser-assisted lenticule intrastromal keratoplasty (FS-LIKE) for hyperopia correction. METHODS In this prospective comparative randomized study, 23 eyes with hyperopia were recruited. Eyes were categorized into two groups-SMI-LIKE group (11 eyes) and FS-LIKE group (12 eyes). Lenticules from myopia small incision lenticule extraction were implanted into a pocket (SMI-LIKE group) or at a depth of 100 µm under a flap (FS-LIKE group). Posterior corneal elevations in the center, mid-periphery, and periphery, as well as mean keratometry of the posterior corneal surface (Kmb) were measured using a Pentacam over a three-month follow-up. RESULTS All surgeries were completed successfully and no complications occurred. At one day postoperatively, there was a slight backward change with SMI-LIKE and a forward change with FS-LIKE in the central region of the posterior corneal elevation. Conversely, the peripheral area showed forward displacement in SMI-LIKE and an apparent backward change in FS-LIKE. The mid-peripheral regions manifested a backward change after the procedure throughout the entire follow-up in both groups. Kmb exhibited flattening at one month postoperatively and subsequently returned to its original level at three months after SMI-LIKE while in FS-LIKE, Kmb steepened after lenticule implantation with a significant change noted at one day postoperatively (P = 0.001). CONCLUSIONS Posterior corneal surface after SMI-LIKE and FS-LIKE exhibited different change patterns in various corneal regions, with the most prominent change occurring at one day postoperatively during the three-month follow-up. TRIAL REGISTRATION Chinese Clinical Trial Registry: ChiCTR-ONC-16008300. Registered on Apr 18th, 2016. http://www.chictr.org.cn/edit.aspx?pid=14090&htm=4.
Collapse
Affiliation(s)
- Shengtao Liu
- Department of Ophthalmology and Optometry, Eye and ENT Hospital of Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Lanhui Yu
- Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Yu Zhao
- Department of Ophthalmology and Optometry, Eye and ENT Hospital of Fudan University, Shanghai, China.
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China.
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China.
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, China.
| | - Xingtao Zhou
- Department of Ophthalmology and Optometry, Eye and ENT Hospital of Fudan University, Shanghai, China.
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China.
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China.
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, China.
| |
Collapse
|
16
|
Yam GHF, Yang T, Geary ML, Santra M, Funderburgh M, Rubin E, Du Y, Sahel JA, Jhanji V, Funderburgh JL. Human corneal stromal stem cells express anti-fibrotic microRNA-29a and 381-5p - A robust cell selection tool for stem cell therapy of corneal scarring. J Adv Res 2023; 45:141-155. [PMID: 35623612 PMCID: PMC10006527 DOI: 10.1016/j.jare.2022.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/21/2022] [Accepted: 05/19/2022] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Corneal blindness due to scarring is treated with corneal transplantation. However, a global problem is the donor material shortage. Preclinical and clinical studies have shown that cell-based therapy using corneal stromal stem cells (CSSCs) suppresses corneal scarring, potentially mediated by specific microRNAs transported in extracellular vesicles (EVs). However, not every CSSC batch from donors achieves similar anti-scarring effects. OBJECTIVES To examine miRNA profiles in EVs from human CSSCs showing "healing" versus "non-healing" effects on corneal scarring and to design a tool to select CSSCs with strong healing potency for clinical applications. METHODS Small RNAs from CSSC-EVs were extracted for Nanostring nCounter Human miRNA v3 assay. MicroRNAs expressed > 20 folds in "healing" EVs (P < 0.05) were subject to enriched gene ontology (GO) term analysis. MiRNA groups with predictive regulation on inflammatory and fibrotic signalling were studied by mimic transfection to (1) mouse macrophages (RAW264.7) for M1 phenotype assay; (2) human corneal keratocytes for cytokine-induced fibrosis, and (3) human CSSCs for corneal scar prevention in vivo. The expression of miR-29a was screened in additional CSSC batches and the anti-scarring effect of cells was validated in mouse corneal wounds. RESULTS Twenty-one miRNAs were significantly expressed in "healing" CSSC-EVs and 9 miRNA groups were predicted to associate with inflammatory and fibrotic responses, and tissue regeneration (P <10-6). Overexpression of miR-29a and 381-5p significantly prevented M1 phenotype transition in RAW264.7 cells after lipopolysaccharide treatment, suppressed transforming growth factor β1-induced fibrosis marker expression in keratocytes, and reduced scarring after corneal injury. High miR-29a expression in EV fractions distinguished human CSSCs with strong healing potency, which inhibited corneal scarring in vivo. CONCLUSION We characterized the anti-inflammatory and fibrotic roles of miR-29a and 381-5p in CSSCs, contributing to scar prevention. MiR-29a expression in EVs distinguished CSSCs with anti-scarring quality, identifying good quality cells for a scarless corneal healing.
