1
|
Montory JA, Cubillos VM, Chaparro OR, Gebauer P, Lee MR, Ramírez-Kuschel E, Paredes-Molina F, Lara-Sandoval V, Cumillaf JP, Salas-Yanquin LP, Büchner-Miranda JA. The Interactive Effects of the Anti-Sea Lice Pesticide Azamethiphos and Temperature on Oxidative Damage and Antioxidant Responses in the Oyster Ostrea chilensis. Antioxidants (Basel) 2024; 13:737. [PMID: 38929176 PMCID: PMC11200689 DOI: 10.3390/antiox13060737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Azamethiphos is used in the salmon industry to treat sea lice and is subsequently discharged into the sea, which may affect non-target species (NTS). A rise in seawater temperature could enhance the sensitivity of NTS. Thus, in the present investigation, the combined effects of azamethiphos (0 µg L-1, 15 µg L-1 and 100 µg L-1) and temperature (12 °C and 15 °C) was assessed over time (7 days) in the gonads and gills of the oyster Ostrea chilensis, assessing its oxidative damage (lipid peroxidation and protein carbonyls) and total antioxidant capacity. Our results indicated that in gonads and gills, lipid peroxidation levels increased over time during exposure to both pesticide concentrations. Protein carbonyl levels in gills increased significantly in all experimental treatments; however, in gonads, only pesticide concentration and exposure time effected a significant increase in protein damage. In both, gill and gonad temperature did not influence oxidative damage levels. Total antioxidant capacity in gonads was influenced only by temperature treatment, whereas in the gills, neither temperature nor azamethiphos concentration influenced defensive responses. In conclusion, our results indicated the time of pesticide exposure (both concentrations) had a greater influence than temperature on the cellular damage in this oyster.
Collapse
Affiliation(s)
- Jaime A. Montory
- Centro i~mar, Universidad de los Lagos, Casilla 557, Puerto Montt 5480000, Chile; (P.G.); (M.R.L.); (V.L.-S.)
| | - Victor M. Cubillos
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (V.M.C.); (O.R.C.); (E.R.-K.); (F.P.-M.); (J.A.B.-M.)
| | - Oscar R. Chaparro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (V.M.C.); (O.R.C.); (E.R.-K.); (F.P.-M.); (J.A.B.-M.)
| | - Paulina Gebauer
- Centro i~mar, Universidad de los Lagos, Casilla 557, Puerto Montt 5480000, Chile; (P.G.); (M.R.L.); (V.L.-S.)
| | - Matthew R. Lee
- Centro i~mar, Universidad de los Lagos, Casilla 557, Puerto Montt 5480000, Chile; (P.G.); (M.R.L.); (V.L.-S.)
| | - Eduardo Ramírez-Kuschel
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (V.M.C.); (O.R.C.); (E.R.-K.); (F.P.-M.); (J.A.B.-M.)
| | - Francisco Paredes-Molina
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (V.M.C.); (O.R.C.); (E.R.-K.); (F.P.-M.); (J.A.B.-M.)
| | - Valentina Lara-Sandoval
- Centro i~mar, Universidad de los Lagos, Casilla 557, Puerto Montt 5480000, Chile; (P.G.); (M.R.L.); (V.L.-S.)
| | - Juan P. Cumillaf
- Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Los Pinos s/n, Balneario Pelluco, Puerto Montt 5480000, Chile;
| | - Luis P. Salas-Yanquin
- Facultad de Ciencias, Unidad Multidisciplinaria de Docencia e Investigación, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal 97356, Mexico;
| | - Joseline A. Büchner-Miranda
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (V.M.C.); (O.R.C.); (E.R.-K.); (F.P.-M.); (J.A.B.-M.)
| |
Collapse
|
2
|
Montory JA, Cubillos VM, Lee MR, Chaparro OR, Gebauer P, Cumillaf JP, Cruces E. The interactive effect of anti-sea lice pesticide azamethiphos and temperature on the physiological performance of the filter-feeding bivalve Ostrea chilensis: A non-target species. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105837. [PMID: 36481714 DOI: 10.1016/j.marenvres.2022.105837] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The pesticide azamethiphos used by the salmon industry to treat sea lice, is applied as a bath and subsequently discharged into the sea. The effects of azamethiphos concentration (0, 15 and 100 μg L-1) on the physiology of the Chilean oyster (Ostrea chilensis) at two temperatures (12 and 15 °C) was examined. In all azamethiphos treatments, oysters kept at 15 °C had clearance rates (CR) higher than oysters kept at 12 °C. The oxygen consumption rate (OCR) increased at higher temperatures, except with 100 μg L-1 of azamethiphos, where no changes were observed. Sixty days after the exposure, survival rates of 91 and 79% (15 and 100 μg L-1, respectively), were observed compared to the controls, a situation independent of the experimental temperature. The interaction between temperature and pesticide has detrimental effects on the physiological performance and survival of O. chilensis, and these effects should also be assessed for other non-target species.
Collapse
Affiliation(s)
- Jaime A Montory
- Centro i∼mar, Universidad De Los Lagos, Casilla 557, Puerto Montt, Chile.
