1
|
Palmer MV, Kanipe C, Hwang S, Thacker TC, Lehman KA, Ledesma NA, Gustafson KK, Boggiatto PM. Pathogen Detection in Early Phases of Experimental Bovine Tuberculosis. Vet Sci 2024; 11:357. [PMID: 39195811 PMCID: PMC11359862 DOI: 10.3390/vetsci11080357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Bovine tuberculosis is caused by Mycobacterium bovis, a member of the M. tuberculosis complex of mycobacterial species that cause tuberculosis in humans and animals. Diagnosis of bovine tuberculosis has relied on examinations of cell-mediated immune responses to M. bovis proteins using tuberculin skin testing and/or interferon gamma release assays. Even when using these methods, disease detection during the earliest phases of infection has been difficult, allowing a window for cattle-to-cattle transmission to occur within a herd. Alternative means of diagnosis could include methods to detect M. bovis or M. bovis DNA in bodily fluids such as nasal secretions, saliva, or blood. During the first 8 weeks after experimental aerosol infection of 18 calves, M. bovis DNA was detected in nasal swabs from a small number of calves 5, 6, and 8 weeks after infection and in samples of saliva at 1, 7, and 8 weeks after infection. However, at no time could culturable M. bovis be recovered from nasal swabs or saliva. M. bovis DNA was not found in blood samples collected weekly and examined by real-time PCR. Interferon gamma release assays demonstrated successful infection of all calves, while examination of humoral responses using a commercial ELISA identified a low number of infected animals at weeks 4-8 after infection. Examination of disease severity through gross lesion scoring did not correlate with shedding in nasal secretions or saliva, and calves with positive antibody ELISA results did not have more severe disease than other calves.
Collapse
Affiliation(s)
- Mitchell V. Palmer
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, United States Department of Agriculture, 1920 Dayton Ave, Ames, IA 50010, USA; (C.K.); (P.M.B.)
| | - Carly Kanipe
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, United States Department of Agriculture, 1920 Dayton Ave, Ames, IA 50010, USA; (C.K.); (P.M.B.)
| | - Soyoun Hwang
- Center for Veterinary Biologics, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA 50010, USA;
| | - Tyler C. Thacker
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA 50010, USA; (T.C.T.); (K.A.L.); (N.A.L.); (K.K.G.)
| | - Kimberly A. Lehman
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA 50010, USA; (T.C.T.); (K.A.L.); (N.A.L.); (K.K.G.)
| | - Nicholas A. Ledesma
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA 50010, USA; (T.C.T.); (K.A.L.); (N.A.L.); (K.K.G.)
| | - Kristophor K. Gustafson
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA 50010, USA; (T.C.T.); (K.A.L.); (N.A.L.); (K.K.G.)
| | - Paola M. Boggiatto
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, United States Department of Agriculture, 1920 Dayton Ave, Ames, IA 50010, USA; (C.K.); (P.M.B.)
| |
Collapse
|
2
|
Wang J, Wang N, Xu L, Zeng X, Cheng J, Zhang X, Zhang Y, Yin D, Gou J, Pan X, Zhu X. High-Performance Detection of Mycobacterium bovis in Milk Using Recombinase-Aided Amplification-Clustered Regularly Interspaced Short Palindromic Repeat-Cas13a-Lateral Flow Detection. Foods 2024; 13:1601. [PMID: 38890830 PMCID: PMC11171503 DOI: 10.3390/foods13111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Mycobacterium bovis (M. bovis), the microorganism responsible for bovine tuberculosis (bTB), is transferred to people by the ingestion of unpasteurized milk and unprocessed fermented milk products obtained from animals with the infection. The identification of M. bovis in milk samples is of the utmost importance to successfully prevent zoonotic diseases and maintain food safety. This study presents a comprehensive description of a highly efficient molecular test utilizing recombinase-aided amplification (RPA)-clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein (Cas) 13a-lateral flow detection (LFD) for M. bovis detection. In contrast to ELISA, RPA-CRISPR-Cas13a-LFD exhibited greater accuracy and sensitivity in the detection of M. bovis in milk, presenting a detection limit of 2 × 100 copies/μL within a 2 h time frame. The two tests exhibited a moderate level of agreement, as shown by a kappa value of 0.452 (95%CI: 0.287-0.617, p < 0.001). RPA-CRISPR-Cas13a-LFD holds significant potential as a robust platform for pathogen detection in complex samples, thereby enabling the more dependable regulation of food safety examination, epidemiology research, and medical diagnosis.
