1
|
Brinkmann S, Schrader M, Meinen S, Kampen I, Kwade A, Dietzel A. Highly parallel bending tests for fungal hyphae enabled by two-photon polymerization of microfluidic mold. Front Bioeng Biotechnol 2024; 12:1449167. [PMID: 39553394 PMCID: PMC11563782 DOI: 10.3389/fbioe.2024.1449167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024] Open
Abstract
Filamentous microorganisms exhibit a complex macro-morphology constituted of branched and cross-linked hyphae. Fully resolved mechanical models of such mycelial compounds rely heavily on accurate input data for mechanical properties of individual hyphae. Due to their irregular shape and high adaptability to environmental factors, the measurement of these intrinsic properties remains challenging. To overcome previous shortcomings of microfluidic bending tests, a novel system for the precise measurement of the individual bending stiffness of fungal hyphae is presented in this study. Utilizing two-photon polymerization, microfluidic molds were fabricated with a multi-material approach, enabling the creation of 3D cell traps for spore immobilization. Unlike previous works applying the methodology of microfluidic bending tests, the hyphae were deflected in the vertical center of the microfluidic channel, eliminating the adverse influence of nearby walls on measurements. This lead to a significant increase in measurement yield compared to the conventional design. The accuracy and reproducibility of bending tests was ensured through validation of the measurement flow using micro-particle image velocimetry. Our results revealed that the bending stiffness of hyphae of Aspergillus niger is approximately three to four times higher than that reported for Candida albicans hyphae. At the same time, the derived longitudinal Young's Modulus of the hyphal cell wall yields a comparable value for both organisms. The methodology established in this study provides a powerful tool for studying the effects of cultivation conditions on the intrinsic mechanical properties of single hyphae. Applying the results to resolved numerical models of mycelial compounds promises to shed light on their response to hydrodynamic stresses in biotechnological cultivation, which influences their expressed macro-morphology and in turn, product yields.
Collapse
Affiliation(s)
- Steffen Brinkmann
- Institute of Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Microtechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Marcel Schrader
- Institute of Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sven Meinen
- Institute of Microtechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ingo Kampen
- Institute of Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Arno Kwade
- Institute of Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Andreas Dietzel
- Institute of Microtechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
2
|
Devanthi PVP, Pratama F, Pramanda IT, Bani MD, Kadar AD, Kho K. Exploring the Potential of Aspergillus oryzae for Sustainable Mycoprotein Production Using Okara and Soy Whey as Cost-Effective Substrates. J Fungi (Basel) 2024; 10:555. [PMID: 39194881 DOI: 10.3390/jof10080555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/29/2024] Open
Abstract
Mycoprotein is an alternative protein produced through fungal fermentation. However, it typically relies on refined glucose syrup derived from starch, which can be costly and unsustainable. This study investigates the potential of soybean processing by-products (okara and soy whey) as alternative substrates for producing mycoprotein using Aspergillus oryzae. A. oryzae was cultured for 7 days at 30 °C in diluted okara (1:50) and soy whey (1:1) with or without agitation (100 rpm). Soy whey produced higher biomass yields (369.2-408.8 mg dry biomass/g dry substrate), but had a lower biomass concentration (0.783-0.867 g dry weight/L). Conversely, okara produced a higher biomass concentration (2.02 g dry weight/L) with a yield of 114.7 mg dry biomass/g dry substrate. However, biomass formation in okara was only observed in static conditions, as agitation caused biomass to entangle with soy pulp, hampering its production. Additionally, okara tended to release protein into the media, while soy whey accumulated protein within the biomass, reaching up to 53% w/w protein content. The results of this study provide a promising approach to addressing both soybean processing waste reduction and food security concerns.