| | - Victor M Cubillos
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Matthew R Lee
- Centro i∼mar, Universidad De Los Lagos, Casilla 557, Puerto Montt, Chile
| | - Oscar R Chaparro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Paulina Gebauer
- Centro i∼mar, Universidad De Los Lagos, Casilla 557, Puerto Montt, Chile
| | - Juan P Cumillaf
- Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Los Pinos s/n, Balneario Pelluco, Puerto Montt, Chile
| | - Edgardo Cruces
- Centro de Investigaciones Costeras-Universidad de Atacama (CIC-UDA), Universidad de Atacama, Avenida Copayapu 485, Copiapó, Chile
| |
Collapse
|
3
|
Núñez-Acuña G, Fernandez C, Sanhueza-Guevara S, Gallardo-Escárate C. Transcriptome profiling of the early developmental stages in the giant mussel Choromytilus chorus exposed to delousing drugs. Mar Genomics 2022; 65:100970. [PMID: 35839704 DOI: 10.1016/j.margen.2022.100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
The giant mussel Choromytilus chorus is a marine bivalve commonly collected in central - southern Chile from fishery zones shared with the salmon industry. These economically relevant areas are also affected by the use of pesticides for controlling sea lice infestations in salmon aquaculture. Their main target is the sea louse Caligus rogercresseyi. However, other than some physiological impacts, the molecular effects of delousing drugs in non-target species such as C. chorus remain largely understudied. This study aimed to explore the transcriptome modulation of Trochophore and D larvae stages of C. chorus after exposure to azamethiphos and deltamethrin drugs. Herein, RNA-seq analyses and mRNA-lncRNAs molecular interactions were obtained. The most significant changes were found between different larval development stages exposed to delousing drugs. Notably, significant transcriptional variations were correlated with the drug concentrations tested. The biological processes involved in the development, such as cell movement and transcriptional activity, were mainly affected. Long non-coding RNAs (lncRNAs) were also identified in this species, and the transcription activity showed similar patterns with coding mRNAs. Most of the significantly expressed lncRNAs were associated with genes annotated to matrix metalloproteinases, collagenases, and transcription factors. This study suggests that exposure to azamethiphos or deltamethrin drugs can modulate the transcriptome signatures related to the early development of the giant mussel C. chorus.
Collapse
Affiliation(s)
- Gustavo Núñez-Acuña
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
| | - Camila Fernandez
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Banyuls-Mer, France; COPAS COASTAL Center, University of Concepción, Concepción, Chile
| | - Sandra Sanhueza-Guevara
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Banyuls-Mer, France; COPAS COASTAL Center, University of Concepción, Concepción, Chile
| | | |
Collapse
|
4
|
Núñez-Acuña G, Valenzuela-Muñoz V, Carrera-Naipil C, Sáez-Vera C, Benavente BP, Valenzuela-Miranda D, Gallardo-Escárate C. Trypsin Genes Are Regulated through the miRNA Bantam and Associated with Drug Sensitivity in the Sea Louse Caligus rogercresseyi. Noncoding RNA 2021; 7:76. [PMID: 34940757 PMCID: PMC8703358 DOI: 10.3390/ncrna7040076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
The role of trypsin genes in pharmacological sensitivity has been described in numerous arthropod species, including the sea louse Caligus rogercresseyi. This ectoparasite species is mainly controlled by xenobiotic drugs in Atlantic salmon farming. However, the post-transcriptional regulation of trypsin genes and the molecular components involved in drug response remain unclear. In particular, the miRNA bantam family has previously been associated with drug response in arthropods and is also found in C. rogercresseyi, showing a high diversity of isomiRs. This study aimed to uncover molecular interactions among trypsin genes and bantam miRNAs in the sea louse C. rogercresseyi in response to delousing drugs. Herein, putative mRNA/miRNA sequences were identified and localized in the C. rogercresseyi genome through genome mapping and blast analyses. Expression analyses were obtained from the mRNA transcriptome and small-RNA libraries from groups with differential sensitivity to three drugs used as anti-sea lice agents: azamethiphos, deltamethrin, and cypermethrin. The validation was conducted by qPCR analyses and luciferase assay of selected bantam and trypsin genes identified from in silico transcript prediction. A total of 60 trypsin genes were identified in the C. rogercresseyi genome, and 39 bantam miRNAs were differentially expressed in response to drug exposure. Notably, expression analyses and correlation among values obtained from trypsin and bantam revealed an opposite trend and potential binding sites with significant ΔG values. The luciferase assay showed a reduction of around 50% in the expression levels of the trypsin 2-like gene, which could imply that this gene is a potential target for bantam. The role of trypsin genes and bantam miRNAs in the pharmacological sensitivity of sea lice and the use of miRNAs as potential markers in these parasites are discussed in this study.
Collapse
Affiliation(s)
- Gustavo Núñez-Acuña
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción P.O. Box 160-C, Chile; (V.V.-M.); (C.C.-N.); (C.S.-V.); (B.P.B.); (D.V.-M.); (C.G.-E.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepción P.O. Box 160-C, Chile
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción P.O. Box 160-C, Chile; (V.V.-M.); (C.C.-N.); (C.S.-V.); (B.P.B.); (D.V.-M.); (C.G.-E.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepción P.O. Box 160-C, Chile
| | - Crisleri Carrera-Naipil
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción P.O. Box 160-C, Chile; (V.V.-M.); (C.C.-N.); (C.S.-V.); (B.P.B.); (D.V.-M.); (C.G.-E.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepción P.O. Box 160-C, Chile
| | - Constanza Sáez-Vera
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción P.O. Box 160-C, Chile; (V.V.-M.); (C.C.-N.); (C.S.-V.); (B.P.B.); (D.V.-M.); (C.G.-E.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepción P.O. Box 160-C, Chile
| | - Bárbara P. Benavente
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción P.O. Box 160-C, Chile; (V.V.-M.); (C.C.-N.); (C.S.-V.); (B.P.B.); (D.V.-M.); (C.G.-E.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepción P.O. Box 160-C, Chile
| | - Diego Valenzuela-Miranda
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción P.O. Box 160-C, Chile; (V.V.-M.); (C.C.-N.); (C.S.-V.); (B.P.B.); (D.V.-M.); (C.G.-E.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepción P.O. Box 160-C, Chile
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción P.O. Box 160-C, Chile; (V.V.-M.); (C.C.-N.); (C.S.-V.); (B.P.B.); (D.V.-M.); (C.G.-E.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepción P.O. Box 160-C, Chile
| |
Collapse
|
5
|
Núñez-Acuña G, Valenzuela-Muñoz V, Valenzuela-Miranda D, Gallardo-Escárate C. Comprehensive Transcriptome Analyses in Sea Louse Reveal Novel Delousing Drug Responses Through MicroRNA regulation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:710-723. [PMID: 34564738 DOI: 10.1007/s10126-021-10058-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
The role of miRNAs in pharmacological responses through gene regulation related to drug metabolism and the detoxification system has recently been determined for terrestrial species. However, studies on marine ectoparasites have scarcely been conducted to investigate the molecular mechanisms of pesticide resistance. Herein, we explored the sea louse Caligus rogercresseyi miRNome responses exposed to delousing drugs and the interplaying with coding/non-coding RNAs. Drug sensitivity in sea lice was tested by in vitro bioassays for the pesticides azamethiphos, deltamethrin, and cypermethrin. Ectoparasites strains with contrasting susceptibility to these compounds were used. Small-RNA sequencing was conducted, identifying 2776 novel annotated miRNAs, where 163 mature miRNAs were differentially expressed in response to the drug testing. Notably, putative binding sites for miRNAs were found in the ADME genes associated with the drugs' absorption, distribution, metabolism, and excretion. Interactions between the miRNAs and long non-coding RNAs (lncRNAs) were also found, suggesting putative molecular gene regulation mechanisms. This study reports putative miRNAs correlated to the coding/non-coding RNAs modulation, revealing novel pharmacological mechanisms associated with drug resistance in sea lice species.
