1
|
Jung B, Yeom M, An DJ, Kang A, Vu TTH, Na W, Byun Y, Song D. Large-Scale Serological Survey of Influenza A Virus in South Korean Wild Boar (Sus scrofa). ECOHEALTH 2024:10.1007/s10393-024-01685-8. [PMID: 38842623 DOI: 10.1007/s10393-024-01685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/08/2024] [Indexed: 06/07/2024]
Abstract
In this comprehensive large-scale study, conducted from 2015 to 2019, 7,209 wild boars across South Korea were sampled to assess their exposure to influenza A viruses (IAVs). Of these, 250 (3.5%) were found to be IAV-positive by ELISA, and 150 (2.1%) by the hemagglutination inhibition test. Detected subtypes included 23 cases of pandemic 2009 H1N1, six of human seasonal H3N2, three of classical swine H1N1, 13 of triple-reassortant swine H1N2, seven of triple-reassortant swine H3N2, and seven of swine-origin H3N2 variant. Notably, none of the serum samples tested positive for avian IAV subtypes H3N8, H5N3, H7N7, and H9N2 or canine IAV subtype H3N2. This serologic analysis confirmed the exposure of Korean wild boars to various subtypes of swine and human influenza viruses, with some serum samples cross-reacting between swine and human strains, indicating potential infections with multiple IAVs. The results highlight the potential of wild boar as a novel mixing vessel, facilitating the adaptation of IAVs and their spillover to other hosts, including humans. In light of these findings, we recommend regular and frequent surveillance of circulating influenza viruses in the wild boar population as a proactive measure to prevent potential human influenza pandemics and wild boar influenza epizootics.
Collapse
Affiliation(s)
- Bud Jung
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong-ro, Jochiwon-eup, Sejong-si, 30019, Republic of Korea
| | - Minjoo Yeom
- Department of Virology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Jun An
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Aram Kang
- QuadMedicine R&D Centre, QuadMedicine, Inc, Seongnam, 13209, Republic of Korea
| | - Thi Thu Hang Vu
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong-ro, Jochiwon-eup, Sejong-si, 30019, Republic of Korea
| | - Woonsung Na
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Youngjoo Byun
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong-ro, Jochiwon-eup, Sejong-si, 30019, Republic of Korea.
| | - Daesub Song
- Department of Virology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Yamaguchi E, Hayama Y, Murato Y, Sawai K, Kondo S, Yamamoto T. A case-control study of the infection risk of H5N8 highly pathogenic avian influenza in Japan during the winter of 2020-2021. Res Vet Sci 2024; 168:105149. [PMID: 38218062 DOI: 10.1016/j.rvsc.2024.105149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/21/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
In Japan, outbreaks of H5N8 highly pathogenic avian influenza (HPAI) were reported between November 2020 and March 2021 in 52 poultry farms. Understanding HPAI epidemiology would help poultry industries improve their awareness of the disease and enhance the immediate implementation of biosecurity measures. This study was a simulation-based matched case-control study to elucidate the risk factors associated with HPAI outbreaks in chicken farms in Japan. Data were collected from 42 HPAI-affected farms and 463 control farms that were within a 5-km radius of each case farm but remained uninfected. When infected farms were detected as clusters, one farm was randomly selected from each cluster, considering the possibility that the cluster was formed by farm-to-farm transmission within an epidemic area. For each case farm, up to three control farms were selected within a 5-km radius. Overall, 26 case farms (16 layer and 10 broiler farms) and 75 control farms (45 layer and 30 broiler farms) were resampled 1000 times for the conditional logistic regression model with explanatory variables comprising geographical factors and farm flock size. A larger flock size and shorter distance to water bodies from the farm were found to increase infection risk in layer farms. Similarly, in broiler farms, a shorter distance to water bodies increased infection risk. On larger farms, frequent access of farm staff and instrument carriages to premises could lead to increased infection risk. Waterfowl visiting water bodies around farms may also be associated with infection risk.