Collapse
Affiliation(s)
- Gary Hin-Fai Yam
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| | - Tianbing Yang
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States
| | - Moira L Geary
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States
| | - Mithun Santra
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States
| | - Martha Funderburgh
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States
| | - Elizabeth Rubin
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Jose A Sahel
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - James L Funderburgh
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States
| |
Collapse
|
17
|
Sánchez-González MC, Gutiérrez-Sánchez E, Sánchez-González JM, De-Hita-Cantalejo C, Pinero-Rodríguez AM, González-Cruces T, Capote-Puente R. Complications of Small Aperture Intracorneal Inlays: A Literature Review. Life (Basel) 2023; 13:life13020312. [PMID: 36836669 PMCID: PMC9965951 DOI: 10.3390/life13020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
Presbyopia can be defined as the refractive state of the eye in which, due to a physiological decrease in the ability to accommodate, it is not possible to sustain vision without fatigue in a prolonged manner, along with difficulty focusing near vision. It is estimated that its prevalence in 2030 will be approximately 2.1 billion people. Corneal inlays are an alternative in the correction of presbyopia. They are implanted beneath a laser-assisted in situ keratomileusis (LASIK) flap or in a pocket in the center of the cornea of the non-dominant eye. The purpose of this review is to provide information about intraoperative and postoperative KAMRA inlay complications in the available scientific literature. A search was conducted on PubMed, Web of Science, and Scopus with the following search strategy: ("KAMRA inlay" OR "KAMRA" OR "corneal inlay pinhole" OR "pinhole effect intracorneal" OR "SAICI" OR "small aperture intracorneal inlay") AND ("complication" OR "explantation" OR "explanted" OR "retired"). The bibliography consulted shows that the insertion of a KAMRA inlay is an effective procedure that improves near vision with a slight decrease in distance vision. However, postoperative complications such as corneal fibrosis, epithelial iron deposits, and stromal haze are described.
Collapse
Affiliation(s)
| | | | | | | | | | - Timoteo González-Cruces
- Department of Anterior Segment, Cornea and Refractive Surgery, Hospital La Arruzafa, 14012 Cordoba, Spain
| | - Raúl Capote-Puente
- Department of Physics of Condensed Matter, Optics Area, University of Seville, 41012 Seville, Spain
| |
Collapse
|
18
|
Hu X, Wei R, Liu C, Wang Y, Yang D, Sun L, Xia F, Liu S, Li M, Zhou X. Recent advances in small incision lenticule extraction (SMILE)-derived refractive lenticule preservation and clinical reuse. ENGINEERED REGENERATION 2023. [DOI: 10.1016/j.engreg.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
19
|
Yan Q, Han B, Ma ZC. Femtosecond Laser-Assisted Ophthalmic Surgery: From Laser Fundamentals to Clinical Applications. MICROMACHINES 2022; 13:1653. [PMID: 36296006 PMCID: PMC9611681 DOI: 10.3390/mi13101653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Femtosecond laser (FSL) technology has created an evolution in ophthalmic surgery in the last few decades. With the advantage of high precision, accuracy, and safety, FSLs have helped surgeons overcome surgical limits in refractive surgery, corneal surgery, and cataract surgery. They also open new avenues in ophthalmic areas that are not yet explored. This review focuses on the fundamentals of FSLs, the advantages in interaction between FSLs and tissues, and typical clinical applications of FSLs in ophthalmology. With the rapid progress that has been made in the state of the art research on FSL technologies, their applications in ophthalmic surgery may soon undergo a booming development.
Collapse
Affiliation(s)
- Quan Yan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Bing Han
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhuo-Chen Ma
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Han T, Zhao L, Shen Y, Chen Z, Yang D, Zhang J, Sekundo W, Shah R, Tian J, Zhou X. Twelve-year global publications on small incision lenticule extraction: A bibliometric analysis. Front Med (Lausanne) 2022; 9:990657. [PMID: 36160168 PMCID: PMC9493269 DOI: 10.3389/fmed.2022.990657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To analyze the development process of small incision lenticule extraction (SMILE) surgery in a 12-year period. Methods We conducted a literature search for SMILE research from 2011 to 2022 using the Science Citation Index Expanded (SCIE) of the Web of Science Core Collection (WoSCC). The VOS viewer, and CiteSpace software were used to perform the bibliometric analysis. Publication language, annual growth trend, countries/regions and institutions, journals, keywords, references, and citation bursts were analyzed. Results A total of 731 publications from 2011 to 2022 were retrieved. Annual publication records grew from two to more than 100 during this period. China had the highest number of publications (n = 326). Sixty-five keywords that appeared more than four times were classified into six clusters: femtosecond laser technology, dry eye, biomechanics, visual quality, complications, and hyperopia. Conclusion The number of literatures has been growing rapidly in the past 12 years. Our study provides a deep insight into publications on SMILE for researchers and clinicians with bibliometric analysis for the first time.