Collapse
Affiliation(s)
- Gustavo Núñez-Acuña
- Interdisciplinary Center for Aquaculture Research, University of Concepción, O'Higgins 1695, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Center of Biotechnology, Barrio Universitario S/N, Concepción, Chile
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research, University of Concepción, O'Higgins 1695, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Center of Biotechnology, Barrio Universitario S/N, Concepción, Chile
| | - Diego Valenzuela-Miranda
- Interdisciplinary Center for Aquaculture Research, University of Concepción, O'Higgins 1695, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Center of Biotechnology, Barrio Universitario S/N, Concepción, Chile
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research, University of Concepción, O'Higgins 1695, Concepción, Chile.
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Center of Biotechnology, Barrio Universitario S/N, Concepción, Chile.
| |
Collapse
|
6
|
Lepe-López M, Escobar-Dodero J, Rubio D, Alvarez J, Zimin-Veselkoff N, Mardones FO. Epidemiological Factors Associated With Caligus rogercresseyi Infection, Abundance, and Spatial Distribution in Southern Chile. Front Vet Sci 2021; 8:595024. [PMID: 34490385 PMCID: PMC8417708 DOI: 10.3389/fvets.2021.595024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
Sea lice (Caligus rogercresseyi) are external parasites that affect farmed salmonids in Chile, and the scale of their sanitary and economic impact cannot be overstated. Even though space–time patterns suppose parasite aggregation, specific locations related to different infestation levels, as well as their associated factors across the geographic range involved, had not been investigated as of the writing of the present article. The understanding of the effects and factors entailed by the presence of C. rogercresseyi may be deemed a key element of Integrated Pest Management (IPM). In the present study, the multivariate spatial scan statistic was used to identify geographic areas and times of C. rogercresseyi infestation and to estimate the factors associated with such patterns. We used official C. rogercresseyi monitoring data at the farm level, with a set of 13 covariates, to provide adjustment within the analyses. The analyses were carried out for a period of 5 years (2012–2016), and they included three fish species (Salmo salar, Oncorhynchus mykiss, and Oncorhynchus kisutch) in order to assess the consistency of the identified clusters. A retrospective multinomial, spatial, and temporal scan test was implemented to identify farm clusters of either of the different categories of C. rogercresseyi infested farms: baseline, medium, and high, based on the control chemical threshold established by the health authority. The baseline represents adequate farm performance against C. rogercresseyi infestation. Then, production and environmental factors of the medium and high infestation farms were compared with the baseline using regression techniques. The results revealed a total of 26 clusters (p < 0.001), of which 12 correspond to baseline, 1 to medium, and the remaining 13 to high infestation clusters. In general, baseline clusters are detected in a latitudinal gradient on estuarine areas, with increasing relative risks to complex island water systems. There is a spatial structure in specific sites, north of Los Lagos Region and central Aysén Region, with high infestation clusters and epidemic peaks during 2013. In addition, average weight, salmon species, chemotherapeutants, latitude, temperature, salinity, and year category are factors associated with these C. rogercresseyi patterns. Recommendations for an IPM plan are provided, along with a discussion that considers the involvement of stock density thresholds by salmon species and the spatial structure of the efficacy of chemical control, both intended to avoid the advance of resistance and to minimize environmental residues.
Collapse
Affiliation(s)
- Manuel Lepe-López
- PhD Program in Conservation Medicine, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Facultad de Ciencias de la Vida, Centro de Investigación para la Sustentabilidad, Universidad Andres Bello, Santiago, Chile
| | - Joaquín Escobar-Dodero
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | | | - Julio Alvarez
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, Madrid, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Natalia Zimin-Veselkoff
- EPIVET Analysis & Solutions, Santiago, Chile.,Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando O Mardones
- EPIVET Analysis & Solutions, Santiago, Chile.,Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
7
|
Lepe-Lopez M, Escobar-Dodero J, Zimin-Veselkoff N, Azat C, Mardones FO. Assessing the Present and Future Habitat Suitability of Caligus rogercresseyi (Boxshall and Bravo, 2000) for Salmon Farming in Southern Chile. Front Vet Sci 2021; 7:615039. [PMID: 33634179 PMCID: PMC7900137 DOI: 10.3389/fvets.2020.615039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/31/2020] [Indexed: 11/13/2022] Open
Abstract
The sea louse (Caligus rogercresseyi) is the most relevant parasite for the farmed salmon industry in Chile, the second largest producer worldwide. Although spatial patterns of C. rogercresseyi have been addressed from data obtained from established monitoring and surveillance programs, studies on its spatial ecology are limited. A wide geographic distribution of C. rogercresseyi is presumed in Chile; however, how this species could potentially be distributed in space is unknown. Our study presents an analysis of the habitat suitability for C. rogercresseyi in the entire area occupied by marine sites of salmon farms in Chile. Habitat suitability modeling was used to explore the likelihood of species spatial occurrence based on environmental characteristics. Due to the expanding salmon industry in southern Chile, we studied C. rogercresseyi habitat suitability models for present (average of 2005-2010) and two future projections (2050 and 2100) under different climate change scenarios. Models were constructed with the maxent algorithm using a large database of spatial C. rogercresseyi occurrences from the Chilean fisheries health authority and included 23 environmental variables obtained from the Ocean Rasters for Analysis of Climate and Environment (Bio-ORACLE). Habitat suitability models indicated that water temperature, water salinity, and current velocity of waters were the most important characteristics limiting C. rogercresseyi distribution in southern Chile. Habitat suitability models for current climate indicated a heterogeneous pattern with C. rogercresseyi being present in waters with temperature range 12.12-7.08°C (sd = 0.65), salinity range 33.7-25.5 pss (sd = 1.73), and current water velocity range 0.23-0.01 m-1 (sd = 0.02). Predictions for future projections in year 2050 and year 2100 suggest new clumped dispersion of the environmental conditions for C. rogercresseyi establishment. Our results suggest complexity and a wide dispersion of the biogeographic distribution of the C. rogercresseyi habitat suitability with potential implications for control strategies and environmental issues for salmon farming in Chile. Further investigations are required into C. rogercresseyi distribution in southern Chile considering the possible effect of climate change.