Collapse
Affiliation(s)
- Jieru Wang
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (J.W.); (J.G.)
| | - Nan Wang
- China Institute of Veterinary Drug Control, Beijing 100000, China (Y.Z.)
| | - Lei Xu
- China Institute of Veterinary Drug Control, Beijing 100000, China (Y.Z.)
| | - Xiaoyu Zeng
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (J.W.); (J.G.)
| | - Junsheng Cheng
- China Institute of Veterinary Drug Control, Beijing 100000, China (Y.Z.)
| | - Xiaoqian Zhang
- China Institute of Veterinary Drug Control, Beijing 100000, China (Y.Z.)
| | - Yinghui Zhang
- China Institute of Veterinary Drug Control, Beijing 100000, China (Y.Z.)
| | - Dongdong Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (J.W.); (J.G.)
| | - Jiaojiao Gou
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (J.W.); (J.G.)
| | - Xiaocheng Pan
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (J.W.); (J.G.)
| | - Xiaojie Zhu
- China Institute of Veterinary Drug Control, Beijing 100000, China (Y.Z.)
| |
Collapse
|
3
|
Encinas M, Ferrara Muñiz X, Sammarruco RA, Ruiz Menna V, Garro CJ, Delgado F, Macías A, Magnano G, Zumárraga MJ, Garbaccio SG, Eirin ME. Limited usefulness of the IS 6110 touchdown-PCR in blood for tuberculin skin test false-negative cattle with serological response to Mycobacterium bovis. Front Vet Sci 2024; 11:1359205. [PMID: 38835898 PMCID: PMC11149419 DOI: 10.3389/fvets.2024.1359205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/23/2024] [Indexed: 06/06/2024] Open
Abstract
Ante-mortem diagnosis of bovine tuberculosis (bTB) is based mainly on the tuberculin skin test (TST) and the ɣ-IFN release assay (IGRA). Some infected animals escape screening tests, thus, limit herd sanitation. Previous reports have suggested a predominant pattern of multi-organ lesions attributable to Mycobacterium bovis (the causative agent of bTB) bacteraemia. A case-control study was conducted to investigate blood PCR as an alternative tool for improving ante-mortem detection of TST false-negative bovines. Cases comprised 70 TST false-negative bovines (cases), which were serology positive, and controls included 81 TST positive bovines; all of them confirmed as infected with M. bovis. Detection of the IS6110 target through touchdown blood-PCR (IS6110 TD-PCR) was performed. The positivity of the blood-PCR was 27.2% in the control group. This performance was similar to the 15% obtained among cases (p = 0.134). Most cases identified by the IS6110 TD-PCR exhibited focalized lesions (p = 0.002). Results demonstrated that blood-PCR could detect TST false-negative cattle, even if they are negative for IGRA. Considering that cases exhibited humoral response to M. bovis, further studies conducted in a pre-serological stage could provide evidence about the real contribution of the technique in herds.
Collapse
Affiliation(s)
- Micaela Encinas
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo) UEDD CONICET-INTA, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham, Argentina
| | - Ximena Ferrara Muñiz
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo) UEDD CONICET-INTA, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham, Argentina
| | - Romina Ayelén Sammarruco
- Instituto de Patobiología Veterinaria (IPVET), UEDD CONICET-INTA, Instituto Nacional de Tecnología Agropecuaria (INTA), INTA-CONICET, Hurlingham, Argentina
| | - Victoria Ruiz Menna
- Instituto de Patobiología Veterinaria (IPVET), UEDD CONICET-INTA, Instituto Nacional de Tecnología Agropecuaria (INTA), INTA-CONICET, Hurlingham, Argentina
| | - Carlos Javier Garro
- Instituto de Patobiología Veterinaria (IPVET), UEDD CONICET-INTA, Instituto Nacional de Tecnología Agropecuaria (INTA), INTA-CONICET, Hurlingham, Argentina
| | - Fernando Delgado
- Instituto de Patobiología Veterinaria (IPVET), UEDD CONICET-INTA, Instituto Nacional de Tecnología Agropecuaria (INTA), INTA-CONICET, Hurlingham, Argentina
| | - Analía Macías
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Gabriel Magnano
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Martín José Zumárraga
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo) UEDD CONICET-INTA, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham, Argentina
| | - Sergio Gabriel Garbaccio
- Instituto de Patobiología Veterinaria (IPVET), UEDD CONICET-INTA, Instituto Nacional de Tecnología Agropecuaria (INTA), INTA-CONICET, Hurlingham, Argentina
| | - María Emilia Eirin
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo) UEDD CONICET-INTA, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham, Argentina
| |
Collapse
|
4
|