Collapse
Affiliation(s)
- Tian Han
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Research Center of Ophthalmology and Optometry Shanghai, Shanghai, China
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, China
| | - Liang Zhao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- The School of Nursing, Lanzhou University, Lanzhou, Gansu, China
| | - Yang Shen
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Research Center of Ophthalmology and Optometry Shanghai, Shanghai, China
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, China
| | - Zhi Chen
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Research Center of Ophthalmology and Optometry Shanghai, Shanghai, China
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, China
| | - Dong Yang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Research Center of Ophthalmology and Optometry Shanghai, Shanghai, China
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, China
| | - Jiaoyan Zhang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- The School of Nursing, Lanzhou University, Lanzhou, Gansu, China
| | - Walter Sekundo
- The Department of Ophthalmology, Philipps University of Marburg, Marburg, Germany
| | - Rupal Shah
- New Vision Laser Centers, Vadodara, Gujarat, India
| | - Jinhui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- *Correspondence: Jinhui Tian,
| | - Xingtao Zhou
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Research Center of Ophthalmology and Optometry Shanghai, Shanghai, China
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, China
- Xingtao Zhou,
| |
Collapse
|
21
|
Yang J, Wu S, Ren Q, Wang J, Gao Z, Li X, Chen W. Adhesion is safe to the refractive surgeries: A theoretical analysis. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
22
|
Yang J, Ren Q, Zhao D, Gao Z, Li X, He R, Chen W. Corneal Adhesion Possesses the Characteristics of Solid and Membrane. Bioengineering (Basel) 2022; 9:bioengineering9080394. [PMID: 36004919 PMCID: PMC9405176 DOI: 10.3390/bioengineering9080394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Adhesion behavior usually occurs in corneas associated with clinical treatments. Physiologically, an intact natural cornea is inflated by intraocular pressure. Due to the inflation, the physiological cornea has a mechanical property likeness to membrane. This characteristic is ignored by the classical theory used to analyze the adhesion behavior of soft solids, such as the Johnson–Kendall–Roberts (JKR) model. Performing the pull-off test, this work evidenced that the classical JKR solution was suitable for computing the corneal adhesion force corresponding to the submillimeter scale of contact. However, when the cornea was contacted at a millimeter scale, the JKR solutions were clearly smaller than the related experimental data. The reason was correlated with the membranous characteristic of the natural cornea was not considered in the JKR solid model. In this work, the modified JKR model was superimposed by the contribution from the surface tension related to the corneal inflation due to the intraocular pressure. It should be treated as a solid when the cornea is contacted at a submillimeter scale, whereas for the contact at a larger size, the characteristic of the membrane should be considered in analyzing the corneal adhesion. The modified JKR model successfully described the adhesion characteristics of the cornea from solid to membrane.
Collapse
Affiliation(s)
- Jiajin Yang
- Department of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030000, China
| | - Qiaomei Ren
- Department of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030000, China
| | - Dong Zhao
- Department of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030000, China
| | - Zhipeng Gao
- Department of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030000, China
- State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610000, China
- Correspondence: (Z.G.); (X.L.); Tel.: +86-03513176655 (Z.G. & X.L.)
| | - Xiaona Li
- Department of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030000, China
- Correspondence: (Z.G.); (X.L.); Tel.: +86-03513176655 (Z.G. & X.L.)
| | - Rui He
- Department of Excimer Laser, Shanxi Medical University, Taiyuan 030000, China
| | - Weiyi Chen
- Department of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030000, China
| |
Collapse
|
23
|
Santra M, Liu YC, Jhanji V, Yam GHF. Human SMILE-Derived Stromal Lenticule Scaffold for Regenerative Therapy: Review and Perspectives. Int J Mol Sci 2022; 23:ijms23147967. [PMID: 35887309 PMCID: PMC9315730 DOI: 10.3390/ijms23147967] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022] Open
Abstract
A transparent cornea is paramount for vision. Corneal opacity is one of the leading causes of blindness. Although conventional corneal transplantation has been successful in recovering patients’ vision, the outcomes are challenged by a global lack of donor tissue availability. Bioengineered corneal tissues are gaining momentum as a new source for corneal wound healing and scar management. Extracellular matrix (ECM)-scaffold-based engineering offers a new perspective on corneal regenerative medicine. Ultrathin stromal laminar tissues obtained from lenticule-based refractive correction procedures, such as SMall Incision Lenticule Extraction (SMILE), are an accessible and novel source of collagen-rich ECM scaffolds with high mechanical strength, biocompatibility, and transparency. After customization (including decellularization), these lenticules can serve as an acellular scaffold niche to repopulate cells, including stromal keratocytes and stem cells, with functional phenotypes. The intrastromal transplantation of these cell/tissue composites can regenerate native-like corneal stromal tissue and restore corneal transparency. This review highlights the current status of ECM-scaffold-based engineering with cells, along with the development of drug and growth factor delivery systems, and elucidates the potential uses of stromal lenticule scaffolds in regenerative therapeutics.
