1
|
Kamau MW, Witte C, Goosen W, Mutinda M, Villinger J, Getange D, Khogali R, von Fricken ME, Fèvre EM, Zimmerman D, Linton YM, Miller M. Comparison of test performance of a conventional PCR and two field-friendly tests to detect Coxiella burnetii DNA in ticks using Bayesian latent class analysis. Front Vet Sci 2024; 11:1396714. [PMID: 38962707 PMCID: PMC11220323 DOI: 10.3389/fvets.2024.1396714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction Coxiella burnetii (C. burnetii)-infected livestock and wildlife have been epidemiologically linked to human Q fever outbreaks. Despite this growing zoonotic threat, knowledge of coxiellosis in wild animals remains limited, and studies to understand their epidemiologic role are needed. In C. burnetii-endemic areas, ticks have been reported to harbor and spread C. burnetii and may serve as indicators of risk of infection in wild animal habitats. Therefore, the aim of this study was to compare molecular techniques for detecting C. burnetii DNA in ticks. Methods In total, 169 ticks from wild animals and cattle in wildlife conservancies in northern Kenya were screened for C. burnetii DNA using a conventional PCR (cPCR) and two field-friendly techniques: Biomeme's C. burnetii qPCR Go-strips (Biomeme) and a new C. burnetii PCR high-resolution melt (PCR-HRM) analysis assay. Results were evaluated, in the absence of a gold standard test, using Bayesian latent class analysis (BLCA) to characterize the proportion of C. burnetii positive ticks and estimate sensitivity (Se) and specificity (Sp) of the three tests. Results The final BLCA model included main effects and estimated that PCR-HRM had the highest Se (86%; 95% credible interval: 56-99%), followed by the Biomeme (Se = 57%; 95% credible interval: 34-90%), with the estimated Se of the cPCR being the lowest (24%, 95% credible interval: 10-47%). Specificity estimates for all three assays ranged from 94 to 98%. Based on the model, an estimated 16% of ticks had C. burnetii DNA present. Discussion These results reflect the endemicity of C. burnetii in northern Kenya and show the promise of the PCR-HRM assay for C. burnetii surveillance in ticks. Further studies using ticks and wild animal samples will enhance understanding of the epidemiological role of ticks in Q fever.
Collapse
Affiliation(s)
- Maureen W. Kamau
- Mpala Research Centre, Nanyuki, Kenya
- Division of Molecular Biology and Human Genetics, Department of Science, and Innovation – National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
- Global Health Program, Smithsonian National Zoo Conservation Biology Institute, Washington, DC, United States
| | - Carmel Witte
- Division of Molecular Biology and Human Genetics, Department of Science, and Innovation – National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
- The Center for Wildlife Studies, South Freeport, ME, United States
| | - Wynand Goosen
- Division of Molecular Biology and Human Genetics, Department of Science, and Innovation – National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
| | | | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Dennis Getange
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Rua Khogali
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Michael E. von Fricken
- College of Public Health and Health Professionals, Department of Environmental and Global Health University of Florida, Gainesville, FL, United States
| | - Eric Maurice Fèvre
- International Livestock Research Institute, Nairobi, Kenya
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Dawn Zimmerman
- Veterinary Initiative for Endangered Wildlife, Bozeman, MT, United States
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit (WRBU) Smithsonian Institution Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution, National Museum of Natural History (NMNH), Washington, DC, United States
| | - Michele Miller
- Division of Molecular Biology and Human Genetics, Department of Science, and Innovation – National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
2
|
McAloon CI, McAloon CG, Barrett D, Tratalos JA, McGrath G, Guelbenzu M, Graham DA, Kelly A, O'Keeffe K, More SJ. Estimation of sensitivity and specificity of bulk tank milk PCR and 2 antibody ELISA tests for herd-level diagnosis of Mycoplasma bovis infection using Bayesian latent class analysis. J Dairy Sci 2024:S0022-0302(24)00893-2. [PMID: 38851575 DOI: 10.3168/jds.2023-24590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/06/2024] [Indexed: 06/10/2024]