Collapse
Affiliation(s)
- Manuel Lepe-Lopez
- PhD Program in Conservation Medicine, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Facultad de Ciencias de la Vida, Centro de Investigación para la Sustentabilidad, Universidad Andres Bello, Santiago, Chile
| | - Joaquín Escobar-Dodero
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | | | - Claudio Azat
- PhD Program in Conservation Medicine, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Facultad de Ciencias de la Vida, Centro de Investigación para la Sustentabilidad, Universidad Andres Bello, Santiago, Chile
| | - Fernando O. Mardones
- School of Veterinary Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
González-Gómez MP, Ovalle L, Spinetto C, Oyarzo C, Oyarzún R, Menanteau M, Álvarez D, Rivas M, Olmos P. Experimental transmission of Caligus rogercresseyi between two different fish species. DISEASES OF AQUATIC ORGANISMS 2020; 141:127-138. [PMID: 32969345 DOI: 10.3354/dao03513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Caligus rogercresseyi is the dominant sea louse parasite affecting the salmon and trout industry in southern Chile. This parasite has a wide range of native and endemic fish hosts. The Patagonian blenny Eleginops maclovinus, which is parasitized mostly by the caligid species Lepeophtheirus spp. and C. rogercresseyi, is presumably responsible for the transmission of C. rogercresseyi to salmonids. The aim of this study was to characterize the transmission of parasites between different fish species and parasite cohort development under laboratory conditions. Parasite abundances and intensities were quantified. Transmission of parasites from Patagonian blenny to Atlantic salmon Salmo salar was lower (~9%, mainly corresponding to C. rogercresseyi) than from salmon to Patagonian blenny (14.7-26.9%, where only C. rogercresseyi were observed). This suggests that the transmission of C. rogercresseyi from salmon individuals is higher than the transmission from a native fish. Parasite cohorts developed successfully on both fish species, but apparently under different developmental rates. Water temperature, oxygen, and juvenile abundances were the variables that better explained cohort development success and variation in C. rogercresseyi adult abundances over time.
Collapse
Affiliation(s)
- M P González-Gómez
- Departamento de Salud Hidrobiológica, Instituto de Fomento Pesquero, José Manuel Balmaceda 252, 5480000 Puerto Montt, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tackling the Molecular Drug Sensitivity in the Sea Louse Caligus rogercresseyi Based on mRNA and lncRNA Interactions. Genes (Basel) 2020; 11:genes11080857. [PMID: 32726954 PMCID: PMC7464394 DOI: 10.3390/genes11080857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 01/05/2023] Open
Abstract
Caligus rogercresseyi, commonly known as sea louse, is an ectoparasite copepod that impacts the salmon aquaculture in Chile, causing losses of hundreds of million dollars per year. This pathogen is mainly controlled by immersion baths with delousing drugs, which can lead to resistant traits selection in lice populations. Bioassays are commonly used to assess louse drug sensitivity, but the current procedures may mask relevant molecular responses. This study aimed to discover novel coding genes and non-coding RNAs that could evidence drug sensitivity at the genomic level. Sea lice samples from populations with contrasting sensitivity to delousing drugs were collected. Bioassays using azamethiphos, cypermethrin, and deltamethrin drugs were conducted to evaluate the sensitivity and to collect samples for RNA-sequencing. Transcriptome sequencing was conducted on samples exposed to each drug to evaluate the presence of coding and non-coding RNAs associated with the response of these compounds. The results revealed specific transcriptome patterns in lice exposed to azamethiphos, deltamethrin, and cypermethrin drugs. Enrichment analyses of Gene Ontology terms showed specific biological processes and molecular functions associated with each delousing drug analyzed. Furthermore, novel long non-coding RNAs (lncRNAs) were identified in C. rogercresseyi and tightly linked to differentially expressed coding genes. A significant correlation between gene transcription patterns and phenotypic effects was found in lice collected from different salmon farms with contrasting drug treatment efficacies. The significant correlation among gene transcription patterns with the historical background of drug sensitivity suggests novel molecular mechanisms of pharmacological resistance in lice populations.
Collapse
|
10
|
González Gómez MP, Ovalle L, Menanteau M, Spinetto C, Oyarzún R, Rivas M, Oyarzo C. Susceptibility of Caligus rogercresseyi collected from the native fish species Eleginops maclovinus (Cuvier) to antiparasitics applied by immersion. JOURNAL OF FISH DISEASES 2019; 42:1143-1149. [PMID: 31094001 DOI: 10.1111/jfd.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
A major challenge for Chilean salmon farming is infestation by the ectoparasite Caligus rogercresseyi. In addition, there is evidence that a loss of chemotherapeutic treatment efficacy against important fish pathogens is occurring in salmon farming, including antiparasitic efficacy. Currently, there are known techniques that allow the determination of the susceptibility profile of parasites to antiparasitic treatment. However, there is scarce information about both threshold values and categorization of antiparasitic susceptibility for C. rogercresseyi. Bioassay technique allowed the determination of both mean values and the natural variation of EC50%, which were contrasted with available susceptibility thresholds. Results allowed to determine that parasites from the native fish host, Eleginops maclovinus, are susceptible to azamethiphos, deltamethrin and cypermethrin treatments, showing a high susceptibility profile to antiparasitics.