Collapse
Affiliation(s)
- Mithun Santra
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
| | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Vishal Jhanji
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
| | - Gary Hin-Fai Yam
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|
24
|
Mastropasqua L, Nubile M, Acerra G, Detta N, Pelusi L, Lanzini M, Mattioli S, Santalucia M, Pietrangelo L, Allegretti M, Dua HS, Mehta JS, Pandolfi A, Mandatori D. Bioengineered Human Stromal Lenticule for Recombinant Human Nerve Growth Factor Release: A Potential Biocompatible Ocular Drug Delivery System. Front Bioeng Biotechnol 2022; 10:887414. [PMID: 35813999 PMCID: PMC9260024 DOI: 10.3389/fbioe.2022.887414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Small incision lenticule extraction (SMILE), is a surgical procedure for the myopia correction, during which a corneal stromal lenticule is extracted. Given that we have previously demonstrated how this discarded tissue could be repurposed as a bio-scaffold for stromal engineering, this study aimed to explore its use as an ocular drug delivery system of active molecules, using neurotrophic factor Nerve Growth Factor (NGF). We employed human stromal lenticules directly collected from healthy donors undergoing SMILE. Following a sodium dodecylsulfate (SDS) treatment, decellularized lenticules were incubated with a suspension of polylactic-co-glycolic-acid (PLGA) microparticles (MPs) loaded with recombinant human NGF (rhNGF-MPs). Fluorescent MPs (Fluo-MPs) were used as control. Data demonstrated the feasibility to engineer decellularized lenticules with PLGA-MPs which remain incorporated both on the lenticules surface and in its stromal. Following their production, the in vitro release kinetic showed a sustained release for up to 1 month of rhNGF from MPs loaded to the lenticule. Interestingly, rhNGF was rapidly released in the first 24 h, but it was sustained up to the end of the experiment (1 month), with preservation of rhNGF activity (around 80%). Our results indicated that decellularized human stromal lenticules could represent a biocompatible, non-immunogenic natural scaffold potential useful for ocular drug delivery. Therefore, combining the advantages of tissue engineering and pharmaceutical approaches, this in vitro proof-of-concept study suggests the feasibility to use this scaffold to allow target release of rhNGF in vivo or other pharmaceutically active molecules that have potential to treat ocular diseases.
Collapse
Affiliation(s)
- Leonardo Mastropasqua
- Ophthalmology Clinic, Department of Medicine and Aging Science, “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Mario Nubile
- Ophthalmology Clinic, Department of Medicine and Aging Science, “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | | | - Nicola Detta
- Dompé Farmaceutici SpA, Via Tommaso de Amicis, Naples, Italy
| | - Letizia Pelusi
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), StemTeCh Group, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Manuela Lanzini
- Ophthalmology Clinic, Department of Medicine and Aging Science, “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Simone Mattioli
- Dompé Farmaceutici SpA, Via Tommaso de Amicis, Naples, Italy
| | - Manuela Santalucia
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), StemTeCh Group, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Laura Pietrangelo
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | | | - Harminder S. Dua
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Jodhbir S. Mehta
- Tissue Engineering and Cell Group, Singapore Eye Research Institute, Corneal and External Department, Singapore National Eye Centre, Singapore, Singapore
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), StemTeCh Group, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Domitilla Mandatori
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), StemTeCh Group, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- *Correspondence: Domitilla Mandatori,
| |
Collapse
|
25
|
Comparison of the Effects of Temperature and Dehydration Mode on Glycerin-Based Approaches to SMILE-Derived Lenticule Preservation. Cornea 2022; 41:470-477. [PMID: 35244627 PMCID: PMC8895973 DOI: 10.1097/ico.0000000000002846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/21/2021] [Indexed: 12/01/2022]
Abstract
Supplemental Digital Content is Available in the Text. The aim of this study was to explore the optimal method of small-incision lenticule extraction (SMILE)-derived lenticules, subjected to long-term preservation using glycerol, under a range of temperatures, and using an array of dehydration agents.
Collapse
|
26
|
Preservation of corneal stromal lenticule: review. Cell Tissue Bank 2022; 23:627-639. [DOI: 10.1007/s10561-021-09990-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/22/2021] [Indexed: 11/02/2022]
|
27
|
Liu S, Wei R, Choi J, Li M, Zhou X. Visual Outcomes After Implantation of Allogenic Lenticule in a 100-µm Pocket for Moderate to High Hyperopia: 2-Year Results. J Refract Surg 2021; 37:734-740. [PMID: 34756142 DOI: 10.3928/1081597x-20210730-02] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To investigate 2-year visual outcomes, stability, and predictability after allogenic lenticule implantation in a 100-µm pocket for moderate to high hyperopia correction. METHODS In this prospective case series, 14 eyes of 9 patients with moderate to high hyperopia ranging from +3.00 to +8.00 diopters sphere were included between March and September 2018. Allogenic lenticules extracted from myopic small incision lenticule extraction were implanted into a pocket created by femtosecond laser at a 100-µm depth in recipients with hyperopia. All patients were followed up for 2 years. Uncorrected (UDVA) and corrected (CDVA) distance visual acuity, manifest refraction, corneal topography, Fourier-domain optical coherence tomography, and in vivo confocal microscopy were examined. RESULTS At postoperative 2 years, 2 eyes (14.3%) gained one line of CDVA, 11 eyes (78.6%) had unchanged CDVA, and 1 eye (7.1%) lost one line of CDVA. No eyes lost two or more lines of CDVA. Twelve of the treated eyes (85.7%) had postoperative uncorrected near visual acuity equal to or better than pre-operative values. The spherical equivalent decreased from +5.53 ± 1.45 D preoperatively to -0.60 ± 1.20 D at postoperative year 2 (P < .001). The anterior mean keratometric readings increased from 42.41 ± 1.03 D preoperatively to 48.38 ± 1.98 D at postoperative year 2 (P < .001). Of 14 treated eyes, 10 eyes (71.4%) had spherical equivalent within ±1.00 D. CONCLUSIONS The findings suggest that allogenic lenticule transplantation may be a promising option for the correction of moderate to high hyperopia. [J Refract Surg. 2021;37(11):734-740.].
