1
|
Nielsen SS, Alvarez J, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin MS, Michel V, Miranda Chueca MÁ, Padalino B, Roberts HC, Spoolder H, Ståhl K, Velarde A, Viltrop A, Winckler C, Bron J, Olesen NJ, Sindre H, Stone D, Vendramin N, Antoniou SE, Aznar I, Papanikolaou A, Karagianni AE, Bicout DJ. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) 2016/429): Bacterial kidney disease (BKD). EFSA J 2023; 21:e08326. [PMID: 37908448 PMCID: PMC10613944 DOI: 10.2903/j.efsa.2023.8326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Bacterial kidney disease (BKD) was assessed according to the criteria of the Animal Health Law (AHL), in particular the criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as laid out in Article 9 and Article 8 for listing animal species related to BKD. The assessment was performed following the ad hoc method on data collection and assessment developed by AHAW Panel and already published. The outcome reported is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with an uncertain outcome. According to this assessment, BKD can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (66-90% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that BKD does not meet the criteria in Sections 1, 2 and 3 (Categories A, B and C; 1-5%, 33-66% and 33-66% probability of meeting the criteria, respectively) but meets the criteria in Sections 4 and 5 (Categories D and E; 66-90% and 66-90% probability of meeting the criteria, respectively). The animal species to be listed for BKD according to Article 8 criteria are provided.
Collapse
|
2
|
Jia B, Burnley H, Gardner IA, Saab ME, Doucet A, Hammell KL. Diagnosis of Renibacterium salmoninarum infection in harvested Atlantic salmon (Salmo salar L.) on the east coast of Canada: Clinical findings, sample collection methods and laboratory diagnostic tests. JOURNAL OF FISH DISEASES 2023; 46:575-589. [PMID: 36861304 DOI: 10.1111/jfd.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Chronic subclinical infection with the aetiological agent of bacterial kidney disease (BKD), Renibacterium salmoninarum, presents challenges for the clinical management of disease in farmed salmonids and for prevalence estimation. Harvested salmon sampled at processing plants provide the opportunity to describe subclinical outcomes of BKD using gross necropsy observations and diagnostic test results in farmed Atlantic salmon (Salmo salar L.) populations that are apparently healthy (i.e. alive at harvest) but naturally exposed to R. salmoninarum infection. Sampling of farmed salmon (Population A, n = 124 and Population B, n = 160) was performed immediately post-slaughter as fish were being processed at a plant in New Brunswick, Canada. Populations were selected based on planned harvests from sites with histories of recent exposure events related to clinical BKD as evidenced by the site veterinarian's diagnosis of mortality attributable to BKD: One site (Pop A) had recently increasing mortalities attributed to BKD, and the other site (Pop B) had ongoing low-level mortalities with BKD pathology. As expected with the different exposure histories, Pop A had a higher percentage (57.2%) of R. salmoninarum culture-positive kidney samples compared with similar fish samples in Pop B (17.5%). Diagnosis of R. salmoninarum by gross granulomatous lesions in internal visceral organs, bacterial culture and identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) using different swab transport methods, and molecular detection methods (quantitative PCR, qPCR) were compared. Agreement of culture-positive percentages at the sample level was moderate (kappa: 0.61-0.75) among specimens collected using different kidney sampling methods in Pop A and Pop B. The highest proportion of R. salmoninarum-positive cultures occurred when kidney tissues were transported to the laboratory and inoculated directly onto agar using a swab (94% of cultures from Pop A and 82% from Pop B when fish were positive by any culture method). Fish with cumulative lesion scores (severity of granulomatous lesions in 3 different visceral organs) of >4 were all culture positive, and when compared with non-lesioned fish, had substantially higher odds of being culture positive: Pop A: odds ratio (OR) = 73, 95% confidence interval (CI) (7.91, 680.8); Pop B: OR = 66, 95% CI (6.12, 720.7). Our study found that onsite postmortem examinations with severity scores of gross granulomatous lesions were predictive of positive culture results for R. salmoninarum, and they were a useful proxy for assessing prevalence in apparently healthy populations with subclinical infection.