Abstract
Mycoplasmosis (due to infection with Mycoplasma bovis) is a serious disease of beef and dairy cattle that can adversely impact health, welfare and productivity (Maunsell et al. (2011)). Mycoplasmosis can lead to a range of often severe, clinical presentations. Mycoplasma bovis (M. bovis) infection can present either clinically or subclinically, with the potential for recrudescence of shedding in association with stressful periods. Infection can be maintained within herds because of intermittent shedding (Calcutt et al., 2018, Hazelton et al., 2018). M. bovis is recognized as poorly responsive to treatment which represents a major challenge for control in infected herds. Given this, particular focus is needed on biosecurity measures to prevent introduction into uninfected herds in the first place. A robust and reliable laboratory test for surveillance is important both for herd-level prevention and control. The objective of this study was to estimate the sensitivity and specificity of 3 diagnostic tests (one PCR and 2 ELISA tests) on bulk tank milk, for the herd-level detection of M. bovis using Bayesian latent class analysis. In autumn 2018, bulk tank milk samples from 11,807 herds, covering the majority of the main dairy regions in Ireland had been submitted to the Department of Agriculture testing laboratory for routine surveillance were made available. A stratified random sample approach was used to select a cohort of herds for testing from this larger sample set. A final study population of 728 herds had bulk tank milk samples analyzed using a Bio-X ELISA (ELISA 1), an IDvet ELISA (ELISA 2) and a PCR test. A Bayesian latent class analysis (BLCA) was conducted to estimate the sensitivity (Se) and specificity (Sp) of the 3 diagnostic tests applied to bulk tank milk (BTM) for the detection of the herd-level infection. An overall LCA was conducted on all herds within a single population (a 3-test, 1-population model). The herds were also split into 2 populations based on herd size (small herds had < 82 cattle) (a 3-test, 2-population model) and separately into 3 regions in Ireland (Leinster, Munster and Connacht/Ulster) (a 3-test, 3-population model). The latent variable of interest was the herd-level M. bovis infection status. In total, 363/728 (50%) were large herds, 7 (1.0%) were positive on PCR, 88 (12%) positive on ELISA 1, and 406 (56%) positive on ELISA 2. Based on the 2-population model, the sensitivity (95% Bayesian credible interval (BCI) was 0.03 (0.02, 0.05), 0.22 (0.18, 0.27), 0.94 (0.88, 0.98) for PCR, ELISA 1 and ELISA 2 respectively. The specificity (95% BCI) was 0.99 (0.99, 1.0), 0.97 (0.95, 0.99), and 0.92 (0.86, 0.97) for PCR, ELISA 1 and ELISA 2 respectively. The herd-level true prevalence was estimated at 0.43 (BCI 0.35, 0.5) for smaller herds. The true prevalence was estimated at 0.62 (BCI 0.55, 0.69) for larger herds. The true prevalence was estimated at 0.56 (BCI 0.49, 0.463) in the 1-population model. For the 3-population model, the sensitivity (95% BCI) was 0.03 (0.02, 0.05), 0.24 (0.18, 0.29), 0.95 (0.9, 0.98) for PCR, ELISA 1 and ELISA 2 respectively. The specificity (95% BCI) was 0.99 (0.99, 1.0), 0.98 (0.96, 0.99), and 0.88 (0.79, 0.95) for PCR, ELISA 1 and ELISA 2 respectively. The herd-level true prevalence (95% BCI) was estimated at 0.65 (0.56, 0.73), 0.38 (0.28, 0.46) and 0.53 (0.4, 0.65) for population 1, 2, 3 respectively. Across all 3 models, the range in true prevalence was 38% to 65% of Irish dairy herds infected with M. bovis. The operating characteristics vary substantially between tests. The IDvet ELISA had a relatively high Se (the highest Se of the 3 tests studied) but it was estimated at 0.95 at its highest in 3-test, 3-population model. This test may be an appropriate test for herd-level screening or prevalence estimation within the context of the endemically infected Irish dairy cattle population. Further work is required to optimize this test and its interpretation when applied at herd-level to offset concerns related to the lower than optimal test Sp.