Collapse
Affiliation(s)
| | - Loreto Ovalle
- Departamento de Salud Hidrobiológica, Instituto de Fomento Pesquero, Puerto Montt, Chile
| | - Mylena Menanteau
- Departamento de Salud Hidrobiológica, Instituto de Fomento Pesquero, Puerto Montt, Chile
- Centro de Maricultura Hueihue, Instituto de Fomento Pesquero, Ancud, Chile
| | - Claudia Spinetto
- Departamento de Salud Hidrobiológica, Instituto de Fomento Pesquero, Puerto Montt, Chile
- Centro de Maricultura Hueihue, Instituto de Fomento Pesquero, Ancud, Chile
| | - Renato Oyarzún
- Departamento de Salud Hidrobiológica, Instituto de Fomento Pesquero, Puerto Montt, Chile
| | - Mario Rivas
- Departamento de Salud Hidrobiológica, Instituto de Fomento Pesquero, Puerto Montt, Chile
| | - Cristian Oyarzo
- Departamento de Salud Hidrobiológica, Instituto de Fomento Pesquero, Puerto Montt, Chile
- Centro de Maricultura Hueihue, Instituto de Fomento Pesquero, Ancud, Chile
| |
Collapse
|
11
|
Mancilla-Schulz J, Marín SL, Molinet C. Dynamics of Caligus rogercresseyi (Boxshall & Bravo, 2000) in farmed Atlantic salmon (Salmo salar) in southern Chile: Are we controlling sea lice? JOURNAL OF FISH DISEASES 2019; 42:357-369. [PMID: 30644118 DOI: 10.1111/jfd.12931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 06/09/2023]
Abstract
Caligus rogercresseyi generates the greatest losses in the salmon industry in Chile. The relationship between salmon farming and sea lice is made up of various components: the parasite, host, environment and farming practices, which make it difficult to identify patterns in parasite population dynamics to define prevention and control strategies. The objectives of this study were to analyse and compare the effect of farming, sanitary practices and environmental variables on the abundance of gravid females (GF) and juveniles (JUV) of C. rogercresseyi on Salmo salar in three Salmon Neighborhood Areas (SNAs) in Region 10, south of Chile. Linear mixed-effects models of the negative binomial distribution were used to evaluate the effect of the different explanatory variables on GF and JUV. Productive variables were the key drivers explaining the abundance of GF and JUV. Results suggest that C. rogercresseyi is not controlled and JUV are persistent in the three SNAs, and sanitary practices do not control the dissemination of the parasite among sites. Environmental variables had a low impact on sea lice abundance. There is a need to perform analysis for modelling of parasite population dynamics to improve Integrated Pest Management, including changes in the governance to achieve an effective prevention and control.
Collapse
Affiliation(s)
- Jorge Mancilla-Schulz
- Aquaculture Sciences, Universidad Austral de Chile, Puerto Montt, Chile
- Marine Harvest Chile, Puerto Montt, Chile
| | - Sandra L Marín
- Institute of Aquaculture, Universidad Austral de Chile, Puerto Montt, Chile
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Puerto Montt, Chile
| | - Carlos Molinet
- Institute of Aquaculture, Universidad Austral de Chile, Puerto Montt, Chile
| |
Collapse
|
12
|
Urbina MA, Cumillaf JP, Paschke K, Gebauer P. Effects of pharmaceuticals used to treat salmon lice on non-target species: Evidence from a systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:1124-1136. [PMID: 30308884 DOI: 10.1016/j.scitotenv.2018.08.334] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 05/22/2023]
Abstract
Aquaculture is currently one of the best prospects to help meet the growing need for protein in the human diet. However, aquaculture development and production result in consequences for the environment and also impact other productive activities. Salmon and trout cage culture has required the use of large quantities of pharmaceuticals in order to control outbreaks and the persistence of different pathogens, including sea lice (parasitic copepods), which cause economic losses of around 0.39 € Kg-1 of salmon produced. The pharmaceuticals currently used for the control of sea lice (cypermethrin, deltamethrin, azamethiphos, hydrogen peroxide) are applied by in situ immersion treatments, enclosing net pens using tarpaulin and then bathing fish with the pharmaceutical. After treatment the pharmaceuticals are released into the surrounding environment, exposing non-target species. Although the effects of such pharmaceutical exposure has been studied in some species, to date a systematic and exhaustive review of these potential effects has not yet been performed. In this study, an exhaustive review of the literature evaluating lethal and sub-lethal effects of anti-sea lice pharmaceuticals on non-target crustaceans and bivalves was performed, in order to assess the extent of the effects, toxicity, variables affecting such toxicity and identify potential synergistic effects previously unexplored. Our results show clear negative effects at concentrations lower than those used in treatments against sea lice in all of the species studied. Likewise, this study demonstrates knowledge gaps that need to be addressed in order to improve our understanding of the effects of these pharmaceuticals on non-target species, ecosystems in general and other productive activities.