Mabe L, Muthevhuli M, Thekisoe O, Suleman E. Accuracy of molecular diagnostic assays for detection of Mycobacterium bovis: A systematic review and meta-analysis. Prev Vet Med 2024; 226:106190. [PMID: 38574490 DOI: 10.1016/j.prevetmed.2024.106190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
Bovine tuberculosis (bovine TB) is a chronic wasting disease of cattle caused primarily by Mycobacterium bovis. Controlling bovine TB requires highly sensitive, specific, quick, and reliable diagnostic methods. This systematic review and meta-analysis evaluated molecular diagnostic tests for M. bovis detection to inform the selection of the most viable assay. On a per-test basis, loop-mediated isothermal amplification (LAMP) showed the highest overall sensitivity of 99.0% [95% CI: 86.2%-99.9%] and specificity of 99.8% [95% CI: 96.2%-100.00%]. Quantitative real-time polymerase chain reaction (qPCR) outperformed conventional PCR and nested PCR (nPCR) with a diagnostic specificity of 96.6% [95% CI: 88.9%-99.0%], while the diagnostic sensitivity of 70.8% [95% CI: 58.6-80.5%] was comparable to that of nPCR at 71.4% [95% CI: 60.7-80.2%]. Test sensitivity was higher with the input of milk samples (90.9% [95% CI: 56.0%-98.7%]), while specificity improved with tests based on major M. bovis antigens (97.8% [95% CI: 92.3%-99.4%]), the IS6110 insertion sequence (95.4% [95% CI: 87.6%-98.4%]), and the RD4 gene (90.7% [95% CI: 52.2%-98.9%]). The design of the currently available molecular diagnostic assays, while mostly based on nonspecific gene targets, prevents them from being accurate enough to diagnose M. bovis infections in cattle, despite their promise. Future assay development should focus on the RD4 region since it is the only target identified by genome sequence data as being distinctive for detecting M. bovis. The availability of a sufficiently accurate diagnostic test combined with the routine screening of milk samples can decrease the risk of zoonotic transmissions of M. bovis.
Collapse
Affiliation(s)
- Lerato Mabe
- NextGen Health Cluster, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa; Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Mpho Muthevhuli
- NextGen Health Cluster, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Essa Suleman
- NextGen Health Cluster, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa.
| |
Collapse
|
5
|
Zeineldin MM, Lehman K, Camp P, Farrell D, Thacker TC. Diagnostic Evaluation of the IS1081-Targeted Real-Time PCR for Detection of Mycobacterium bovis DNA in Bovine Milk Samples. Pathogens 2023; 12:972. [PMID: 37623932 PMCID: PMC10458061 DOI: 10.3390/pathogens12080972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
The ability of Mycobacterium bovis (M. bovis) to survive in bovine milk has emerged as a serious public health concern. The first objective of this study was to evaluate the diagnostic utility of IS1081-targeted real-time PCR for the detection of M. bovis DNA in different fractions of bovine milk. In a model study, bovine milk samples were spiked with serially diluted M. bovis BCG to investigate the detection limit of M. bovis DNA in whole milk and milk fractions (cream, pellet, and pellet + cream combined) using IS1081 real-time PCR. The assay was then used to detect M. bovis DNA in whole milk and milk fractions from naturally infected animals. The results showed that the IS1081 real-time PCR was more sensitive when detecting M. bovis DNA in the cream layer alone and cream + pellet combined compared to whole milk or the pellet alone. While PCR-based diagnostic assays for the detection of M. bovis in milk samples provide a quicker diagnostic tool for bovine tuberculosis, safe processing, and handling of M. bovis-infected milk samples remain a challenge and pose a human health risk. PrimeStore Molecular Transport Medium (MTM) has been shown to rapidly inactivate infected specimens while preserving nucleic acid for subsequent Molecular analysis. Therefore, the secondary objective of this study was to evaluate the ability of MTM to inactivate M. bovis BCG in spiked milk samples as well as its ability to preserve BCG DNA for the PCR assay. The results showed that MTM can successfully inactivate BCG alone or in spiked milk samples while preserving DNA for the PCR assay. The CT values of M. bovis BCG alone and spiked milk samples aliquoted in MTM and without MTM were similar at various dilutions. Taken together, our results indicate that using DNA extracted from the milk cream fraction alone or combined milk cream and pellet improved the recovery rate of M. bovis DNA in bovine milk samples. MTM has the potential to provide a safe and rapid sample processing tool for M. bovis inactivation in milk samples and preserve DNA for molecular diagnostics.