Collapse
|
28
|
Han T, Shen Y, Shang J, Fu D, Zhao F, Zhao J, Li M, Zhou X. Femtosecond Laser-Assisted Small Incision Allogeneic Endokeratophakia Using a Hyperopic Lenticule in Rabbits. Transl Vis Sci Technol 2021; 10:29. [PMID: 34665231 PMCID: PMC8543388 DOI: 10.1167/tvst.10.12.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/20/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose To investigate the morphologic and histopathologic changes in allogeneic endokeratophakia using hyperopic lenticules derived from small-incision lenticule extraction (SMILE). Methods Six New Zealand rabbits (12 eyes) were included in this experiment and randomly and evenly divided into donor and recipient groups. The donor group underwent bilateral hyperopic SMILE surgery, and the concave lenticules were implanted into eyes in the recipient group. Corneal topography and anterior segment optical coherence tomography (OCT) examinations were performed at 1 day, 1 week, 1 month, and 5 months after surgery. All eyes were enucleated 5 months after surgery. Hematoxylin and eosin (HE) staining and transmission electron microscopy (TEM) were used to observe the corneal morphology in the recipient group. Results No complications were observed, and the corneas remained transparent in the follow-up period. There was mild corneal edema within 1 week after surgery. Slit-lamp microscopy and OCT showed that the lenticules were gradually integrated with the surrounding corneal stroma. HE staining showed that the arrangement of corneal collagen was regular. The boundary between the lenticules and surrounding tissue could be identified with HE staining and TEM, and no inflammatory cells were found under TEM. The corneal Km values were significantly lower at 5 months postoperatively compared to preoperatively (P < 0.05). Conclusions This pilot study showed that allogeneic hyperopic SMILE lenticule endokeratophakia seems to be safe and feasible. Translational Relevance Allogeneic hyperopic SMILE lenticule endokeratophakia may be applicable for the correction of corneal regression, ectasia, ultra-high myopia, or keratoconus.
Collapse
Affiliation(s)
- Tian Han
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Yang Shen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Jianmin Shang
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Dan Fu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Feng Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
- The Department of Ophthalmology, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Meiyan Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| |
Collapse
|
29
|
Yam GHF, Bandeira F, Liu YC, Devarajan K, Yusoff NZBM, Htoon HM, Mehta JS. Effect of corneal stromal lenticule customization on neurite distribution and excitatory property. J Adv Res 2021; 38:275-284. [PMID: 35572401 PMCID: PMC9091752 DOI: 10.1016/j.jare.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022] Open
Abstract
Refractive SMILE-derived stromal lenticules are useful in various tissue-engineering approach for therapeutics, of which they are required to be customized before implantation. Excimer laser-mediated reshaping, riboflavin-UVA-induced collagen crosslinking and chemical decellularization significantly removed lenticule neurites, but the residual neurites retained excitatory response. Reinnervation occurred in the decellularized lenticules, indicating a potential of nerve regeneration. Stromal lenticules, as a unique collagen-rich biomaterial with high transparency, refractivity and mechanically robust, together with the ability of neurite regeneration, could hold a potential for various ophthalmic applications.
Introduction Refractive stromal lenticules from Small Incision Lenticule Extraction (SMILE), though usually discarded, hold a potential for various ophthalmic applications, including refractive correction, stromal volume expansion, and biomechanical strengthening of the cornea. Objectives To investigate the effect of lenticule customization on lenticule neurite length profile and the excitatory response (calcium signaling) and the potential of reinnervation. Methods Human and porcine stromal lenticules were treated by (1) excimer laser reshaping, (2) ultraviolet A-riboflavin crosslinking (CXL), and (3) decellularization by sodium dodecyl sulfate (SDS), respectively. The overall neurite scaffold immuno-positive to TuJ1 (neuron-specific class III β-tubulin) expression and population of active neurite fragments with calcium response revealed by L-glutamate-induced Fluo-4-acetoxymethyl ester reaction were captured by wide-field laser-scanning confocal microscopy, followed by z-stack image construction. The NeuronJ plugin was used to measure neurite lengths for TuJ1 (NL-TuJ1) and calcium signal (NL-Ca). Reinnervation of lenticules was examined by the ex vivo grafting of chick dorsal root ganglia (DRG) to the decellularized human lenticules. Differences between groups and controls were analyzed with ANOVA and Mann-Whitney U test. Results The customization methods significantly eliminated neurites inside the lenticules. NL-TuJ1 was significantly reduced by 84% after excimer laser reshaping, 54% after CXL, and 96% after decellularization. The neurite remnants from reshaping and CXL exhibited calcium signaling, indicative of residual excitatory response. Re-innervation occurred in the decellularized lenticules upon stimulation of the grafted chick embryo DRG with nerve growth factor (NGF 2.5S). Conclusion All of the lenticule customization procedures reduced lenticule neurites, but the residual neurites still showed excitatory potential. Even though these neurite remnants seemed minimal, they could be advantageous to reinnervation with axon growth and guidance after lenticule reimplantation for refractive and volume restoration of the cornea.