Collapse
Affiliation(s)
- Emi Yamaguchi
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Yoko Hayama
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Yoshinori Murato
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Kotaro Sawai
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Sonoko Kondo
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Takehisa Yamamoto
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki 305-0856, Japan.
| |
Collapse
|
3
|
Stefania C, Alessio M, Paolo M, Tiziano D, Favretto AR, Francesca Z, Giulia M, Giandomenico P. The application of biosecurity practices for preventing avian influenza in North-Eastern Italy turkey farms: An analysis of the point of view and perception of farmers. Prev Vet Med 2024; 222:106084. [PMID: 38064904 DOI: 10.1016/j.prevetmed.2023.106084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
INTRODUCTION Italian and international outbreaks of highly pathogenic avian influenza (HPAI), particularly in densely populated poultry areas (DPPAs), have increased over the past few decades. These emerging risks, which endanger both human and animal health and the entire poultry industry, can be effectively limited by biosecurity measures implemented at human-animal food chain interfaces. Some problems, however, persist in the application of these measures on the part of poultry farmers, prompting the need to explore those aspects and causes that limit their implementation. MATERIAL AND METHODS A qualitative approach was selected for the study and a semi-structured interview technique was applied to collect data among turkey farmers (n = 29) working in the north-east of Italy. The aim of this technique was to gather data on farms in order to understand the biosecurity practices adopted and the reasons for and impediments to farmer implementation, or lack thereof. This article presents and discusses the main data collected. RESULTS The study revealed that farmers were familiar with the biosecurity measures necessary to contain avian influenza (AI) and other poultry diseases; personal disinfection and animal isolation practices were particularly prominent. Based on the reported procedures, managerial, economic, and psychosocial factors were among the barriers behind the failure to implement biosecurity measures. These obstacles were variously intertwined and associated with the different action settings. In particular management factors, such as lack of time to apply the rules and difficulties contingent on the farm's structural characteristics, mediate the application of biosecurity measures. In terms of communication channels, the company, particularly its technicians, proved to be the primary source of information for farmers in case of emergencies, as well as the primary source of information on the application of biosecurity measures. However, other sources of information were indicated, such as word of mouth among farmers or other non-institutional figures (relatives and acquaintances). CONCLUSIONS What emerged, was the need to improve not only the biosecurity management skills, but also to implement forms of cooperation among the various key stakeholders in the poultry sector. The information presented in this pilot study needs to be discussed among competent authorities, public and company veterinarians, company technicians, and farmers. Furthermore, this information will help in participatory co-planning of risk prevention and communication strategies to implement a long-term, sustainable, effective approach to address future epidemic emergencies.
Collapse
Affiliation(s)
- Crovato Stefania
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell'Università 10, 35020 Legnaro, Italy.
| | - Menini Alessio
- Istituto Zooprofilattico Sperimentale delle Venezie, currently at Euro-Mediterranean Center on Climate Changes (CMCC), via Enrico de Nicola 9, 07100 Sassari, Italy
| | - Mulatti Paolo
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell'Università 10, 35020 Legnaro, Italy
| | - Dorotea Tiziano
- Istituto Zooprofilattico Sperimentale delle Venezie, currently at Servizio Veterinario di Igiene degli Alimenti di Origine Animale e loro derivati, Dipartimento funzionale di Sanità Pubblica Veterinaria e Sicurezza Alimentare, AULSS6 Euganea, Via Frà Paolo Sarpi, 76, Padova, Italy
| | - Anna Rosa Favretto
- Dipartimento di Psicologia, Università degli studi di Torino, Via Verdi 8, 10124 Torino, Italy
| | - Zaltron Francesca
- Dipartimento di Giurisprudenza e Scienze Politiche, Economiche e Sociali, Università del Piemonte Orientale, Via Camillo Cavour, 84, 15121 Alessandria, Italy
| | - Mascarello Giulia
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell'Università 10, 35020 Legnaro, Italy
| | - Pozza Giandomenico
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell'Università 10, 35020 Legnaro, Italy
| |
Collapse
|
4
|
Ahmad F, Haque S, Tawil S, Husni R, Bonilla-Aldana DK, Montenegro-Idrogo JJ, Rodriguez-Morales AJ. Avian influenza spillover to humans: Are we prepared to deal with another potential pandemic? Travel Med Infect Dis 2023; 55:102634. [PMID: 37598877 DOI: 10.1016/j.tmaid.2023.102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Affiliation(s)
- Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, TN, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, 13306, United Arab Emirates
| | - Samah Tawil
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Rola Husni
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | | | - Juan Jose Montenegro-Idrogo
- Faculty of Health Sciences, Universidad Cientifica del Sur, Lima, 15046, Peru; Infectious and Tropical Diseases Service, Hospital Nacional Dos de Mayo, Lima, 15072, Peru
| | - Alfonso J Rodriguez-Morales
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Faculty of Health Sciences, Universidad Cientifica del Sur, Lima, 15046, Peru; Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira, 660003, Risaralda, Colombia.