Collapse
Affiliation(s)
| | | | | | | | - Tyler C. Thacker
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA 50010, USA; (M.M.Z.)
| |
Collapse
|
6
|
Kasir D, Osman N, Awik A, El Ratel I, Rafei R, Al Kassaa I, El Safadi D, Salma R, El Omari K, Cummings KJ, Kassem II, Osman M. Zoonotic Tuberculosis: A Neglected Disease in the Middle East and North Africa (MENA) Region. Diseases 2023; 11:diseases11010039. [PMID: 36975589 PMCID: PMC10047434 DOI: 10.3390/diseases11010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Mycobacterium bovis is the etiologic agent of bovine tuberculosis (BTB), a serious infectious disease in both humans and animals. BTB is a zoonotic disease primarily affecting cattle and occasionally humans infected through close contact with infected hosts or the consumption of unpasteurized dairy products. Zoonotic tuberculosis is strongly associated with poverty and poor hygiene, and low- and middle-income countries bear the brunt of the disease. BTB has been increasingly recognized as a growing public health threat in developing countries. However, the lack of effective surveillance programs in many of these countries poses a barrier to accurately determining the true burden of this disease. Additionally, the control of BTB is threatened by the emergence of drug-resistant strains that affect the effectiveness of current treatment regimens. Here, we analyzed current trends in the epidemiology of the disease as well as the antimicrobial susceptibility patterns of M. bovis in the Middle East and North Africa (MENA) region, a region that includes several developing countries. Following PRISMA guidelines, a total of 90 studies conducted in the MENA region were selected. Our findings revealed that the prevalence of BTB among humans and cattle varied significantly according to the population size and country in the MENA region. Most of the available studies were based on culture and/or PCR strategies and were published without including data on antimicrobial resistance and molecular typing. Our findings highlighted the paramount need for the use of appropriate diagnostic tools and the implementation of sustainable control measures, especially at the human/animal interface, in the MENA region.
Collapse
Affiliation(s)
- Dalal Kasir
- Quality Control Center Laboratories at the Chamber of Commerce, Industry & Agriculture of Tripoli & North Lebanon, Tripoli 1300, Lebanon
| | - Nour Osman
- Department of Epidemiology and Population Health, Faculty of Health Sciences, American University of Beirut, Beirut 1100, Lebanon
| | - Aicha Awik
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon
| | - Imane El Ratel
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon
| | - Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon
| | - Imad Al Kassaa
- Fonterra Research and Development Center, Palmerston North 4410, New Zealand
| | - Dima El Safadi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Rayane Salma
- Quality Control Center Laboratories at the Chamber of Commerce, Industry & Agriculture of Tripoli & North Lebanon, Tripoli 1300, Lebanon
| | - Khaled El Omari
- Quality Control Center Laboratories at the Chamber of Commerce, Industry & Agriculture of Tripoli & North Lebanon, Tripoli 1300, Lebanon
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon
| | - Kevin J. Cummings
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Issmat I. Kassem
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA
| | - Marwan Osman
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY 14853, USA
- Correspondence: or ; Tel.: +1-607-262-4219
| |
Collapse
|
7
|
Boko CK, Zoclanclounon AR, Adoligbe CM, Dedehouanou H, M'Po M, Mantip S, Farougou S. Molecular diagnosis of bovine tuberculosis on postmortem carcasses during routine meat inspection in Benin: GeneXpert® testing to improve diagnostic scheme. Vet World 2022; 15:2506-2510. [DOI: 10.14202/vetworld.2022.2506-2510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Background and Aim: Bovine tuberculosis (TB) is a zoonotic disease of major public health importance, particularly in African countries, where control measures are limited or largely not applied. This study aimed to determine the accuracy of the currently used bovine TB diagnostic method at slaughterhouses in Benin; this is to contribute to the betterment and improvement in the epidemiological surveillance of the disease in the country.