Collapse
Affiliation(s)
- Beibei Jia
- Department of Health Management, and Centre for Veterinary Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Holly Burnley
- Department of Health Management, and Centre for Veterinary Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Ian A Gardner
- Department of Health Management, and Centre for Veterinary Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Matthew E Saab
- Department of Health Management, and Centre for Veterinary Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
- Aquatic Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Adele Doucet
- Department of Health Management, and Centre for Veterinary Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
- Vet-Champlain Animal Care, Dieppe, New Brunswick, Canada
| | - K Larry Hammell
- Department of Health Management, and Centre for Veterinary Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|
3
|
Jansson E, Aspán A, Comin A, Hjort M, Jinnerot T, Axén C. Non-lethal sampling for the detection of Renibacterium salmoninarum by qPCR for diagnosis of bacterial kidney disease. JOURNAL OF FISH DISEASES 2022; 45:883-894. [PMID: 35363399 PMCID: PMC9322471 DOI: 10.1111/jfd.13614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Bacterial kidney disease (BKD), caused by Renibacterium salmoninarum (Rs), can be transmitted both horizontally and vertically and there is no available cure or prophylaxis. The control of BKD requires continuous surveillance, which is challenging in aquaculture as well as in programs for conservation and restoration of salmonid fish strains. BKD is a notifiable disease in Sweden and is monitored through the mandatory health control program using a polyclonal ELISA for detection of the Rs p57 protein in kidney. Fish must be killed for sampling, an obvious disadvantage especially regarding valuable broodfish. The present study shows that gill-/cloacal swabs collected in vivo for real-time PCR (qPCRgc ), allow a sensitive and specific detection of Rs. The sensitivity of qPCRgc was estimated to 97.8% (credible interval (ci) 93.8%-100%) compared to 98.3% (ci 92.7%-100%) and 48.8% (ci 38.8%-58.8%) of kidney samples for qPCR (qPCRk ) and ELISA (ELISAk ) respectively, by use of the Bayesian Latent Class Analysis (BLCA). Since the goal of the program is eradication of BKD the most sensitive test is preferrable. Using qPCRgc instead of ELISAk will result in a lower false negative rate and can be useful for surveillance in aquaculture and in breeding programs with valuable fish. However, a higher false positive rate warrants confirmatory lethal testing before a previously Rs negative farm is subject to restrictions.
Collapse
Affiliation(s)
| | - Anna Aspán
- National Veterinary InstituteUppsalaSweden
| | | | - Maj Hjort
- National Veterinary InstituteUppsalaSweden
| | | | | |
Collapse
|
4
|
Persson DB, Aspán A, Hysing P, Blomkvist E, Jansson E, Orsén L, Hällbom H, Axén C. Assessing the presence and spread of Renibacterium salmoninarum between farmed and wild fish in Sweden. JOURNAL OF FISH DISEASES 2022; 45:613-621. [PMID: 35092707 PMCID: PMC9304202 DOI: 10.1111/jfd.13586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Bacterial kidney disease (BKD) can be a devastating bacterial infection in salmonids, and it is present in aquaculture throughout the world. BKD is caused by the Gram-positive facultative intracellular bacterium Renibacterium salmoninarum (R. salmoninarum) that is spread both horizontally and vertically. Disease signs include external ulcerations and blisters and internal signs such as organ swelling, granulomas, petechiae and ascites. In Sweden, BKD accounts for a significant income loss in aquacultures due to expensive decontamination of the facility and increased disease susceptibility for the immunocompromised fish leading to higher mortality rates. In addition, uncontrolled spread in aquaculture may threaten the survival of wild fish populations. The aim of our study was to investigate the prevalence of R. salmoninarum in wild salmonids caught in Swedish waters where net pen farms with a recent history of BKD are present. Four rivers with at least one BKD-positive or recently BKD-positive farm were selected. In addition, we evaluated the use of environmental DNA (eDNA) for surveillance and monitoring of ongoing infections at these locations. In total, 1058 fish were sampled from four different river systems, and of them 52 (4.9%) were positive for R. salmoninarum by antigen ELISA. Surprisingly, these fish were not evenly distributed between the four river systems, but 50 were caught in the same river (Ljungan). This accounts for an alarmingly high rate of 17% R. salmoninarum-positive samples in wild salmonids in this area. This number is far above what was expected and clearly shows the risk with an open farming system as well as the importance of effective health monitoring programmes to avoid an uncontrolled spread of the disease. The use of eDNA for monitoring BKD is somewhat difficult to evaluate. Few of the water samples analysed were PCR positive for R. salmoninarum (2 of 38) and those were collected where no ELISA positive fish were identified. In addition to water, sediment samples were collected under a net pen farm that had recently slaughtered all fish due to ongoing R. salmoninarum infections. Sediment samples are more promising than water as 4 of 5 samples at one farming facility where positive for R. salmoninarum. Thus, sediment samples may be valuable for monitoring potential ongoing BKD in farms, without the need to sacrifice valuable fish.