Collapse
Affiliation(s)
- M A Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile.
| | - J P Cumillaf
- Instituto de Acuicultura, Universidad Austral de Chile, Casilla 1327, Puerto Montt, Chile; Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Los Pinos s/n, Balneario Pelluco, Puerto Montt, Chile
| | - K Paschke
- Instituto de Acuicultura, Universidad Austral de Chile, Casilla 1327, Puerto Montt, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Chile
| | - P Gebauer
- Centro i~mar, Universidad de Los Lagos, Camino Chinquihue Km 6, Puerto Montt, Chile
| |
Collapse
|
13
|
Agusti-Ridaura C, Dondrup M, Horsberg TE, Leong JS, Koop BF, Bravo S, Mendoza J, Kaur K. Caligus rogercresseyi acetylcholinesterase types and variants: a potential marker for organophosphate resistance. Parasit Vectors 2018; 11:570. [PMID: 30376873 PMCID: PMC6208076 DOI: 10.1186/s13071-018-3151-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/14/2018] [Indexed: 12/17/2022] Open
Abstract
Background Control of the sea louse Caligus rogercresseyi in the Chilean salmonid industry is reliant on chemical treatments. Azamethiphos was introduced in 2013, although other organophosphates were previously used. In 2014, reduced sensitivity to azamethiphos was detected in the Los Lagos Region using bioassays. The main target of organophosphates is the enzyme acetylcholinesterase (AChE). Mutations in the AChE gene are the main cause of organophosphate resistance in arthropods, including other sea lice. In the present study, we aimed to characterize C. rogercresseyi AChE(s) gene(s) and to study the association between AChE variants and azamethiphos resistance in this sea louse species. Methods Samples of adult male and female C. rogercresseyi were collected in the Los Lagos Region in 2014. Twenty-four hour exposure bioassays with azamethiphos were performed to select sensitive and resistant lice. The full-length cDNA coding sequences encoding for two AChEs in C. rogercresseyi were molecularly characterized. One of the AChE genes was screened by direct sequencing in the azamethiphos-selected lice to search for variants. An additional louse sampling was performed before and after an azamethiphos treatment in the field in 2017 to validate the findings. Results The molecular analysis revealed two putative AChEs in C. rogercresseyi. In silico analysis and 3D modelling of the protein sequences identified both of them as invertebrate AChE type 1; they were named C. rogercresseyi AChE1a and 1b. AChE1a had the characteristics of the main synaptic AChE, while AChE1b lacked some of the important amino acids of a typical AChE. A missense change found in the main synaptic AChE (1a), F318F/V (F290 in Torpedo californica), was associated with survival of C. rogercresseyi at high azamethiphos concentrations (bioassays and field treatment). The amino acid change was located in the acyl pocket of the active-site gorge of the protein. Conclusions The present study demonstrates the presence of two types of AChE1 genes in C. rogercresseyi. Although enzymatic assays are needed, AChE1a is most probably the main synaptic AChE. The function of AChE1b is unknown, but evidence points to a scavenger role. The AChE1a F/V318 variant is most probably involved in organophosphate resistance, and can be a good marker for resistance monitoring. Electronic supplementary material The online version of this article (10.1186/s13071-018-3151-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Celia Agusti-Ridaura
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sea Lice Research Centre, Postboks 369 Sentrum, Oslo, NO-0102, Norway.
| | - Michael Dondrup
- Department of Informatics, University of Bergen, Sea Lice Research Centre, Thormøhlensgate 55, N-5008, Bergen, Norway
| | - Tor E Horsberg
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sea Lice Research Centre, Postboks 369 Sentrum, Oslo, NO-0102, Norway
| | - Jong S Leong
- Biology Department, Centre for Biomedical Research, University of Victoria, Station CSC, PO Box 1700, Victoria, BC, V8W 2Y2, Canada
| | - Ben F Koop
- Biology Department, Centre for Biomedical Research, University of Victoria, Station CSC, PO Box 1700, Victoria, BC, V8W 2Y2, Canada
| | - Sandra Bravo
- Universidad Austral de Chile, Casilla 1327, Puerto Montt, Chile
| | - Julio Mendoza
- Cermaq Chile, Diego Portales 2000, Puerto Montt, Chile
| | - Kiranpreet Kaur
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sea Lice Research Centre, Postboks 369 Sentrum, Oslo, NO-0102, Norway
| |
Collapse
|
14
|
Marín SL, Mancilla J, Hausdorf MA, Bouchard D, Tudor MS, Kane F. Sensitivity assessment of sea lice to chemotherapeutants: Current bioassays and best practices. JOURNAL OF FISH DISEASES 2018; 41:995-1003. [PMID: 29251354 DOI: 10.1111/jfd.12768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/27/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
Traditional bioassays are still necessary to test sensitivity of sea lice species to chemotherapeutants, but the methodology applied by the different scientists has varied over time in respect to that proposed in "Sea lice resistance to chemotherapeutants: A handbook in resistance management" (2006). These divergences motivated the organization of a workshop during the Sea Lice 2016 conference "Standardization of traditional bioassay process by sharing best practices." There was an agreement by the attendants to update the handbook. The objective of this article is to provide a baseline analysis of the methodology for traditional bioassays and to identify procedures that need to be addressed to standardize the protocol. The methodology was divided into the following steps: bioassay design; material and equipment; sea lice collection, transportation and laboratory reception; preparation of dilution; parasite exposure; response evaluation; data analysis; and reporting. Information from the presentations of the workshop, and also from other studies, allowed for the identification of procedures inside a given step that need to be standardized as they were reported to be performed differently by the different working groups. Bioassay design and response evaluation were the targeted steps where more procedures need to be analysed and agreed upon.