Materials and Methods: A total of 40 tissue samples were collected from meat/viscera (lung, liver, heart, kidney, and the gastro-intestinal tract tissues) at Cotonou slaughterhouses from ruminants suspected to be infected with bovine TB during routine meat inspection. The collected samples were analyzed using GeneXpert testing technique as a reference method.
Results: Twenty-six samples tested positive out of the 40 suspected tissue samples collected by GeneXpert diagnostic technique; this shows the limitation of the routine meat inspection in detecting bovine TB as currently performed in Benin.
Conclusion: The outcome of the use of the molecular technique, therefore, supports the importance of the use of a molecular tool alongside the routine meat inspection for a better understanding of the epidemiology of bovine TB in Benin. However, more robust technical and policy efforts are needed for a sustainable implementation of such a strategy.
Collapse
Affiliation(s)
- Cyrille K. Boko
- Research Unit in Transmissible Diseases, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01BP 2009, Cotonou, Benin
| | - Ange-Régis Zoclanclounon
- Research Unit in Transmissible Diseases, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01BP 2009, Cotonou, Benin
| | - Camus M. Adoligbe
- Research Unit in Transmissible Diseases, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01BP 2009, Cotonou, Benin
| | | | - Marguéritte M'Po
- Research Unit in Transmissible Diseases, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01BP 2009, Cotonou, Benin
| | - Samuel Mantip
- Virology Division, National Veterinary Research Institute, PMB 0001, Vom, Nigeria
| | - Souaïbou Farougou
- Research Unit in Transmissible Diseases, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01BP 2009, Cotonou, Benin
| |
Collapse
|
8
|
Borham M, Oreiby A, El-Gedawy A, Hegazy Y, Khalifa HO, Al-Gaabary M, Matsumoto T. Review on Bovine Tuberculosis: An Emerging Disease Associated with Multidrug-Resistant Mycobacterium Species. Pathogens 2022; 11:pathogens11070715. [PMID: 35889961 PMCID: PMC9320398 DOI: 10.3390/pathogens11070715] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/26/2022] Open
Abstract
Bovine tuberculosis is a serious infectious disease affecting a wide range of domesticated and wild animals, representing a worldwide economic and public health burden. The disease is caused by Mycobacteriumbovis and infrequently by other pathogenic mycobacteria. The problem of bovine tuberculosis is complicated when the infection is associated with multidrug and extensively drug resistant M. bovis. Many techniques are used for early diagnosis of bovine tuberculosis, either being antemortem or postmortem, each with its diagnostic merits as well as limitations. Antemortem techniques depend either on cellular or on humoral immune responses, while postmortem diagnosis depends on adequate visual inspection, palpation, and subsequent diagnostic procedures such as bacterial isolation, characteristic histopathology, and PCR to reach the final diagnosis. Recently, sequencing and bioinformatics tools have gained increasing importance for the diagnosis of bovine tuberculosis, including, but not limited to typing, detection of mutations, phylogenetic analysis, molecular epidemiology, and interactions occurring within the causative mycobacteria. Consequently, the current review includes consideration of bovine tuberculosis as a disease, conventional and recent diagnostic methods, and the emergence of MDR-Mycobacterium species.
Collapse
Affiliation(s)
- Mohamed Borham
- Bacteriology Department, Animal Health Research Institute Matrouh Lab, Matrouh 51511, Egypt;
| | - Atef Oreiby
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheik 33516, Egypt; (A.O.); (Y.H.); (M.A.-G.)
| | - Attia El-Gedawy
- Bacteriology Department, Animal Health Research Institute, Giza 12618, Egypt;
| | - Yamen Hegazy
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheik 33516, Egypt; (A.O.); (Y.H.); (M.A.-G.)
| | - Hazim O. Khalifa
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita 286-0048, Japan
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo 189-0002, Japan
- Correspondence: (H.O.K.); (T.M.)
| | - Magdy Al-Gaabary
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheik 33516, Egypt; (A.O.); (Y.H.); (M.A.-G.)
