1
|
Johnson P, McLeod L, Qin Y, Osgood N, Rosengren L, Campbell J, Larson K, Waldner C. Investigating effective testing strategies for the control of Johne's disease in western Canadian cow-calf herds using an agent-based simulation model. Front Vet Sci 2022; 9:1003143. [PMID: 36504856 PMCID: PMC9732103 DOI: 10.3389/fvets.2022.1003143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
Johne's disease is an insidious infectious disease of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Johne's disease can have important implications for animal welfare and risks causing economic losses in affected herds due to reduced productivity, premature culling and replacement, and veterinary costs. Despite the limited accuracy of diagnostic tools, testing and culling is the primary option for controlling Johne's disease in beef herds. However, evidence to inform specific test and cull strategies is lacking. In this study, a stochastic, continuous-time agent-based model was developed to investigate Johne's disease and potential control options in a typical western Canadian cow-calf herd. The objective of this study was to compare different testing and culling scenarios that included varying the testing method and frequency as well as the number and risk profile of animals targeted for testing using the model. The relative effectiveness of each testing scenario was determined by the simulated prevalence of cattle shedding MAP after a 10-year testing period. A second objective was to compare the direct testing costs of each scenario to identify least-cost options that are the most effective at reducing within-herd disease prevalence. Whole herd testing with individual PCR at frequencies of 6 or 12 months were the most effective options for reducing disease prevalence. Scenarios that were also effective at reducing prevalence but with the lowest total testing costs included testing the whole herd with individual PCR every 24 months and testing the whole herd with pooled PCR every 12 months. The most effective method with the lowest annual testing cost per unit of prevalence reduction was individual PCR on the whole herd every 24 months. Individual PCR testing only cows that had not already been tested 4 times also ranked well when considering both final estimated prevalence at 10 years and cost per unit of gain. A more in-depth economic analysis is needed to compare the cost of testing to the cost of disease, taking into account costs of culling, replacements and impacts on calf crops, and to determine if testing is an economically attractive option for commercial cow-calf operations.
Collapse
Affiliation(s)
- Paisley Johnson
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada
| | - Lianne McLeod
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada
| | - Yang Qin
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nathaniel Osgood
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - John Campbell
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada
| | - Kathy Larson
- Agricultural and Resource Economics, College of Agriculture and Bioresources, Saskatoon, SK, Canada
| | - Cheryl Waldner
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada
| |
Collapse
|
2
|
Hostnik P, Černe D, Mrkun J, Starič J, Toplak I. Review of Infections With Bovine Herpesvirus 1 in Slovenia. Front Vet Sci 2021; 8:676549. [PMID: 34277755 PMCID: PMC8281293 DOI: 10.3389/fvets.2021.676549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/08/2021] [Indexed: 01/02/2023] Open
Abstract
In the 1950s, infectious bovine rhinotracheitis/infectious pustular vulvovaginitis (IBR/IPV) disease was clinically detected and documented in cattle for the first time in Slovenia. The bovine herpes virus 1 (BoHV-1) was confirmed several times from infected herds by virus isolation on cell cultures. To keep the IC virus-free, high biosecurity measures were introduced. Before entering the IC, all calves are serologically tested and quarantined. Bulls in Slovenian insemination centres (IC) have been negative for IBR /IPV infection since 1979. From 1985 to 1991, few large-scale studies of the prevalence of IBR/IPV were carried out. In 1985, a high percentage (56.9%) of serologically positive animals were found in large state farms with Holstein Friesian cattle. Epidemiological studies in farm with bulls' mother herds were also carried out in the farms with Simmental and Brown cows. Antibodies against BoHV-1 were detected in the serum of 2.3% of Brown cattle and 3.5% of Simmental cattle. In the year 2000, 3.4% of bulk tank milk samples from 13,349 dairy farms were detected BoHV-1 antibodies positive. The highest percentage of positive animals was found in regions with an intensive grazing system (6.2% positive) and the lowest percentage in the east part of Slovenia (0.9% positive) on farms with mostly Simmental cattle. In 2006, a total 204,662 sera of cattle older than 24 months were tested for the presence of BoHV-1 antibodies and positive cattle were detected in 3.6% of tested farms. These farms kept 34,537 animals that were potential carriers of the BoHV-1. Most of the positive farms kept Holstein Friesian cattle, descendants from the state-owned farms, which were privatised or closed after 1990. In 2015, the Administration of the Republic of Slovenia for Food Safety, Veterinary and Plant Protection issued a rule that describes the conditions for granting and maintaining the status of BoHV-1 free holdings. The rule provides a voluntary control programme for breeders who want to obtain BoHV-1 free status and are willing to cover all the cost of acquiring and maintaining that status. There has been very little response from breeders.