Collapse
Affiliation(s)
| | - Ferren Pratama
- Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Ihsan Tria Pramanda
- Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Mario Donald Bani
- Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Adinda Darwati Kadar
- Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Katherine Kho
- Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| |
Collapse
|
3
|
Fungal morphology: a challenge in bioprocess engineering industries for product development. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Andrade KCR, Fernandes RA, Pinho DB, de Freitas MM, Filho EXF, Pessoa A, Silva JI, Magalhães PO. Sequencing and characterization of an L-asparaginase gene from a new species of Penicillium section Citrina isolated from Cerrado. Sci Rep 2021; 11:17861. [PMID: 34504186 PMCID: PMC8429440 DOI: 10.1038/s41598-021-97316-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/24/2021] [Indexed: 11/09/2022] Open
Abstract
The enzyme L-asparaginase (L-ASNase) is used in the treatment of Acute Lymphoblastic Leukemia. The preparations of this enzyme for clinical use are derived from bacterial sources and its use is associated with serious adverse reactions. In this context, it is important to find new sources of L-ASNase. In this work, the Placket-Burman Experimental Design (PBD) was used to determine the influence of the variables on the L-ASNase production then it was followed by a 28-4 Factorial Fractional Design (FFD). The results obtained from PBD have shown a range of L-ASNase activity, from 0.47 to 1.77 U/gcell and the results obtained from FFD have showed a range of L-ASNase activity, from 1.10 to 2.36 U/gcell. L-proline and ammonium sulfate were identified as of significant positive variables on this production enzyme by Penicillium cerradense sp. nov. The precise identification of this new species was confirmed by morphological characteristics and sequence comparisons of the nuclear 18S-5.8S-28S partial nrDNA including the ITS1 and ITS2 regions, RNA polymerase II, β-tubulin and calmodulin genomic regions. The genetic sequence coding for the L-ASNase was obtained after carrying out a full genome sequencing. The L-ASNase expressed by P. cerradense sp. nov may have promising antineoplastic properties.
Collapse
Affiliation(s)
- Kellen C R Andrade
- Laboratory of Natural Products, Department of Pharmacy, Health Sciences School, University of Brasilia, Brasilia, Brazil
| | - Rildo A Fernandes
- Mycology Laboratory, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Danilo Batista Pinho
- Mycology Laboratory, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Marcela M de Freitas
- Laboratory of Natural Products, Department of Pharmacy, Health Sciences School, University of Brasilia, Brasilia, Brazil
| | | | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - João Inácio Silva
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Perola O Magalhães
- Laboratory of Natural Products, Department of Pharmacy, Health Sciences School, University of Brasilia, Brasilia, Brazil.
| |
Collapse
|
5
|
Suhaimi H, Dailin DJ, Malek RA, Hanapi SZ, Ambehabati KK, Keat HC, Prakasham S, Elsayed EA, Misson M, El Enshasy H. Fungal Pectinases: Production and Applications in Food Industries. Fungal Biol 2021. [DOI: 10.1007/978-3-030-64406-2_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Abstract
Aspergilli have been widely used in the production of organic acids, enzymes, and secondary metabolites for almost a century. Today, several GRAS (generally recognized as safe) Aspergillus species hold a central role in the field of industrial biotechnology with multiple profitable applications. Since the 1990s, research has focused on the use of Aspergillus species in the development of cell factories for the production of recombinant proteins mainly due to their natively high secretion capacity. Advances in the Aspergillus-specific molecular toolkit and combination of several engineering strategies (e.g., protease-deficient strains and fusions to carrier proteins) resulted in strains able to generate high titers of recombinant fungal proteins. However, the production of non-fungal proteins appears to still be inefficient due to bottlenecks in fungal expression and secretion machinery. After a brief overview of the different heterologous expression systems currently available, this review focuses on the filamentous fungi belonging to the genus Aspergillus and their use in recombinant protein production. We describe key steps in protein synthesis and secretion that may limit production efficiency in Aspergillus systems and present genetic engineering approaches and bioprocessing strategies that have been adopted in order to improve recombinant protein titers and expand the potential of Aspergilli as competitive production platforms.
Collapse
|
7
|
Comparative evaluation of Aspergillus niger strains for endogenous pectin-depolymerization capacity and suitability for D-galacturonic acid production. Bioprocess Biosyst Eng 2020; 43:1549-1560. [PMID: 32328731 PMCID: PMC7378126 DOI: 10.1007/s00449-020-02347-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/03/2020] [Indexed: 12/11/2022]
Abstract
Pectinaceous agricultural residues rich in D-galacturonic acid (D-GalA), such as sugar beet pulp, are considered as promising feedstocks for waste-to-value conversions. Aspergillus niger is known for its strong pectinolytic activity. However, while specialized strains for production of citric acid or proteins are well characterized, this is not the case for the production of pectinases. We, therefore, systematically compared the pectinolytic capabilities of six A. niger strains (ATCC 1015, ATCC 11414, NRRL 3122, CBS 513.88, NRRL 3, and N402) using controlled batch cultivations in stirred-tank bioreactors. A. niger ATCC 11414 showed the highest polygalacturonase activity, specific protein secretion, and a suitable morphology. Furthermore, D-GalA release from sugar beet pulp was 75% higher compared to the standard lab strain A. niger N402. Our study, therefore, presents a robust initial strain selection to guide future process improvement of D-GalA production from agricultural residues and identifies a high-performance base strain for further genetic optimizations.