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita 286-0048, Japan
- Correspondence: (H.O.K.); (T.M.)
| |
Collapse
|
9
|
Staerk-Østergaard J, Kirkeby C, Christiansen LE, Andersen MA, Møller CH, Voldstedlund M, Denwood MJ. Evaluation of diagnostic test procedures for SARS-CoV-2 using latent class models. J Med Virol 2022; 94:4754-4761. [PMID: 35713189 PMCID: PMC9349895 DOI: 10.1002/jmv.27943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/27/2022]
Abstract
Polymerase chain reaction (PCR) and antigen tests have been used extensively for screening during the severe acute respiratory syndrome coronavirus 2 pandemics. However, the real‐world sensitivity and specificity of the two testing procedures in the field have not yet been estimated without assuming that the PCR constitutes a gold standard test. We use latent class models to estimate the in situ performance of both tests using data from the Danish national registries. We find that the specificity of both tests is very high (>99.7%), while the sensitivities are 95.7% (95% confidence interval [CI]: 92.8%–98.4%) and 53.8% (95% CI: 49.8%–57.9%) for the PCR and antigen tests, respectively. These findings have implications for the use of confirmatory PCR tests following a positive antigen test result: we estimate that serial testing is counterproductive at higher prevalence levels.
Collapse
Affiliation(s)
- Jacob Staerk-Østergaard
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Carsten Kirkeby
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lasse E Christiansen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Michael A Andersen
- Epidemiologisk Forskning / Modelgruppen, Staten's Serum Institute, Copenhagen, Denmark
| | - Camilla H Møller
- Epidemiologisk Forskning / Modelgruppen, Staten's Serum Institute, Copenhagen, Denmark
| | - Marianne Voldstedlund
- Epidemiologisk Forskning / Modelgruppen, Staten's Serum Institute, Copenhagen, Denmark
| | - Matthew J Denwood
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
10
|
Collins ÁB, Floyd S, Gordon SV, More SJ. Prevalence of Mycobacterium bovis in milk on dairy cattle farms: An international systematic literature review and meta-analysis. Tuberculosis (Edinb) 2022; 132:102166. [PMID: 35091379 DOI: 10.1016/j.tube.2022.102166] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 12/30/2022]
Abstract
Bovine tuberculosis, caused by Mycobacterium bovis (M. bovis), is a globally distributed chronic disease of animals. The bacteria can be transmitted to humans via the consumption of unpasteurised (raw) milk, thus representing an important public health risk. To investigate the risk of zoonotic transmission of M. bovis via raw milk, this study systematically reviewed published studies to estimate the prevalence of M. bovis in on-farm bulk-tank milk (BTM) and individual cow's milk (IM) by meta-analysis. In total, 1,339 articles were identified through seven electronic databases and initially screened using titles and abstracts. The quality of 108 potentially relevant articles was assessed using full texts, and 67 articles comprising 83 studies (76 IM and 7 BTM), were included in the meta-analysis. The prevalence of M. bovis in IM and BTM was summarised according to the diagnostic test used, and the tuberculin skin test (TST) infection status of the individual cows (for IM) or herds (for BTM). Heterogeneity was quantified using the I-squared statistic. Prediction intervals (95% PIs) were also estimated. For IM, the overall prevalence was summarised at 5% (95%CI: 3%-7%). In TST positive cows, prevalence was summarised at 8% (95%CI: 4%-13%). For BTM, the overall prevalence independent of individual herd TST infection status was summarised at 5% (95%CI: 0%-21%). There was considerable heterogeneity evident among the included studies, while PIs were also wide. Inconsistency in the quality of reporting was also observed resulting in missing information, such as the TST infection status of the individual animal/herd. No study reported the number of M. bovis bacteria in test-positive milk samples. Several studies reported the detection of M. tuberculosis and M. africanum in milk. Despite international efforts to control tuberculosis, this study highlights the risk of zoonotic transmission of M. bovis via unpasteurised milk and dairy products made using raw milk.
Collapse
Affiliation(s)
- Áine B Collins
- Centre for Veterinary Epidemiology and Risk Analysis, University College Dublin, Dublin, D04 W6F6, Ireland; Department of Agriculture Food and the Marine, Government of Ireland, Kildare Street, Dublin, D02 WK12, Ireland.
| | - Sian Floyd
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom.
| | - Stephen V Gordon
- School of Veterinary Medicine, University College Dublin, Dublin, D04 W6F6, Ireland.
| | - Simon J More
- Centre for Veterinary Epidemiology and Risk Analysis, University College Dublin, Dublin, D04 W6F6, Ireland; Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom.