Collapse
Affiliation(s)
- Peter Hostnik
- Institute for Microbiology and Parasitology-Virology Unit, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Danijela Černe
- Institute for Microbiology and Parasitology-Virology Unit, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Janko Mrkun
- Clinic for Reproduction and Large Animals-Clinic for Reproduction, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jože Starič
- Clinic for Reproduction and Large Animals-Section for Ruminants, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ivan Toplak
- Institute for Microbiology and Parasitology-Virology Unit, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Brock J, Lange M, Tratalos JA, More SJ, Guelbenzu-Gonzalo M, Graham DA, Thulke HH. A large-scale epidemiological model of BoHV-1 spread in the Irish cattle population to support decision-making in conformity with the European Animal Health Law. Prev Vet Med 2021; 192:105375. [PMID: 33989913 DOI: 10.1016/j.prevetmed.2021.105375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
We present a new modelling framework to address the evaluation of national control/surveillance programs planned in line with the European Animal Health Law (AHL) for livestock diseases. Our modelling framework is applied to the cattle sector in Ireland where there is need for policy support to design an optimal programme to achieve bovine herpesvirus type 1 (BoHV-1) free status under the AHL. In this contribution, we show how our framework establishes a regional model that is able to mechanistically reproduce the demography, management practices and transport patterns of an entire cattle population without being dependent on continuous livestock registry data. An innovative feature of our model is the inclusion of herd typing, thereby extending these beyond the categories of dairy, beef and mixed herds that are frequently considered in other regional modelling studies. This detailed representation of herd type-specific management facilitates comparative assessment of BoHV-1 eradication strategies targeting different production types with individual strategy protocols. Finally, we apply our model to support current discussions regarding the structure and implementation of a potential national BoHV-1 eradication programme in Ireland.
Collapse
Affiliation(s)
- Jonas Brock
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dept Ecological Modelling, PG Ecological Epidemiology, Leipzig, Germany; Animal Health Ireland, Carrick-on-Shannon, Co. Leitrim, Ireland.
| | - Martin Lange
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dept Ecological Modelling, PG Ecological Epidemiology, Leipzig, Germany
| | - Jamie A Tratalos
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Dublin, D04 W6F6, Ireland
| | - Simon J More
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Dublin, D04 W6F6, Ireland
| | | | - David A Graham
- Animal Health Ireland, Carrick-on-Shannon, Co. Leitrim, Ireland
| | - Hans-Hermann Thulke
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dept Ecological Modelling, PG Ecological Epidemiology, Leipzig, Germany
| |
Collapse
|
4
|
Brock J, Lange M, Guelbenzu-Gonzalo M, Meunier N, Vaz AM, Tratalos JA, Dittrich P, Gunn M, More SJ, Graham D, Thulke HH. Epidemiology of age-dependent prevalence of Bovine Herpes Virus Type 1 (BoHV-1) in dairy herds with and without vaccination. Vet Res 2020; 51:124. [PMID: 32988417 PMCID: PMC7520977 DOI: 10.1186/s13567-020-00842-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
Many studies report age as a risk factor for BoHV-1 infection or seropositivity. However, it is unclear whether this pattern reflects true epidemiological causation or is a consequence of study design and other issues. Here, we seek to understand the age-related dynamics of BoHV-1 seroprevalence in seasonal calving Irish dairy herds and provide decision support for the design and implementation of effective BoHV-1 testing strategies. We analysed seroprevalence data from dairy herds taken during two Irish seroprevalence surveys conducted between 2010 and 2017. Age-dependent seroprevalence profiles were constructed for herds that were seropositive and unvaccinated. Some of these profiles revealed a sudden increase in seroprevalence between adjacent age-cohorts, from absent or low to close to 100% of seropositive animals. By coupling the outcome of our data analysis with simulation output of an individual-based model at the herd scale, we have shown that these sudden increases are related to extensive virus circulation within a herd for a limited time, which may then subsequently remain latent over the following years. BoHV-1 outbreaks in dairy cattle herds affect animals independent of age and lead to almost 100% seroconversion in all age groups, or at least in all animals within a single epidemiological unit. In the absence of circulating infection, there is a year-on-year increase in the age-cohort at which seroprevalence changes from low to high. The findings of this study inform recommendations regarding testing regimes in the context of contingency planning or an eradication programme in seasonal calving dairy herds.