Collapse
|
30
|
Riau AK, Boey KPY, Binte M Yusoff NZ, Goh TW, Yam GHF, Tang KF, Phua CSH, Chen HJ, Chiew YF, Liu YC, Mehta JS. Experiment-Based Validation of Corneal Lenticule Banking in a Health Authority-Licensed Facility. Tissue Eng Part A 2021; 28:69-83. [PMID: 34128385 DOI: 10.1089/ten.tea.2021.0042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
With the expected rise in patients undergoing refractive lenticule extraction worldwide, the number of discarded corneal stromal lenticules will increase. Therefore, establishing a lenticule bank to collect, catalog, process, cryopreserve, and distribute the lenticules (for future therapeutic needs) could be advantageous. In this study, we validated the safety of lenticule banking that involved the collection of human lenticules from our eye clinic, transportation of the lenticules to a Singapore Ministry of Health-licensed lenticule bank, processing, and cryopreservation of the lenticules, which, after 3 months or, a longer term, 12 months, were retrieved and transported to our laboratory for implantation in rabbit corneas. The lenticule collection was approved by the SingHealth Centralised Institutional Review Board (CIRB). Both short-term and long-term cryopreserved lenticules, although not as transparent as fresh lenticules due to an altered collagen fibrillar packing, did not show any sign of rejection and cytotoxicity, and did not induce haze or neovascularization for 16 weeks even when antibiotic and steroidal administration were withdrawn after 8 weeks. The lenticular transparency progressively improved and was mostly clear after 4 weeks, the same period when we observed the stabilization of corneal hydration. We showed that the equalization of the collagen fibrillar packing of the lenticules with that of the host corneal stroma contributed to the lenticular haze clearance. Most importantly, no active wound healing and inflammatory reactions were seen after 16 weeks. Our study suggests that long-term lenticule banking is a feasible approach for the storage of stromal lenticules after refractive surgery.
Collapse
Affiliation(s)
- Andri K Riau
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Kenny P Y Boey
- Group Laboratory Operations, Cordlife Group Limited, Singapore, Singapore
| | | | - Tze-Wei Goh
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Gary H F Yam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kin F Tang
- Group Laboratory Operations, Cordlife Group Limited, Singapore, Singapore.,Singapore Laboratory, Cordlife Group Limited, Singapore, Singapore
| | | | - Hui-Jun Chen
- Singapore Laboratory, Cordlife Group Limited, Singapore, Singapore
| | - Yoke F Chiew
- Singapore Laboratory, Cordlife Group Limited, Singapore, Singapore
| | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.,Corneal and External Eye Disease Department, Singapore National Eye Centre, Singapore, Singapore
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.,Corneal and External Eye Disease Department, Singapore National Eye Centre, Singapore, Singapore
| |
Collapse
|
31
|
Doroodgar F, Jabbarvand M, Niazi S, Karimian F, Niazi F, Sanginabadi A, Ghoreishi M, Alinia C, Hashemi H, Alió JL. Customized Stromal Lenticule Implantation for Keratoconus. J Refract Surg 2021; 36:786-794. [PMID: 33295990 DOI: 10.3928/1081597x-20201005-01] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/05/2020] [Indexed: 11/20/2022]
Abstract
PURPOSE To investigate the potential benefit of keratoconus surgery using customized corneal stromal donor lenticules obtained from myopic small incision lenticule extraction (SMILE) surgery by femtosecond laser. METHODS In this prospective, consecutive, non-comparative series of cases, 22 lenticules were obtained from 22 myopic patients who had SMILE with a lenticule central thickness of greater than 110 µm. The lenticules were implanted in 22 eyes with advanced keratoconus. The lenticules were customized for the purpose of the implantation with either a simple necklace or necklace-with-ring shape (compound form) depending on the corneal thickness and corneal topography configuration of the implanted keratoconic eyes. The lenticules were implanted into a 9.5-mm corneal lamellar pocket created by the femtosecond laser. Changes in densitometry, thickness, confocal microscopy, corrected distance visual acuity (CDVA), and endothelial cell density were investigated. RESULTS Intrastromal lenticule implantation was successfully performed in all cases without any complication. Corneal thickness showed a mean enhancement of 100.4 µm at the thinnest point. On biomicroscopy, all corneas were clear at 1 year postoperatively and there was a significant improvement in corneal densitometry during the entire follow-up period. Confocal biomicroscopy showed collagen reactivation without any inflammatory features caused by the implanted fresh lenticules. CDVA improved from 0.70 to 0.49 logMAR (P = .001) and keratometry decreased from 54.68 ± 2.77 to 51.95 ± 2.21 diopters (P = .006). CONCLUSIONS Customized SMILE lenticule implantation by femtosecond laser proved to be feasible, resulting in an improvement in vision, topography, and refraction in the implanted eyes. [J Refract Surg. 2020;36(12):786-794.].
Collapse
|
32
|
Menzel-Severing J, Salla S, Geerling G. Eye Banks: Future Perspectives. Klin Monbl Augenheilkd 2021; 238:674-678. [PMID: 34157769 DOI: 10.1055/a-1478-4277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Technological progress and societal change are transforming medicine, and cornea banks are no exception. New infectiological factors, statutory requirements, management concepts, globalisation and digitalisation are also influencing how such facilities will operate in the future. The goal of providing high quality material to patients with corneal disease remains unaltered. The present article seeks to shed light on the type of material this will involve and under what circumstances it is to be obtained.