| |
Collapse
|
11
|
Elsohaby I, Alahadeb JI, Mahmmod YS, Mweu MM, Ahmed HA, El-Diasty MM, Elgedawy AA, Mahrous E, El Hofy FI. Bayesian Estimation of Diagnostic Accuracy of Three Diagnostic Tests for Bovine Tuberculosis in Egyptian Dairy Cattle Using Latent Class Models. Vet Sci 2021; 8:vetsci8110246. [PMID: 34822619 PMCID: PMC8622144 DOI: 10.3390/vetsci8110246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/04/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022] Open
Abstract
The aim of the present study was to calculate the sensitivity (Se) and specificity (Sp) of the single cervical tuberculin test (SCT), rapid lateral flow test (RLFT), and real-time polymerase chain reaction (RT-PCR) for the diagnosis of Mycobacterium bovis (M. bovis) infection in Egyptian dairy cattle herds within a Bayesian framework. The true M. bovis infection within-herd prevalence was assessed as a secondary objective. Data on the test results of SCT, RLFT, and RT-PCR for the detection of M. bovis were available from 245 cows in eleven herds in six major governorates in Egypt. A Bayesian latent class model was built for the estimation of the characteristics of the three tests. Our findings showed that Se of SCT (0.93 (95% Posterior credible interval (PCI): 0.89–0.93)) was higher than that of RT-PCR (0.83 (95% PCI: 0.28–0.93)) but was similar to the Se of RLFT (0.93 (95% PCI: 0.31–0.99)). On the contrary, SCT showed the lowest Sp estimate (0.60 (95% PCI: 0.59–0.65)), whereas Sp estimates of RT-PCR (0.99 (95% PCI: 0.95–1.00)) and RLFT (0.99 (95% PCI: 0.95–1.00)) were comparable. The true prevalence of M. bovis ranged between 0.07 and 0.71. In conclusion, overall, RT-PCR and RLFT registered superior performance to SCT, making them good candidates for routine use in the Egyptian bovine tuberculosis control program.
Collapse
Affiliation(s)
- Ibrahim Elsohaby
- Department of Animal Medicine, Division of Infectious Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig City 44511, Egypt;
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A4P3, Canada
- Correspondence: ; Tel.: +1-902-566-6063
| | - Jawher I. Alahadeb
- Department of Biology, College of Education (Majmaah), Majmaah University, P.O. Box 66, Al Majmaah 11952, Saudi Arabia;
| | - Yasser S. Mahmmod
- Department of Animal Medicine, Division of Infectious Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig City 44511, Egypt;
- Department of Veterinary Sciences, Faculty of Health Sciences, Higher Colleges of Technology, Al Ain 17155, United Arab Emirates
| | - Marshal M. Mweu
- School of Public Health, College of Health Sciences, University of Nairobi, Nairobi 30197-00100, Kenya;
| | - Heba A. Ahmed
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig City 44511, Egypt;
| | - Mohamed M. El-Diasty
- Mansoura Provincial Lab, Animal Health Research Institute, Mansoura 35516, Egypt; (M.M.E.-D.); (A.A.E.)
| | - Attia A. Elgedawy
- Mansoura Provincial Lab, Animal Health Research Institute, Mansoura 35516, Egypt; (M.M.E.-D.); (A.A.E.)
| | - Eman Mahrous
- Animal Health Research Institute, Giza 12618, Egypt;
| | - Fatma I. El Hofy
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Benha University, Benha 13511, Egypt;
| |
Collapse
|
12
|
Allen AR, Ford T, Skuce RA. Does Mycobacterium tuberculosis var. bovis Survival in the Environment Confound Bovine Tuberculosis Control and Eradication? A Literature Review. Vet Med Int 2021; 2021:8812898. [PMID: 33628412 PMCID: PMC7880718 DOI: 10.1155/2021/8812898] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/12/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Bovine tuberculosis (bTB) is one of the globe's most common, multihost zoonoses and results in substantial socioeconomic costs for governments, farming industries, and tax payers. Despite decades of surveillance and research, surprisingly, little is known about the exact mechanisms of transmission. In particular, as a facultative intracellular pathogen, to what extent does survival of the causative agent, Mycobacterium tuberculosis var. bovis (M. bovis), in the environment constitute an epidemiological risk for livestock and wildlife? Due largely to the classical pathology of cattle cases, the received wisdom was that bTB was spread by direct inhalation and exchange of bioaerosols containing droplets laden with bacteria. Other members of the Mycobacterium tuberculosis complex (MTBC) exhibit differing host ranges, an apparent capacity to persist in environmental fomites, and they favour a range of different transmission routes. It is possible, therefore, that infection from environmental sources of M. bovis could be a disease transmission risk. Recent evidence from GPS-collared cattle and badgers in Britain and Ireland suggests that direct transmission by infectious droplets or aerosols may not be the main mechanism for interspecies transmission, raising the possibility of indirect transmission involving a contaminated, shared environment. The possibility that classical pulmonary TB can be simulated and recapitulated in laboratory animal models by ingestion of contaminated feed is a further intriguing indication of potential environmental risk. Livestock and wildlife are known to shed M. bovis onto pasture, soil, feedstuffs, water, and other fomites; field and laboratory studies have indicated that persistence is possible, but variable, under differing environmental conditions. Given the potential infection risk, it is timely to review the available evidence, experimental approaches, and methodologies that could be deployed to address this potential blind spot and control point. Although we focus on evidence from Western Europe, the concepts are widely applicable to other multihost bTB episystems.