Collapse
Affiliation(s)
- S L Marín
- Institute of Aquaculture, Universidad Austral de Chile, Puerto Montt, Chile
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Puerto Montt, Chile
| | - J Mancilla
- PhD Aquaculture Sciences, Universidad Austral de Chile, Puerto Montt, Chile
| | | | - D Bouchard
- University of Maine Animal Health Laboratory, University of Maine, Orono, ME, USA
| | - M S Tudor
- University of Maine Animal Health Laboratory, University of Maine, Orono, ME, USA
| | - F Kane
- Aquaculture Section, Marine Institute, Galway, Ireland
| |
Collapse
|
15
|
Marín SL, González MP, Madariaga ST, Mancilla M, Mancilla J. Response of Caligus rogercresseyi (Boxshall & Bravo, 2000) to treatment with Hydrogen Peroxide: Recovery of parasites, fish infestation and egg viability under experimental conditions. JOURNAL OF FISH DISEASES 2018; 41:861-873. [PMID: 28921553 DOI: 10.1111/jfd.12691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/27/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Hydrogen peroxide (HP) is used to remove C. rogercresseyi from fish but little is known about its effect on this species. This study determined EC50 and concentration immobilizing 100% of specimens, capacity of parasites exposed to HP to recover and infest fish, and effect on survival into the copepodid stage. EC50 and concentration immobilizing 100% of specimens were estimated by exposing parasites for 20 min to 11 concentrations and evaluating effect at 1 and 24 h post-exposure. Capacity to recover and infest fish, and survival into copepodid were evaluated by exposing parasites and eggs to HP for 20 min. Recovery and fish infestation were evaluated at 25 and 24 h post-exposure, respectively. Eggs were grown until control reached the copepodid stage and survival calculated. EC50 was 709.8 ppm.100% immobilization was obtained at 825 ppm. Male and female recover 0.5 and 1 h post-exposure, respectively. Percentage of parasites exposed and not exposed to HP that were recovered on fish was not significantly different. Survival to copepodid was lower in those exposed to HP. HP effect is greater on copepodids, but 100% of the mobile stages are immobilized under 825 ppm causing detachment from fish and potentially driven away, reducing infestation risk.
Collapse
Affiliation(s)
- S L Marín
- Institute of Aquaculture, Universidad Austral de Chile, Puerto Montt, Chile
| | - M P González
- PhD Program in Aquaculture Sciences, Universidad Austral de Chile, Puerto Montt, Chile
| | - S T Madariaga
- Centro de Docencia Superior en Ciencias Básicas, Universidad Austral de Chile, Puerto Montt, Chile
| | - M Mancilla
- Institute of Aquaculture, Universidad Austral de Chile, Puerto Montt, Chile
| | - J Mancilla
- PhD Program in Aquaculture Sciences, Universidad Austral de Chile, Puerto Montt, Chile
| |
Collapse
|
16
|
Arriagada G, Sanchez J, Stryhn H, Vanderstichel R, Campistó JL, Ibarra R, St-Hilaire S. A multivariable assessment of the spatio-temporal distribution of pyrethroids performance on the sea lice Caligus rogercresseyi in Chile. Spat Spatiotemporal Epidemiol 2018; 26:1-13. [PMID: 30390925 DOI: 10.1016/j.sste.2018.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/12/2018] [Accepted: 04/27/2018] [Indexed: 10/17/2022]
Abstract
Synthetic pyrethroids have been widely used in Chile to control the sea lice Caligus rogercresseyi, a major ectoparasite of farmed salmon. Although resistance of C. rogercresseyi to pyrethroids has been reported in Chile, there is no information regarding the geographic extent of this problem. In this study we explored the spatial and temporal variation of C. rogercresseyi's response to pyrethroids in Chile from 2012 to 2013. We modeled lice abundance one week after treatment with a linear mixed-effects regression, and then we performed spatial and spatio-temporal cluster analyses on farm-level effects and on treatment-level residuals, respectively. Results indicate there were two areas where the post-treatment lice counts were significantly higher than in the rest of the study area. These spatial clusters remained even once we adjusted for environmental and management predictors, suggesting unmeasured factors (e.g. resistance) were causing the clustering. Further investigation should be carried out to confirm this hypothesis.
Collapse
Affiliation(s)
- Gabriel Arriagada
- Centre for Veterinary Epidemiological Research, Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Javier Sanchez
- Centre for Veterinary Epidemiological Research, Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Henrik Stryhn
- Centre for Veterinary Epidemiological Research, Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Raphaël Vanderstichel
- Centre for Veterinary Epidemiological Research, Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - José Luis Campistó
- Department of Fish Health, Instituto Tecnológico del Salmón, Av. Juan Soler Manfredini 41, Of. 1802, Puerto Montt, Chile
| | - Rolando Ibarra
- Department of Fish Health, Instituto Tecnológico del Salmón, Av. Juan Soler Manfredini 41, Of. 1802, Puerto Montt, Chile
| | - Sophie St-Hilaire
- Centre for Veterinary Epidemiological Research, Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
17
|
The mechanism (Phe362Tyr mutation) behind resistance in Lepeophtheirus salmonis pre-dates organophosphate use in salmon farming. Sci Rep 2017; 7:12349. [PMID: 28955050 PMCID: PMC5617835 DOI: 10.1038/s41598-017-12384-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/07/2017] [Indexed: 11/29/2022] Open
Abstract
The salmon louse is an ectoparasitic copepod of salmonids in the marine environment, and represents a global challenge to salmon aquaculture. A major issue is the reliance of the industry on a limited number of chemicals to delouse salmonids on farms, and the high levels of resistance that lice have developed to all of these agents. However, for most of these chemicals, resistance and dispersal mechanisms are unknown. We recently demonstrated that the Phe362Tyr mutation is the primary cause of organophosphate resistance in lice collected on Norwegian farms. In the present study, we genotyped >2000 lice collected throughout the entire North Atlantic in the period 1998–2016, using Phe362Tyr and nine tightly linked SNPs. Our results showed that the Phe362Tyr mutation is strongly linked to lice survival following chemical treatment on farms located throughout the North Atlantic, demonstrating for the first time, that this mutation represents the primary mechanism for organophosphate resistance in salmon lice across the North Atlantic. Additionally, we observed multiple and diverse high frequency haplotypes linked with the allele conveying resistance to organophosphate. We, therefore, conclude that Phe362Tyr is not a de novo mutation, but probably existed in salmon lice before the introduction of organophosphates in commercial aquaculture.