Collapse
Affiliation(s)
- C I McAloon
- Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - C G McAloon
- Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - D Barrett
- National Disease Control Centre, Department of Agriculture Food and the Marine, Dublin, D02 WK12 Ireland
| | - J A Tratalos
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - G McGrath
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - M Guelbenzu
- Animal Health Ireland, 2-5 The Archways, Carrick on Shannon, Co. Leitrim, N41 WN27 Ireland
| | - D A Graham
- Animal Health Ireland, 2-5 The Archways, Carrick on Shannon, Co. Leitrim, N41 WN27 Ireland
| | - A Kelly
- Animal Health Ireland, 2-5 The Archways, Carrick on Shannon, Co. Leitrim, N41 WN27 Ireland
| | - K O'Keeffe
- Department of Agriculture Food and the Marine, Blood testing laboratory, Model Farm Road, Cork, T12 DK73 Ireland
| | - S J More
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
3
|
Fasogbon IV, Ondari EN, Deusdedit T, Rangasamy L, Krishnan S, Aja PM. Point-of-care potentials of lateral flow-based field screening for Mycoplasma bovis infections: a literature review. Biol Methods Protoc 2024; 9:bpae034. [PMID: 38835856 PMCID: PMC11147795 DOI: 10.1093/biomethods/bpae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
Point-of-care (POC) field screening for tools for Mycoplasma bovis (M. bovis) is still lacking due to the requirement for a simple, robust field-applicable test that does not entail specialized laboratory equipment. In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines, this review identifies the methodologies that were retrieved based on our search strategy that have been reported for the diagnosis of m. bovis infection between 2014 and diagnostics. A search criterion was generated to curate 103 articles, which were reduced in number (to 46), following the screening guidelines of PRISMA. The 43 articles included in the study present 25 different assay methods. The assay methods were grouped as microbiological culture, serological assay, PCR-based assay, LAMP-based assay, NGS-based assay, or lateral flow assay. We, however, focus our discussion on the three lateral flow-based assays relative to others, highlighting the advantages they present above the other techniques and their potential applicability as a POC diagnostic test for M. bovis infections. We therefore call for further research on developing a lateral flow-based screening tool that could revolutionize the diagnosis of M. bovis infection.
Collapse
Affiliation(s)
- Ilemobayo V Fasogbon
- Department of Biochemistry, Kampala International University-Western Campus, Bushenyi 41201, Uganda
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
| | - Erick N Ondari
- Department of Biological Sciences, School of Pure & Applied Sciences, Kisii University, Kisii 40200, Kenya
| | - Tusubira Deusdedit
- Department of Biochemistry, Mbarara University of Science and Technology, Mbarara 40301, Uganda
| | - Loganathan Rangasamy
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
| | - Sasirekha Krishnan
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
| | - Patrick M Aja
- Department of Biochemistry, Kampala International University-Western Campus, Bushenyi 41201, Uganda
| |
Collapse
|
4
|
Chen AS, Xiao X, Yang DA. A Bayesian finite mixture model approach to evaluate dichotomization method for correlated ELISA tests. Prev Vet Med 2024; 225:106144. [PMID: 38367332 DOI: 10.1016/j.prevetmed.2024.106144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
In diagnostic accuracy studies, a commonly employed approach involves dichotomizing continuous data and subsequently analyzing them using a Bayesian latent class model (BLCM), often relying on binomial or multinomial distributions, rather than preserving their continuous nature. However, this procedure can inadvertently lead to less reliable outcomes due to the inherent loss of information when converting the original continuous measurements into binary values. Through comprehensive simulations, we demonstrated the limitations and disadvantages of dichotomizing continuous biomarkers from two correlated tests. Our findings highlighted notable disparities between the true values and the model estimates as a result of dichotomization. We discovered the crucial significance of selecting a reference test with high diagnostic accuracy in test evaluation in order to obtain reliable estimates of test accuracy and prevalences. Our study served as a call to action for veterinary researchers to exercise caution when utilizing dichotomization.