Collapse
|
8
|
Wan-Mohtar WAAQI, Ab Kadir S, Halim-Lim SA, Ilham Z, Hajar-Azhari S, Saari N. Vital parameters for high gamma-aminobutyric acid (GABA) production by an industrial soy sauce koji Aspergillus oryzae NSK in submerged-liquid fermentation. Food Sci Biotechnol 2019; 28:1747-1757. [PMID: 31807347 DOI: 10.1007/s10068-019-00602-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 01/08/2023] Open
Abstract
In submerged-liquid fermentation, seven key parameters were assessed using one-factor-at-a-time to obtain the highest GABA yield using an industrial soy sauce koji Aspergillus oryzae strain NSK (AOSNSK). AOSNSK generated maximum GABA at 30 °C (194 mg/L) and initial pH 5 (231 mg/L), thus was able to utilize sucrose (327 mg/L of GABA) for carbon source. Sucrose at 100 g/L, improved GABA production at 646 mg/L. Single nitrogen sources failed to improve GABA production, however a combination of yeast extract (YE) and glutamic acid (GA) improved GABA at 646.78 mg/L. Carbon-to-nitrogen ratio (C8:N3) produced the highest cell (24.01 g/L) and GABA at a minimal time of 216 h. The key parameters of 30 °C, initial pH 5, 100 g/L of sucrose, combination YE and GA, and C8:N3 generated the highest GABA (3278.31 mg/L) in a koji fermentation. AOSNSK promisingly showed for the development of a new GABA-rich soy sauce.
Collapse
Affiliation(s)
- Wan Abd Al Qadr Imad Wan-Mohtar
- 1Functional Omics and Bioprocess Development Laboratory, Biotechnology Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Safuan Ab Kadir
- 2Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Sarina Abdul Halim-Lim
- 4Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Zul Ilham
- 3Biomass Energy Laboratory, Environmental Science and Management Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Siti Hajar-Azhari
- 2Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Nazamid Saari
- 2Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| |
Collapse
|
9
|
Lueangjaroenkit P, Teerapatsakul C, Chitradon L. Morphological Characteristic Regulation of Ligninolytic Enzyme Produced by Trametes polyzona. MYCOBIOLOGY 2018; 46:396-406. [PMID: 30637148 PMCID: PMC6319472 DOI: 10.1080/12298093.2018.1537586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 05/31/2023]
Abstract
A newly isolated white rot fungal strain KU-RNW027 was identified as Trametes polyzona, based on an analysis of its morphological characteristics and phylogenetic data. Aeration and fungal morphology were important factors which drove strain KU-RNW027 to secrete two different ligninolytic enzymes as manganese peroxidase (MnP) and laccase. Highest activities of MnP and laccase were obtained in a continuous shaking culture at 8 and 47 times higher, respectively, than under static conditions. Strain KU-RNW027 existed as pellets and free form mycelial clumps in submerged cultivation with the pellet form producing more enzymes. Fungal biomass increased with increasing amounts of pellet inoculum while pellet diameter decreased. Strain KU-RNW027 formed terminal chlamydospore-like structures in cultures inoculated with 0.05 g/L as optimal pellet inoculum which resulted in highest enzyme production. Enzyme production efficiency of T. polyzona KU-RNW027 depended on fungal pellet morphology as size, porosity, and formation of chlamydospore-like structures.
Collapse
Affiliation(s)
| | - Churapa Teerapatsakul
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Lerluck Chitradon
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
10
|
El Enshasy HA, Elsayed EA, Suhaimi N, Malek RA, Esawy M. Bioprocess optimization for pectinase production using Aspergillus niger in a submerged cultivation system. BMC Biotechnol 2018; 18:71. [PMID: 30413198 PMCID: PMC6230287 DOI: 10.1186/s12896-018-0481-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pectinase enzymes present a high priced category of microbial enzymes with many potential applications in various food and oil industries and an estimated market share of $ 41.4 billion by 2020. RESULTS The production medium was first optimized using a statistical optimization approach to increase pectinase production. A maximal enzyme concentration of 76.35 U/mL (a 2.8-fold increase compared with the initial medium) was produced in a medium composed of (g/L): pectin, 32.22; (NH4)2SO4, 4.33; K2HPO4, 1.36; MgSO4.5H2O, 0.05; KCl, 0.05; and FeSO4.5H2O, 0.10. The cultivations were then carried out in a 16-L stirred tank bioreactor in both batch and fed-batch modes to improve enzyme production, which is an important step for bioprocess industrialization. Controlling the pH at 5.5 during cultivation yielded a pectinase production of 109.63 U/mL, which was about 10% higher than the uncontrolled pH culture. Furthermore, fed-batch cultivation using sucrose as a feeding substrate with a rate of 2 g/L/h increased the enzyme production up to 450 U/mL after 126 h. CONCLUSIONS Statistical medium optimization improved volumetric pectinase productivity by about 2.8 folds. Scaling-up the production process in 16-L semi-industrial stirred tank bioreactor under controlled pH further enhanced pectinase production by about 4-folds. Finally, bioreactor fed-batch cultivation using constant carbon source feeding increased maximal volumetric enzyme production by about 16.5-folds from the initial starting conditions.