Collapse
Affiliation(s)
| | - Anna Aspán
- National Veterinary InstituteUppsalaSweden
| | | | | | | | | | | | | |
Collapse
|
5
|
Riepe TB, Vincent V, Milano V, Fetherman ER, Winkelman DL. Evidence for the Use of Mucus Swabs to Detect Renibacterium salmoninarum in Brook Trout. Pathogens 2021; 10:pathogens10040460. [PMID: 33921208 PMCID: PMC8070340 DOI: 10.3390/pathogens10040460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 11/30/2022] Open
Abstract
Efforts to advance fish health diagnostics have been highlighted in many studies to improve the detection of pathogens in aquaculture facilities and wild fish populations. Typically, the detection of a pathogen has required sacrificing fish; however, many hatcheries have valuable and sometimes irreplaceable broodstocks, and lethal sampling is undesirable. Therefore, the development of non-lethal detection methods is a high priority. The goal of our study was to compare non-lethal sampling methods with standardized lethal kidney tissue sampling that is used to detect Renibacterium salmoninarum infections in salmonids. We collected anal, buccal, and mucus swabs (non-lethal qPCR) and kidney tissue samples (lethal DFAT) from 72 adult brook trout (Salvelinus fontinalis) reared at the Colorado Parks and Wildlife Pitkin Brood Unit and tested each sample to assess R. salmoninarum infections. Standard kidney tissue detected R. salmoninarum 1.59 times more often than mucus swabs, compared to 10.43 and 13.16 times more often than buccal or anal swabs, respectively, indicating mucus swabs were the most effective and may be a useful non-lethal method. Our study highlights the potential of non-lethal mucus swabs to sample for R. salmoninarum and suggests future studies are needed to refine this technique for use in aquaculture facilities and wild populations of inland salmonids.
Collapse
Affiliation(s)
- Tawni B. Riepe
- Colorado Cooperative Fish and Wildlife Research Unit, Colorado State University, 1484 Campus Delivery, Fort Collins, CO 80523, USA
- Correspondence: ; Tel.: +1-303-435-6214
| | - Victoria Vincent
- Colorado Parks and Wildlife, Aquatic Animal Health Laboratory, 122 East Edison Street, Brush, CO 80723, USA; (V.V.); (V.M.)
| | - Vicki Milano
- Colorado Parks and Wildlife, Aquatic Animal Health Laboratory, 122 East Edison Street, Brush, CO 80723, USA; (V.V.); (V.M.)
| | - Eric R. Fetherman
- Colorado Parks and Wildlife, Aquatic Wildlife Research Section, 317 West Prospect Road, Fort Collins, CO 80525, USA;
| | - Dana L. Winkelman
- U.S. Geological Survey, Colorado Cooperative Fish and Wildlife Research Unit, 1484 Campus Delivery, Fort Collins, CO 80523, USA;
| |
Collapse
|
6
|
Renibacterium salmoninarum-The Causative Agent of Bacterial Kidney Disease in Salmonid Fish. Pathogens 2020; 9:pathogens9100845. [PMID: 33076564 PMCID: PMC7602803 DOI: 10.3390/pathogens9100845] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/04/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022] Open
Abstract
Renibacterium salmoninarum is one of the oldest known bacterial pathogens of fish. This Gram-positive bacterium is the causative agent of bacterial kidney disease, a chronic infection that is mostly known to infect salmonid fish at low temperatures. Externally, infected fish can display exophthalmia as well as blebs on the skin and ulcerations alongside haemorrhages at the base of the fins and alongside the lateral line. Internally, the kidney, heart, spleen and liver can show signs of swelling. Granulomas can be seen on various internal organs, as can haemorrhages, and the organs can be covered with a false membrane. Ascites can also accumulate in the abdominal cavity. The bacterium is generally cultivated on specialized media such as kidney disease medium-1 (KDM-1), KDM-2 and selective kidney disease medium (SKDM), and a diagnostic is performed using molecular tools such as PCRs or real-time quantitative PCRs (RT-qPCRs). Several virulence mechanisms have been identified in R. salmoninarum, in particular the protein p57 that is known to play a role in both agglutination and immunosuppression of the host’s defense mechanisms. Control of the disease is difficult; the presence of asymptomatic carriers complicates the eradication of the disease, as does the ability of the bacterium to gain entrance inside the eggs. Bacterin-killed vaccines have proven to be of doubtful efficacy in controlling the disease, and even more recent application of a virulent environmental relative of R. salmoninarum is of limited efficacy. Treatment by antibiotics such as erythromycin, azithromycin and enrofloxacin can be effective but it is slow and requires prolonged treatment. Moreover, antibiotic-resistant strains have been reported. Despite being known for a long time, there is still much to be discovered about R. salmoninarum, notably regarding its virulence mechanisms and its vaccine potential. Consequently, these gaps in knowledge continue to hinder control of this bacterial disease in aquaculture settings.