Collapse
Affiliation(s)
- Alex Siyi Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xun Xiao
- Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand
| | - Danchen Aaron Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
5
|
Bokma J, Kaske M, Vermijlen J, Stuyvaert S, Pardon B. Diagnostic performance of Mycoplasmopsis bovis antibody ELISA tests on bulk tank milk from dairy herds. BMC Vet Res 2024; 20:81. [PMID: 38443962 PMCID: PMC10916218 DOI: 10.1186/s12917-024-03927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Testing of bulk tank milk (BTM) for Mycoplasmopsis bovis (previously Mycoplasma bovis) antibodies is increasingly popular. However the performance of some commercially available tests is unknown, and cutoff values possibly need to be adjusted in light of the purpose. Therefore, the aim of this study was to compare the diagnostic performance of three commercially available M. bovis antibody ELISAs on BTM, and to explore optimal cutoff values for screening purposes. A prospective diagnostic test accuracy study was performed on 156 BTM samples from Belgian and Swiss dairy farms using Bayesian Latent Class Analysis. Samples were initially classified using manufacturer cutoff values, followed by generated values. RESULTS Following the manufacturer's guidelines, sensitivity of 91.4%, 25.6%, 69.2%, and specificity of 67.2%, 96.8%, 85.8% were observed for ID-screen, Bio K432, and Bio K302, respectively. Optimization of cutoffs resulted in a sensitivity of 89.0%, 82.0%, and 85.5%, and a specificity of 83.4%, 75.1%, 77.2%, respectively. CONCLUSIONS The ID-screen showed the highest diagnostic performance after optimization of cutoff values, and could be useful for screening. Both Bio-X tests may be of value for diagnostic or confirmation purposes due to their high specificity.
Collapse
Affiliation(s)
- Jade Bokma
- Department of Internal Medicine, Reproduction, and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Martin Kaske
- Swiss Bovine Health Service, Zurich, Switzerland
| | | | - Sabrina Stuyvaert
- Department of Internal Medicine, Reproduction, and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bart Pardon
- Department of Internal Medicine, Reproduction, and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
6
|
Moser RJ, Firestone SM, Franz LM, Genz B, Sellars MJ. Shrimp MultiPath™ multiplexed PCR white spot syndrome virus detection in penaeid shrimp. DISEASES OF AQUATIC ORGANISMS 2023; 153:95-105. [PMID: 37073799 DOI: 10.3354/dao03725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
White spot syndrome virus (WSSV), which causes white spot disease, is one of the notoriously feared infectious agents in the shrimp industry, inflicting estimated production losses world-wide of up to US$1 billion annually. Cost-effective accessible surveillance testing and targeted diagnosis are key to alerting shrimp industries and authorities worldwide early about WSSV carrier status in targeted shrimp populations. Here we present key validation pathway metrics for the Shrimp MultiPathTM (SMP) WSSV assay as part of the multi-pathogen detection platform. With superior throughput, fast turn-around time, and extremely low cost per test, the SMP WSSV assay achieves a high level of analytical sensitivity (~2.9 copies), perfect analytical specificity (~100%), and good intra- and inter-run repeatability (coefficient of variation <5%). The diagnostic metrics were estimated using Bayesian latent class analysis on data from 3 experimental shrimp populations from Latin America with distinct WSSV prevalence and yielded a diagnostic sensitivity of 95% and diagnostic specificity of 99% for SMP WSSV, which was higher than these parameters for the TaqMan quantitative PCR (qPCR) assays currently recommended by the World Organisation for Animal Health and the Commonwealth Scientific and Industrial Research Organisation. This paper additionally presents compelling data for the use of synthetic double-stranded DNA analyte spiked into pathogen-naïve shrimp tissue homogenate as a means to substitute clinical samples for assay validation pathways targeting rare pathogens. SMP WSSV shows analytical and diagnostic metrics comparable to qPCR-based assays and demonstrates fit-for-purpose performance for detection of WSSV in clinically diseased and apparently healthy animals.
Collapse
Affiliation(s)
- R J Moser
- Genics Pty Ltd., Level 5, 60 Research Road, St Lucia, Qld 4067, Australia
| | | | | | | | | |
Collapse
|