Collapse
Affiliation(s)
| | - Sabine Salla
- Klinik für Augenheilkunde, Uniklinik RWTH Aachen, Deutschland
| | - Gerd Geerling
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Deutschland
| |
Collapse
|
33
|
Femtosecond laser-assisted stromal keratophakia for keratoconus: A systemic review and meta-analysis. Int Ophthalmol 2021; 41:1965-1979. [PMID: 33609200 DOI: 10.1007/s10792-021-01745-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE Femtosecond lasers have revived the possibility of stromal keratophakia or tissue additive keratoplasty, a technique originally introduced by Prof. Jose Ignacio Barraquer in the 1960s. The surgical technique offers a unique solution to treat keratoconus. In the current study, we reviewed and performed a meta-analysis of the clinical outcomes of the femtosecond laser-assisted stromal keratophakia in the treatment of keratoconus. METHODS This is a systematic review and meta-analysis of the estimated outcome difference between pre- and post-lenticule implantations. RESULTS A total of related 10 studies were found in the literature. No studies reported adverse events, such as persistent haze or graft rejection, at last patients' visits. We further narrowed down the article selection in accordance to our inclusion criteria to report the composite outcomes (9 studies) and meta-analysis (4 studies). In the composite analysis, we demonstrated that lenticule implantation in keratoconus and post-LASIK ectasia patients appeared to expand the stromal volume of the thin corneas, flattened the cones, and significantly improved uncorrected visual acuity (UCVA), best-corrected visual acuity (BCVA) and spherical equivalent (SE). The meta-analysis showed that the random estimated UCVA, BCVA, SE and mean keratometry (Km) differences following the lenticule implantation was -0.214 (95% CI: -0.367 to 0.060; p = 0.006), -0.169 (-0.246 to 0.091; p < 0.001), -2.294 D (-3.750 to -0.839 D; p = 0.002), and 2.909 D (0.805 to 5.012 D; p = 0.007), respectively. CONCLUSIONS Femtosecond laser-assisted stromal keratophakia is a feasible technique to correct the refractive aberrations, expand corneal volume and regularize corneal curvature in patients with keratoconus. However, there is a need to standardize the technique (e.g., whether to crosslink or not or to use convex or concave lenticules) and to formulate a mathematical model that accounts for the long-term epithelial thickness changes and stromal remodeling to determine the shape or profile of the lenticules, in order to improve the efficacy of the keratophakia further.
Collapse
|
34
|
Abstract
Presbyopia is a growing problem in view of an aging global population and increasingly patients desire spectacle-free solutions to address this condition. Surgically implanted corneal inlays have been the topic of renewed research efforts in the past several years as a treatment option for presbyopia, with several approaches being used to modify the refractive properties of the cornea and enhance near vision. In this review we discuss historical approaches to corneal inlay surgery, critically appraise the current generation of presbyopia-correcting corneal inlays and their associated complications and consider the future prospects for emerging corneal inlay technologies that aim address the shortcomings of currently available inlays.
Collapse
|
35
|
Epithelial and stromal remodelling following femtosecond laser-assisted stromal lenticule addition keratoplasty (SLAK) for keratoconus. Sci Rep 2021; 11:2293. [PMID: 33504829 PMCID: PMC7840927 DOI: 10.1038/s41598-021-81626-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/04/2021] [Indexed: 11/08/2022] Open
Abstract
The purpose of this study was to evaluate corneal epithelium and stromal remodelling with anterior segment optical coherence tomography in patients who have undergone stromal lenticule addition keratoplasty (SLAK) for advanced keratoconus. This was a prospective non-comparative observational study. Fifteen eyes of 15 patients with advanced keratoconus underwent implantation with a cadaveric, donor negative meniscus-shaped intrastromal lenticule, produced with a femtosecond laser, into a stromal pocket dissected in the recipient cornea at a depth of 120 μm. Simulated keratometry, central corneal thickness (CTT), corneal thinnest point (CTP), central epithelial thickness (CET), central and peripheral lenticule thickness, anterior and posterior stromal thickness were measured. Regional central corneal epithelial thickness (CET) and variations in the inner annular area (IAT) and outer annular area (OAT) were also analysed. All parameters were measured preoperatively and 1, 3, and 6 months postoperatively. The average anterior Sim-k decreased from 59.63 ± 7.58 preoperatively to 57.19 ± 6.33 D 6 months postoperatively. CCT, CTP, CET, and OAT increased and IAT decreased significantly after 1 month. All parameters appeared unchanged at 6-months except that of OAT that further increased. Lenticule thickness was stable. In conclusion we observed that SLAK reshapes the cornea by central flattening with stromal thickening and epithelial thickness restoration.