Collapse
Affiliation(s)
- Jonas Brock
- Helmholtz Centre for Environmental Research GmbH-UFZ, Dept Ecological Modelling, PG Ecological Epidemiology, Leipzig, Germany. .,Animal Health Ireland, Co. Leitrim, Carrick-on-Shannon, Ireland.
| | - Martin Lange
- Helmholtz Centre for Environmental Research GmbH-UFZ, Dept Ecological Modelling, PG Ecological Epidemiology, Leipzig, Germany
| | | | | | - Ana Margarida Vaz
- Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Jamie A Tratalos
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Peter Dittrich
- Department of Mathematics and Computer Sciences, Friedrich Schiller University, 07743, Jena, Germany
| | - Michael Gunn
- Animal Health Ireland, Co. Leitrim, Carrick-on-Shannon, Ireland
| | - Simon J More
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - David Graham
- Animal Health Ireland, Co. Leitrim, Carrick-on-Shannon, Ireland
| | - Hans-Hermann Thulke
- Helmholtz Centre for Environmental Research GmbH-UFZ, Dept Ecological Modelling, PG Ecological Epidemiology, Leipzig, Germany
| |
Collapse
|
5
|
Ezanno P, Andraud M, Beaunée G, Hoch T, Krebs S, Rault A, Touzeau S, Vergu E, Widgren S. How mechanistic modelling supports decision making for the control of enzootic infectious diseases. Epidemics 2020; 32:100398. [PMID: 32622313 DOI: 10.1016/j.epidem.2020.100398] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/07/2020] [Accepted: 05/29/2020] [Indexed: 12/28/2022] Open
Abstract
Controlling enzootic diseases, which generate a large cumulative burden and are often unregulated, is needed for sustainable farming, competitive agri-food chains, and veterinary public health. We discuss the benefits and challenges of mechanistic epidemiological modelling for livestock enzootics, with particular emphasis on the need for interdisciplinary approaches. We focus on issues arising when modelling pathogen spread at various scales (from farm to the region) to better assess disease control and propose targeted options. We discuss in particular the inclusion of farmers' strategic decision-making, the integration of within-host scale to refine intervention targeting, and the need to ground models on data.
Collapse
Affiliation(s)
- P Ezanno
- INRAE, Oniris, BIOEPAR, Site de la Chantrerie, CS40706, 44307 Nantes, France.
| | - M Andraud
- Unité épidémiologie et bien-être du porc, Anses Laboratoire de Ploufragan-Plouzané, Ploufragan, France.
| | - G Beaunée
- INRAE, Oniris, BIOEPAR, Site de la Chantrerie, CS40706, 44307 Nantes, France.
| | - T Hoch
- INRAE, Oniris, BIOEPAR, Site de la Chantrerie, CS40706, 44307 Nantes, France.
| | - S Krebs
- INRAE, Oniris, BIOEPAR, Site de la Chantrerie, CS40706, 44307 Nantes, France.
| | - A Rault
- INRAE, Oniris, BIOEPAR, Site de la Chantrerie, CS40706, 44307 Nantes, France.
| | - S Touzeau
- INRAE, CNRS, Université Côte d'Azur, ISA, France; Inria, INRAE, CNRS, Université Paris Sorbonne, Université Côte d'Azur, BIOCORE, France.
| | - E Vergu
- INRAE, Université Paris-Saclay, MaIAGE, 78350 Jouy-en-Josas, France.
| | - S Widgren
- Department of Disease Control and Epidemiology, National Veterinary Institute, 751 89 Uppsala, Sweden.
| |
Collapse
|