| |
Collapse
|
5
|
Patyk KA, Fields VL, Beam AL, Branan MA, McGuigan RE, Green A, Torchetti MK, Lantz K, Freifeld A, Marshall K, Delgado AH. Investigation of risk factors for introduction of highly pathogenic avian influenza H5N1 infection among commercial turkey operations in the United States, 2022: a case-control study. Front Vet Sci 2023; 10:1229071. [PMID: 37711433 PMCID: PMC10498466 DOI: 10.3389/fvets.2023.1229071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction The 2022-2023 highly pathogenic avian influenza (HPAI) H5N1 outbreak in the United States (U.S.) is the largest and most costly animal health event in U.S. history. Approximately 70% of commercial farms affected during this outbreak have been turkey farms. Methods We conducted a case-control study to identify potential risk factors for introduction of HPAI virus onto commercial meat turkey operations. Data were collected from 66 case farms and 59 control farms in 12 states. Univariate and multivariable analyses were conducted to compare management and biosecurity factors on case and control farms. Results Factors associated with increased risk of infection included being in an existing control zone, having both brooders and growers, having toms, seeing wild waterfowl or shorebirds in the closest field, and using rendering for dead bird disposal. Protective factors included having a restroom facility, including portable, available to crews that visit the farm and workers having access and using a shower at least some of the time when entering a specified barn. Discussion Study results provide a better understanding of risk factors for HPAI infection and can be used to inform prevention and control measures for HPAI on U.S. turkey farms.
Collapse
Affiliation(s)
- Kelly A. Patyk
- Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
| | - Victoria L. Fields
- Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
| | - Andrea L. Beam
- Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
| | - Matthew A. Branan
- Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
| | - Rachel E. McGuigan
- Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
| | - Alice Green
- Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
| | - Mia K. Torchetti
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, United States
| | - Kristina Lantz
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, United States
| | - Alexis Freifeld
- Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
| | - Katherine Marshall
- Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
| | - Amy H. Delgado
- Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
| |
Collapse
|
6
|
Otieno WA, Nyikal RA, Mbogoh SG, Rao EJO. Adoption of farm biosecurity practices among smallholder poultry farmers in Kenya - An application of latent class analysis with a multinomial logistic regression. Prev Vet Med 2023; 217:105967. [PMID: 37406503 DOI: 10.1016/j.prevetmed.2023.105967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/31/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Sub-Saharan Africa has a growing demand for poultry, but productivity in the sector has not increased to meet this demand. One major constraints in the sector is diseases. Many farmers currently use clinical control measures that involve treating birds with antibiotics upon detecting an infection. However, this approach has presented the misuse of antibiotics, leading to antimicrobial resistance, which could have catastrophic effects going by different projections. We evaluate the uptake of preventive approaches to disease management, otherwise known as biosecurity measures and the effect of the adopted practices on animal health outcome among poultry farmers in Nyanza region of Kenya. The study applies latent class analysis, which is a model-based clustering approach to categorize poultry farmers into low, moderate, and high biosecurity adoption classes. We find low adoption of biosecurity measures across all classes of smallholder poultry farmers in Nyanza. However, correlation analysis show that increased uptake of biosecurity measures is associated with positive poultry health outcomes. This is as demonstrated by lower mortality rates among farmers characterized by higher adoption of biosecurity measures. Lastly, we implement a multinomial logistic regression to assess determinants of class membership and our analysis shows that information access is the greatest driver of biosecurity adoption. Farmers who had access to information on biosecurity measures were 25 % more likely to belong to the class of farmers adopting more biosecurity practices - high adoption class- and 21 % less likely to be in the moderate adopters class. As such, the study recommends enhanced information dissemination to improve the uptake of biosecurity measures.