Collapse
|
36
|
Femtosecond-Laser Assisted Surgery of the Eye: Overview and Impact of the Low-Energy Concept. MICROMACHINES 2021; 12:mi12020122. [PMID: 33498878 PMCID: PMC7912418 DOI: 10.3390/mi12020122] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 11/16/2022]
Abstract
This article provides an overview of both established and innovative applications of femtosecond (fs)-laser-assisted surgical techniques in ophthalmology. Fs-laser technology is unique because it allows cutting tissue at very high precision inside the eye. Fs lasers are mainly used for surgery of the human cornea and lens. New areas of application in ophthalmology are on the horizon. The latest improvement is the high pulse frequency, low-energy concept; by enlarging the numerical aperture of the focusing optics, the pulse energy threshold for optical breakdown decreases, and cutting with practically no side effects is enabled.
Collapse
|
37
|
Yoon CH, Choi HJ, Kim MK. Corneal xenotransplantation: Where are we standing? Prog Retin Eye Res 2021; 80:100876. [PMID: 32755676 PMCID: PMC7396149 DOI: 10.1016/j.preteyeres.2020.100876] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/23/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023]
Abstract
The search for alternatives to allotransplants is driven by the shortage of corneal donors and is demanding because of the limitations of the alternatives. Indeed, current progress in genetically engineered (GE) pigs, the introduction of gene-editing technology by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, and advanced immunosuppressants have made xenotransplantation a possible option for a human trial. Porcine corneal xenotransplantation is considered applicable because the eye is regarded as an immune-privileged site. Furthermore, recent non-human primate studies have shown long-term survival of porcine xenotransplants in keratoplasty. Herein, corneal immune privilege is briefly introduced, and xenogeneic reactions are compared with allogeneic reactions in corneal transplantation. This review describes the current knowledge on special issues of xenotransplantation, xenogeneic rejection mechanisms, current immunosuppressive regimens of corneal xenotransplantation, preclinical efficacy and safety data of corneal xenotransplantation, and updates of the regulatory framework to conduct a clinical trial on corneal xenotransplantation. We also discuss barriers that might prevent xenotransplantation from becoming common practice, such as ethical dilemmas, public concerns on xenotransplantation, and the possible risk of xenozoonosis. Given that the legal definition of decellularized porcine cornea (DPC) lies somewhere between a medical device and a xenotransplant, the preclinical efficacy and clinical trial data using DPC are included. The review finally provides perspectives on the current standpoint of corneal xenotransplantation in the fields of regenerative medicine.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hyuk Jin Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea; Department of Ophthalmology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Donation of discarded ocular tissue in patients undergoing SMILE laser refractive surgery: developing appropriate guidelines. Cell Tissue Bank 2020; 21:605-613. [PMID: 32700115 DOI: 10.1007/s10561-020-09850-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
Abstract
Tissue Biobanks represent an invaluable resource. Despite the majority of people supporting tissue donation, the actual rate remains low overall. Tissue discarded from surgical procedures represents a further avenue for collection for use in research. We aim to understand the information and consent requirements in a cohort of healthy, post-ophthalmic surgical subjects to optimise future tissue collection in living donors. Patients attending an ophthalmic clinic following refractive surgery for myopia (SMILE) were identified. Patient consent was implied with the completion of the provided survey. The questionnaire included gender, age range and education status. The majority of 31 subjects identified a benefit for future patients as the main motive for potential donation of discarded tissue (71%). Payment for the discarded tissue would not influence their decision in 77.4%. Explanation of the potential benefits of research was the most important information to consider before making a decision to donate. Only 12.9% of patients would have refused to include further information. Almost half of patients felt that the Biobank became the owner of tissue following donation. Current surgical patients may be more inclined to participate in research than the general public because of a sense of duty or an increased understanding of the role of research in evolving treatment. Despite minor uncertainty about the eventual use of the tissue and data, most subjects were positive to donation of discarded ocular tissue and de-identified information. Consent and education processes should be revised within an ophthalmic practice to minimise future patient anxiety.
Collapse
|
39
|
Han SB, Liu YC, Mohamed-Noriega K, Mehta JS. Application of Femtosecond Laser in Anterior Segment Surgery. J Ophthalmol 2020; 2020:8263408. [PMID: 32351726 PMCID: PMC7171667 DOI: 10.1155/2020/8263408] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/12/2020] [Indexed: 11/24/2022] Open
Abstract
Femtosecond laser (FSL) is a near-infrared laser that can create reliable and reproducible tissue cutting with minimal damage to adjacent tissue. As the laser can also create incisions with various orientations, depths, and shapes, it is expected to be a useful tool for anterior segment surgery, such as cornea, refractive, and cataract surgery. In this review, the authors will introduce the application of FSL in various anterior segment surgeries and discuss the results of studies regarding the efficacy and safety of FSL in cornea, refractive, and cataract surgery. Experimental studies regarding the potential use of FSL will also be introduced. The studies discussed in this review suggest that FSL may be a useful tool for improving the prognosis and safety of surgeries of the anterior segment.
Collapse
Affiliation(s)
- Sang Beom Han
- Department of Ophthalmology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Yu-Chi Liu
- Singapore National Eye Centre, Singapore
- Singapore Eye Research Institute, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Karim Mohamed-Noriega
- Department of Ophthalmology, University Hospital, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Jodhbir S. Mehta
- Singapore National Eye Centre, Singapore
- Singapore Eye Research Institute, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|