Collapse
Affiliation(s)
- Adrian R. Allen
- Agri-Food and Biosciences Institute, Veterinary Sciences Division, Bacteriology Branch, Stoney Road Stormont, Belfast BT4 3SD, Northern Ireland, UK
| | - Tom Ford
- Agri-Food and Biosciences Institute, Veterinary Sciences Division, Bacteriology Branch, Stoney Road Stormont, Belfast BT4 3SD, Northern Ireland, UK
| | - Robin A. Skuce
- Agri-Food and Biosciences Institute, Veterinary Sciences Division, Bacteriology Branch, Stoney Road Stormont, Belfast BT4 3SD, Northern Ireland, UK
| |
Collapse
|
13
|
Kerr TJ, Goosen WJ, Gumbo R, de Klerk-Lorist LM, Pretorius O, Buss PE, Kleynhans L, Lyashchenko KP, Warren RM, van Helden PD, Miller MA. Diagnosis of Mycobacterium bovis infection in free-ranging common hippopotamus (Hippopotamus amphibius). Transbound Emerg Dis 2021; 69:378-384. [PMID: 33423384 DOI: 10.1111/tbed.13989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/29/2020] [Accepted: 01/07/2021] [Indexed: 11/28/2022]
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis (M. bovis) infection, is a multi-host disease which negatively affects the wildlife industry, with adverse consequences for conservation, ecotourism, and game/wildlife sales. Although interspecies transmission has been reported between some wildlife hosts, the risk of spread in complex ecosystems is largely unknown. As a controlled disease, tools for accurate detection of M. bovis infection are crucial for effective surveillance and management, especially in wildlife populations. There are, however, limited species-specific diagnostic tests available for wildlife. Hippopotamuses are rarely tested for M. bovis infection, and infection has not previously been confirmed in these species. In this study, blood and tissue samples collected from common hippopotamus (Hippopotamus amphibius) residing in a bTB-endemic area, the Greater Kruger Protected area (GKPA), were retrospectively screened to determine whether there was evidence for interspecies transmission of M. bovis, and identify tools for M. bovis detection in this species. Using the multi-species DPP® VetTB serological assay, a bTB seroprevalence of 8% was found in hippopotamus from GKPA. In addition, the first confirmed case of M. bovis infection in a free-ranging common hippopotamus is reported, based on the isolation in mycobacterial culture, genetic speciation and detection of DNA in tissue samples. Importantly, the M. bovis spoligotype (SB0121) isolated from this common hippopotamus is shared with other M. bovis-infected hosts in GKPA, suggesting interspecies transmission. These results support the hypothesis that M. bovis infection may be under recognized in hippopotamus. Further investigation is needed to determine the risk of interspecies transmission of M. bovis to common hippopotamus in bTB-endemic ecosystems and evaluate serological and other diagnostic tools in this species.
Collapse
Affiliation(s)
- Tanya J Kerr
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Wynand J Goosen
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Rachiel Gumbo
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lin-Mari de Klerk-Lorist
- Skukuza State Veterinary Office, Department of Agriculture, Land Reform and Rural Development, Skukuza, South Africa
| | - Oonagh Pretorius
- Bushbuckridge South State Veterinary Office, Department of Agriculture, Rural Development, Land and Environmental Affairs, Mkhuhlu, South Africa
| | - Peter E Buss
- Veterinary Wildlife Services, South African National Parks, Skukuza, South Africa
| | - Léanie Kleynhans
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Robin M Warren
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Paul D van Helden
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Michele A Miller
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|