Collapse
Affiliation(s)
- Wycliffe A Otieno
- Department of Agricultural Economics, University of Nairobi, P.O Box 29053, Nairobi 00625, Kenya.
| | - Rose A Nyikal
- Department of Agricultural Economics, University of Nairobi, P.O Box 29053, Nairobi 00625, Kenya
| | - Stephen G Mbogoh
- Department of Agricultural Economics, University of Nairobi, P.O Box 29053, Nairobi 00625, Kenya
| | - Elizaphan J O Rao
- International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya
| |
Collapse
|
7
|
Yang XY, Gong QL, Li YJ, Ata EB, Hu MJ, Sun YY, Xue ZY, Yang YS, Sun XP, Shi CW, Yang GL, Huang HB, Jiang YL, Wang JZ, Cao X, Wang N, Zeng Y, Yang WT, Wang CF. The global prevalence of highly pathogenic avian influenza A (H5N8) infection in birds: A systematic review and meta-analysis. Microb Pathog 2023; 176:106001. [PMID: 36682670 DOI: 10.1016/j.micpath.2023.106001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
The zoonotic pathogen avian influenza A H5N8 causes enormous economic losses in the poultry industry and poses a serious threat to the public health. Here, we report the first systematic review and meta-analysis of the worldwide prevalence of birds. We filtered 45 eligible articles from seven databases. A random-effects model was used to analyze the prevalence of H5N8 in birds. The pooled prevalence of H5N8 in birds was 1.6%. In the regions, Africa has the highest prevalence (8.0%). Based on the source, village (8.3%) was the highest. In the sample type, the highest prevalence was organs (79.7%). In seasons, the highest prevalence was autumn (28.1%). The largest prevalence in the sampling time was during 2019 or later (7.0%). Furthermore, geographical factors also were associated with the prevalence. Therefore, we recommend site-specific prevention and control tools for this strain in birds and enhance the surveillance to reduce the spread of H5N8.
Collapse
Affiliation(s)
- Xue-Yao Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Qing-Long Gong
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yan-Jin Li
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Emad Beshir Ata
- Parasitology and Animal Diseases Dep., Vet. Res. Institute, National Research Centre, 12622, Dokki, Cairo, Egypt
| | - Man-Jie Hu
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yong-Yang Sun
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Zhi-Yang Xue
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Ying-Shi Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Xue-Pan Sun
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Jian-Zhong Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Xin Cao
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Nan Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yan Zeng
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| | - Chun-Feng Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| |
Collapse
|
8
|
Elbers ARW, Gonzales JL, Koene MGJ, Germeraad EA, Hakze-van der Honing RW, van der Most M, Rodenboog H, Velkers FC. Monitoring Wind-Borne Particle Matter Entering Poultry Farms via the Air-Inlet: Highly Pathogenic Avian Influenza Virus and Other Pathogens Risk. Pathogens 2022; 11:pathogens11121534. [PMID: 36558868 PMCID: PMC9788232 DOI: 10.3390/pathogens11121534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Wind-supported transport of particle matter (PM) contaminated with excreta from highly pathogenic avian influenza virus (HPAIv)-infected wild birds may be a HPAIv-introduction pathway, which may explain infections in indoor-housed poultry. The primary objective of our study was therefore to measure the nature and quantity of PM entering poultry houses via air-inlets. The air-inlets of two recently HPAIv-infected poultry farms (a broiler farm and a layer farm) were equipped with mosquito-net collection bags. PM was harvested every 5 days for 25 days. Video-camera monitoring registered wild bird visits. PM was tested for avian influenza viruses (AIV), Campylobacter and Salmonella with PCR. Insects, predominantly mosquitoes, were tested for AIV, West Nile, Usutu and Schmallenberg virus. A considerable number of mosquitoes and small PM amounts entered the air-inlets, mostly cobweb and plant material, but no wild bird feathers. Substantial variation in PM entering between air-inlets existed. In stormy periods, significantly larger PM amounts may enter wind-directed air-inlets. PM samples were AIV and Salmonella negative and insect samples were negative for all viruses and bacteria, but several broiler and layer farm PM samples tested Campylobacter positive. Regular wild (water) bird visits were observed near to the poultry houses. Air-borne PM and insects-potentially contaminated with HPAIv or other pathogens-can enter poultry air-inlets. Implementation of measures limiting this potential introduction route are recommended.