Collapse
|
7
|
Delghandi MR, Menanteau-Ledouble S, Waldner K, El-Matbouli M. Renibacterium salmoninarum and Mycobacterium spp.: two bacterial pathogens present at low levels in wild brown trout (Salmo trutta fario) populations in Austrian rivers. BMC Vet Res 2020; 16:40. [PMID: 32013968 PMCID: PMC6998173 DOI: 10.1186/s12917-020-2260-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 01/24/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Renibacterium salmoninarum and Mycobacterium sp. are important bacterial pathogens of fish. R. salmoninarum is the causative agent of bacterial kidney disease, a Gram-positive bacterium mostly known for causing chronic infections in salmonid fish, while multiple species belonging to the Mycobacterium genus have been associated with mycobacteriosis in fish as well as in human. The objective of this study was to determine the prevalence of these two bacterial pathogens in populations of wild brown trout (Salmo trutta fario) in four rivers (Kamp, Wulka, Traun and Ybbs) in Austria. RESULTS A total of 457 kidney samples were examined for both bacterial agents using nested and conventional PCR as well as bacterial cultivation on KDM-2, histological examination and immunohistochemistry. Molecular evidence showed an estimated prevalence level of 0.94% for R. salmoninarum in 2017 while the bacterium could not be detected in 2018 and histology showed signs consistent with a low-level chronic inflammation in the kidney of infected fish. Similarly, no fish were found positive for Mycobacterium in 2017 but in 2018, the prevalence was found to be 37.03% in the Kamp river (4.08% across all rivers). The sequencing data confirmed that these fish carried Mycobacterium sp. although the precise species of Mycobacterium could not be ascertained. CONCLUSIONS This survey constitutes the first insight into the prevalence rate of R. salmoninarum and Mycobacterium sp. in wild brown trout (Salmo trutta fario) populations in Austria. Both of these pathogens were only detected in the summer months (June and July), which might suggest that the stress linked to increased water temperature could act as stressor factor and contribute to the outbreak of these diseases. The age of the fish might also play a role, especially in the case of Mycobacterium sp. as all the infected fish were in their first summer (June).
Collapse
Affiliation(s)
- M. R. Delghandi
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - S. Menanteau-Ledouble
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - K. Waldner
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - M. El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
8
|
Laurin E, Morrison D, Gardner IA, Siah A, Powell JFF, Kamaitis M. Bayesian latent class analysis of ELISA and RT-rPCR diagnostic accuracy for subclinical Renibacterium salmoninarum infection in Atlantic salmon (Salmo salar) broodstock. JOURNAL OF FISH DISEASES 2019; 42:303-313. [PMID: 30549278 DOI: 10.1111/jfd.12933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/10/2018] [Accepted: 11/11/2018] [Indexed: 06/09/2023]
Abstract
Renibacterium salmoninarum infection causes bacterial kidney disease (BKD) in salmonid freshwater and saltwater life stages, with potentially severe financial loss for the aquaculture industry. Preventing vertical transmission, from infected broodstock to eggs, is key to disease management. As there is no perfect reference standard for detecting R. salmoninarum, we used Bayesian latent class analyses to compare real-time reverse transcriptase PCR (RT-rPCR, mRNA target) and enzyme-linked immunosorbent assay (ELISA; p57 antigen target) diagnostic accuracy for detection in Atlantic salmon broodstock from British Columbia, Canada, and assessed ELISA repeatability. In 2016, 4,544 Atlantic salmon broodstock (no clinical signs of BKD or gross lesions) were sampled for ELISA testing of kidney tissue. Two groups of ELISA positives (n = 132) and two groups of a random sample of ELISA negatives (n = 137) were then tested with RT-rPCR, and ELISA testing was repeated. ELISA testing of broodstock provided the best diagnostic sensitivity (DSe; less chance of false-negative results). The use of joint RT-rPCR and ELISA testing improved DSe over that from each test alone, if a sample was considered positive when either test result was positive. Using these testing schemes in combination with management practices can decrease the likelihood of vertical transmission from subclinically infected broodstock.
Collapse
Affiliation(s)
- Emilie Laurin
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Diane Morrison
- Marine Harvest Canada, Campbell River, British Columbia, Canada
| | - Ian A Gardner
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Ahmed Siah
- British Columbia Centre for Aquatic Health Sciences, Campbell River, British Columbia, Canada
| | - James F F Powell
- British Columbia Centre for Aquatic Health Sciences, Campbell River, British Columbia, Canada
| | | |
Collapse
|