Collapse
Affiliation(s)
- Hesham A. El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81130 UTM, Skudai, Malaysia
- City of Scientific Research and Technology Application, New Burg Al Arab, Alexandria, Egypt
| | - Elsayed Ahmed Elsayed
- Bioproducts Research Chair, Zoology Department, Faculty of Science, King Saud University, 11451 Riyadh, Kingdom of Saudi Arabia
- Chemistry of Natural and Microbial Products Department, National Research Centre, 12622 Dokki, Cairo, Egypt
| | - Noorhamizah Suhaimi
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81130 UTM, Skudai, Malaysia
| | - Roslinda Abd Malek
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81130 UTM, Skudai, Malaysia
| | - Mona Esawy
- Chemistry of Natural and Microbial Products Department, National Research Centre, 12622 Dokki, Cairo, Egypt
| |
Collapse
|
11
|
|
12
|
Diffusional and transcriptional mechanisms involved in laccases production by Pleurotus ostreatus CP50. J Biotechnol 2016; 223:42-9. [DOI: 10.1016/j.jbiotec.2016.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 11/21/2022]
|
13
|
Abstract
Filamentous fungi play an important role not only in the bio-manufacturing of value-added products, but also in bioenergy and environmental research. The bioprocess manipulation of filamentous fungi is more difficult than that of other microbial species because of their different pellet morphologies and the presence of tangled mycelia under different cultivation conditions. Fungal pellets, which have the advantages of harvest ease, low fermentation broth viscosity and high yield of some proteins, have been used for a long time. Many attempts have been made to establish the relationship between pellet and product yield using quantitative approaches. Fungal pellet formation is attributed to the combination of electrostatic interactions, hydrophobicity and specific interactions from spore wall components. Electrostatic interactions result from van der Waals forces and negative charge repulsion from carboxyl groups in the spore wall structure. Electrostatic interactions are also affected by counter-ions (cations) and the physiologic conditions of spores that modify the carboxyl groups. Fungal aggregates are promoted by the hydrophobicity generated by hydrophobins, which form a hydrophobic coat that covers the spore. The specific interactions of spore wall components contribute to spore aggregation through salt bridging. A model of spore aggregation was proposed based on these forces. Additionally, some challenges were addressed, including the limitations of research techniques, the quantitative determination of forces and the complex information of biological systems, to clarify the mechanism of fungal pellet formation.
Collapse
Affiliation(s)
- Jianguo Zhang
- a School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology and
| | - Jining Zhang
- b Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences , Shanghai , China
| |
Collapse
|
14
|
Improvement of glucoamylase production using axial impellers with low power consumption and homogeneous mass transfer. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.03.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Mondala AH. Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects. ACTA ACUST UNITED AC 2015; 42:487-506. [DOI: 10.1007/s10295-014-1575-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/20/2014] [Indexed: 01/06/2023]
Abstract
Abstract
Various economic and environmental sustainability concerns as well as consumer preference for bio-based products from natural sources have paved the way for the development and expansion of biorefining technologies. These involve the conversion of renewable biomass feedstock to fuels and chemicals using biological systems as alternatives to petroleum-based products. Filamentous fungi possess an expansive portfolio of products including the multifunctional organic acids itaconic, fumaric, and malic acids that have wide-ranging current applications and potentially addressable markets as platform chemicals. However, current bioprocessing technologies for the production of these compounds are mostly based on submerged fermentation, which necessitates physicochemical pretreatment and hydrolysis of lignocellulose biomass to soluble fermentable sugars in liquid media. This review will focus on current research work on fungal production of itaconic, fumaric, and malic acids and perspectives on the potential application of solid-state fungal cultivation techniques for the consolidated hydrolysis and organic acid fermentation of lignocellulosic biomass.