Collapse
Affiliation(s)
- Armin R. W. Elbers
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands
- Correspondence: ; Tel.: +31-320-238687
| | - José L. Gonzales
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands
| | | | | | | | | | | | - Francisca C. Velkers
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| |
Collapse
|
9
|
Dynamics of the Emerging Genogroup of Infectious Bursal Disease Virus Infection in Broiler Farms in South Korea: A Nationwide Study. Viruses 2022; 14:v14081604. [PMID: 35893669 PMCID: PMC9330851 DOI: 10.3390/v14081604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Infectious bursal disease (IBD), caused by IBD virus (IBDV), threatens the health of the poultry industry. Recently, a subtype of genogroup (G) 2 IBDV named G2d has brought a new threat to the poultry industry. To determine the current status of IBDV prevalence in South Korea, active IBDV surveillance on 167 randomly selected broiler farms in South Korea from August 2020 to July 2021 was conducted. The bursas of Fabricius from five chickens from each farm were independently pooled and screened for IBDV using virus-specific RT-PCR. As a result, 86 farms were found to be infected with the G2d variant, 13 farms with G2b, and 2 farms with G3. Current prevalence estimation of IBDV infection in South Korea was determined as 17.8% at the animal level using pooled sampling methods. G2d IBDV was predominant compared to other genogroups, with a potentially high-risk G2d infection area in southwestern South Korea. The impact of IBDV infection on poultry productivity or Escherichia coli infection susceptibility was also confirmed. A comparative pathogenicity test indicated that G2d IBDV caused severe and persistent damage to infected chickens compared with G2b. This study highlights the importance of implementation of regular surveillance programs and poses challenges for the comprehensive prevention of IBDV infections.
Collapse
|
10
|
Schreuder J, de Knegt HJ, Velkers FC, Elbers ARW, Stahl J, Slaterus R, Stegeman JA, de Boer WF. Wild Bird Densities and Landscape Variables Predict Spatial Patterns in HPAI Outbreak Risk across The Netherlands. Pathogens 2022; 11:pathogens11050549. [PMID: 35631070 PMCID: PMC9143584 DOI: 10.3390/pathogens11050549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
Highly pathogenic avian influenza viruses’ (HPAIVs) transmission from wild birds to poultry occurs globally, threatening animal and public health. To predict the HPAI outbreak risk in relation to wild bird densities and land cover variables, we performed a case-control study of 26 HPAI outbreaks (cases) on Dutch poultry farms, each matched with four comparable controls. We trained machine learning classifiers to predict outbreak risk with predictors analyzed at different spatial scales. Of the 20 best explaining predictors, 17 consisted of densities of water-associated bird species, 2 of birds of prey, and 1 represented the surrounding landscape, i.e., agricultural cover. The spatial distribution of mallard (Anas platyrhynchos) contributed most to risk prediction, followed by mute swan (Cygnus olor), common kestrel (Falco tinnunculus) and brant goose (Branta bernicla). The model successfully distinguished cases from controls, with an area under the receiver operating characteristic curve of 0.92, indicating accurate prediction of HPAI outbreak risk despite the limited numbers of cases. Different classification algorithms led to similar predictions, demonstrating robustness of the risk maps. These analyses and risk maps facilitate insights into the role of wild bird species and support prioritization of areas for surveillance, biosecurity measures and establishments of new poultry farms to reduce HPAI outbreak risks.