Collapse
|
18
|
Evaluating the effect of synchronized sea lice treatments in Chile. Prev Vet Med 2016; 136:1-10. [PMID: 28010902 DOI: 10.1016/j.prevetmed.2016.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 11/23/2022]
Abstract
The sea louse is considered an important ectoparasite that affects farmed salmonids around the world. Sea lice control relies heavily on pharmacological treatments in several salmon-producing countries, including Chile. Among options for drug administration, immersion treatments represent the majority of antiparasitic control strategies used in Chile. As a topical procedure, immersion treatments do not induce a long lasting effect; therefore, re-infestation from neighbouring farms may undermine their efficacy. Synchronization of treatments has been proposed as a strategy to improve immersion treatment performance, but it has not been evaluated so far. Using a repeated-measures linear mixed-effect model, we evaluated the impact of treatment synchronization of neighbouring farms (within 10km seaway distance) on the adult lice mean abundance from weeks 2 to 8 post-treatment on rainbow trout and Atlantic salmon farms in Chile, while controlling for external and internal sources of lice before the treatments, and also for environmental and fish-related variables. Results indicate that treatment synchronization was significantly associated with lower adult lice levels from weeks 5 to 7 after treatment. This relationship appeared to be linear, suggesting that higher levels of synchronization may result in lower adult sea lice levels during these weeks. These findings suggest that synchronization can improve the performance of immersion delousing treatments by keeping sea lice levels low for a longer period of time. Our results may be applicable to other regions of the world where immersion treatments are widely used.
Collapse
|
19
|
Núñez-Acuña G, Boltaña S, Gallardo-Escárate C. Pesticides Drive Stochastic Changes in the Chemoreception and Neurotransmission System of Marine Ectoparasites. Int J Mol Sci 2016; 17:ijms17060700. [PMID: 27258252 PMCID: PMC4926324 DOI: 10.3390/ijms17060700] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 04/30/2016] [Accepted: 05/04/2016] [Indexed: 01/01/2023] Open
Abstract
Scientific efforts to elucidate the mechanisms of chemical communication between organisms in marine environments are increasing. This study applied novel molecular technology to outline the effects of two xenobiotic drugs, deltamethrin (DM) and azamethiphos (AZA), on the neurotransmission system of the copepod ectoparasite Caligus rogercresseyi. Transcriptome sequencing and bioinformatics analyses were conducted to evaluate treatment effects on the glutamatergic synaptic pathway of the parasite, which is closely related to chemoreception and neurotransmission. After drug treatment with DM or AZA, stochastic mRNA expression patterns of glutamatergic synapse pathway components were observed. Both DM and AZA promoted a down-regulation of the glutamate-ammonia ligase, and DM activated a metabotropic glutamate receptor that is a suggested inhibitor of neurotransmission. Furthermore, the delousing drugs drove complex rearrangements in the distribution of mapped reads for specific metabotropic glutamate receptor domains. This study introduces a novel methodological approach that produces high-quality results from transcriptomic data. Using this approach, DM and AZA were found to alter the expression of numerous mRNAs tightly linked to the glutamatergic signaling pathway. These data suggest possible new targets for xenobiotic drugs that play key roles in the delousing effects of antiparasitics in sea lice.
Collapse
Affiliation(s)
- Gustavo Núñez-Acuña
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research, Department of Oceanography, Universidad de Concepción, Concepción 4030000, Chile.
| | - Sebastián Boltaña
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research, Department of Oceanography, Universidad de Concepción, Concepción 4030000, Chile.
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research, Department of Oceanography, Universidad de Concepción, Concepción 4030000, Chile.
| |
Collapse
|
20
|
Jansen PA, Grøntvedt RN, Tarpai A, Helgesen KO, Horsberg TE. Surveillance of the Sensitivity towards Antiparasitic Bath-Treatments in the Salmon Louse (Lepeophtheirus salmonis). PLoS One 2016; 11:e0149006. [PMID: 26889677 PMCID: PMC4759459 DOI: 10.1371/journal.pone.0149006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/26/2016] [Indexed: 11/18/2022] Open
Abstract
The evolution of drug resistant parasitic sea lice is of major concern to the salmon farming industry worldwide and challenges sustainable growth of this enterprise. To assess current status and development of L. salmonis sensitivity towards different pesticides used for parasite control in Norwegian salmon farming, a national surveillance programme was implemented in 2013. The programme aims to summarize data on the use of different pesticides applied to control L. salmonis and to test L. salmonis sensitivity to different pesticides in farms along the Norwegian coast. Here we analyse two years of test-data from biological assays designed to detect sensitivity-levels towards the pesticides azamethiphos and deltamethrin, both among the most common pesticides used in bath-treatments of farmed salmon in Norway in later years. The focus of the analysis is on how different variables predict the binomial outcome of the bioassay tests, being whether L. salmonis are immobilized/die or survive pesticide exposure. We found that local kernel densities of bath treatments, along with a spatial geographic index of test-farm locations, were significant predictors of the binomial outcome of the tests. Furthermore, the probability of L. salmonis being immobilized/dead after test-exposure was reduced by odds-ratios of 0.60 (95% CI: 0.42–0.86) for 2014 compared to 2013 and 0.39 (95% CI: 0.36–0.42) for low concentration compared to high concentration exposure. There were also significant but more marginal effects of parasite gender and developmental stage, and a relatively large random effect of test-farm. We conclude that the present data support an association between local intensities of bath treatments along the coast and the outcome of bioassay tests where salmon lice are exposed to azamethiphos or deltamethrin. Furthermore, there is a predictable structure of L. salmonis phenotypes along the coast in the data, characterized by high susceptibility to pesticides in the far north and far south, but low susceptibility in mid Norway. The study emphasizes the need to address local susceptibility to pesticides and the need for restrictive use of pesticides to preserve treatment efficacy.
Collapse
Affiliation(s)
- Peder A. Jansen
- Norwegian Veterinary Institute, Oslo, Norway
- Sea Lice Research Centre, Department of Biology, University of Bergen, Bergen, Norway
- * E-mail:
| | | | | | - Kari O. Helgesen
- NMBU School of Veterinary Science, Sea Lice Research Centre, Oslo, Norway
| | - Tor Einar Horsberg
- NMBU School of Veterinary Science, Sea Lice Research Centre, Oslo, Norway
| |
Collapse
|