Collapse
Affiliation(s)
- Janneke Schreuder
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (J.S.); (J.A.S.)
- Wildlife Ecology and Conservation Group, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (H.J.d.K.); (W.F.d.B.)
| | - Henrik J. de Knegt
- Wildlife Ecology and Conservation Group, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (H.J.d.K.); (W.F.d.B.)
| | - Francisca C. Velkers
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (J.S.); (J.A.S.)
- Correspondence: ; Tel.: +31-30-253-1248
| | - Armin R. W. Elbers
- Department of Epidemiology, Bioinformatics and Animal Models, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands;
| | - Julia Stahl
- Sovon, Dutch Centre for Field Ornithology, 6525 ED Nijmegen, The Netherlands; (J.S.); (R.S.)
| | - Roy Slaterus
- Sovon, Dutch Centre for Field Ornithology, 6525 ED Nijmegen, The Netherlands; (J.S.); (R.S.)
| | - J. Arjan Stegeman
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (J.S.); (J.A.S.)
| | - Willem F. de Boer
- Wildlife Ecology and Conservation Group, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (H.J.d.K.); (W.F.d.B.)
| |
Collapse
|
11
|
Khan X, Rymer C, Lim R, Ray P. Factors Associated with Antimicrobial Use in Fijian Livestock Farms. Antibiotics (Basel) 2022; 11:antibiotics11050587. [PMID: 35625231 PMCID: PMC9137839 DOI: 10.3390/antibiotics11050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial stewardship (AMS) programmes in human health and livestock production are vital to tackling antimicrobial resistance (AMR). Data on antimicrobial use (AMU), resistance, and drivers for AMU in livestock are needed to inform AMS efforts. However, such data are limited in Fiji. Therefore, this study aimed to evaluate the association between farmer (socio-economic, demographic) and livestock production and management factors with AMU. Information was collected using purposive and snowball sampling from 236 livestock farmers and managers located in Central and Western divisions, Viti Levu, Fiji. Multinomial logistic regression was used to determine the factors associated with AMU in farms using an aggregated livestock farm model. Farms that raised cattle only for dairy (farm factor) were more likely to use antibiotics and anthelmintics (p = 0.018, OR = 22.97, CI 1.713, 308.075) compared to mixed cattle and poultry farms. Farms that maintained AMU records were more likely to use antibiotics (p = 0.045, OR = 2.65, CI 1.024, 6.877) compared to farms that did not. Other livestock production and management factors had no influence on AMU on the livestock farms. AMU in livestock farms was not influenced by the socio-economic and demographic characteristics of the farmer. There were differences between livestock enterprises regarding their management. The lack of association between management system and AMU could be because there was so much variation in management system, levels of farmer knowledge and awareness of AMU, and in management of farm biosecurity. Future studies exploring farmers’ knowledge and awareness of AMU and livestock management are required to design AMS programmes promoting prudent AMU in all livestock farms locally.
Collapse
Affiliation(s)
- Xavier Khan
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK; (C.R.); (P.R.)
- Correspondence:
| | - Caroline Rymer
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK; (C.R.); (P.R.)
| | - Rosemary Lim
- Reading School of Pharmacy, School of Chemistry, Food & Pharmacy, University of Reading, Reading RG6 6DZ, UK;
| | - Partha Ray
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK; (C.R.); (P.R.)
- The Nature Conservancy, 4245 North Fairfax Drive, Suite 100, Arlington, VA 22203, USA
| |
Collapse
|