Collapse
Affiliation(s)
- Andro H Mondala
- grid.268187.2 0000000106721122 Department of Chemical and Paper Engineering Western Michigan University 4601 Campus Dr. 49008 Kalamazoo MI USA
| |
Collapse
|
16
|
Lu H, Li C, Tang W, Wang Z, Xia J, Zhang S, Zhuang Y, Chu J, Noorman H. Dependence of fungal characteristics on seed morphology and shear stress in bioreactors. Bioprocess Biosyst Eng 2015; 38:917-28. [DOI: 10.1007/s00449-014-1337-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/07/2014] [Indexed: 11/30/2022]
|
17
|
Serrano-Carreón L, Galindo E, Rocha-Valadéz JA, Holguín-Salas A, Corkidi G. Hydrodynamics, Fungal Physiology, and Morphology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 149:55-90. [PMID: 25652005 DOI: 10.1007/10_2015_304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Filamentous cultures, such as fungi and actinomycetes, contribute substantially to the pharmaceutical industry and to enzyme production, with an annual market of about 6 billion dollars. In mechanically stirred reactors, most frequently used in fermentation industry, microbial growth and metabolite productivity depend on complex interactions between hydrodynamics, oxygen transfer, and mycelial morphology. The dissipation of energy through mechanically stirring devices, either flasks or tanks, impacts both microbial growth through shearing forces on the cells and the transfer of mass and energy, improving the contact between phases (i.e., air bubbles and microorganisms) but also causing damage to the cells at high energy dissipation rates. Mechanical-induced signaling in the cells triggers the molecular responses to shear stress; however, the complete mechanism is not known. Volumetric power input and, more importantly, the energy dissipation/circulation function are the main parameters determining mycelial size, a phenomenon that can be explained by the interaction of mycelial aggregates and Kolmogorov eddies. The use of microparticles in fungal cultures is also a strategy to increase process productivity and reproducibility by controlling fungal morphology. In order to rigorously study the effects of hydrodynamics on the physiology of fungal microorganisms, it is necessary to rule out the possible associated effects of dissolved oxygen, something which has been reported scarcely. At the other hand, the processes of phase dispersion (including the suspended solid that is the filamentous biomass) are crucial in order to get an integral knowledge about biological and physicochemical interactions within the bioreactor. Digital image analysis is a powerful tool for getting relevant information in order to establish the mechanisms of mass transfer as well as to evaluate the viability of the mycelia. This review focuses on (a) the main characteristics of the two most common morphologies exhibited by filamentous microorganisms; (b) how hydrodynamic conditions affect morphology and physiology in filamentous cultures; and (c) techniques using digital image analysis to characterize the viability of filamentous microorganisms and mass transfer in multiphase dispersions. Representative case studies of fungi (Trichoderma harzianum and Pleurotus ostreatus) exhibiting different typical morphologies (disperse mycelia and pellets) are discussed.
Collapse
Affiliation(s)
- L Serrano-Carreón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Mor, México,
| | | | | | | | | |
Collapse
|
18
|
Othman N, Jahim JM, Murad AMA, Bakar FDA. Dual Carbon Fermentation for the Production of Inducible Cellobiohydrolase by Recombinant Aspergillus Niger. JOURNAL OF MEDICAL AND BIOENGINEERING 2014; 3:93-97. [DOI: 10.12720/jomb.3.2.93-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
19
|
Colin VL, Baigorí MD, Pera LM. Tailoring fungal morphology of Aspergillus niger MYA 135 by altering the hyphal morphology and the conidia adhesion capacity: biotechnological applications. AMB Express 2013; 3:27. [PMID: 23688037 PMCID: PMC3679960 DOI: 10.1186/2191-0855-3-27] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/10/2013] [Indexed: 11/29/2022] Open
Abstract
Current problems of filamentous fungi fermentations and their further successful developments as microbial cell factories are dependent on control fungal morphology. In this connection, this work explored new experimental procedures in order to quantitatively check the potential of some culture conditions to induce a determined fungal morphology by altering both hyphal morphology and conidia adhesion capacity. The capacity of environmental conditions to modify hyphal morphology was evaluated by examining the influence of some culture conditions on the cell wall lytic potential of Aspergillus niger MYA 135. The relative value of the cell wall lytic potential was determined by measuring a cell wall lytic enzyme activity such as the mycelium-bound β-N-acetyl-D-glucosaminidase (Mb-NAGase). On the other hand, the quantitative value of conidia adhesion was considered as an index of its aggregation capacity. Concerning microscopic morphology, a highly negative correlation between the hyphal growth unit length (lHGU) and the specific Mb-NAGase activity was found (r = -0.915, P < 0.001). In fact, the environment was able to induce highly branched mycelia only under those culture conditions compatible with specific Mb-NAGase values equal to or higher than 190 U gdry.wt-1. Concerning macroscopic morphology, a low conidia adhesion capacity was followed by a dispersed mycelial growth. In fact, this study showed that conidia adhesion units per ml equal to or higher than 0.50 were necessary to afford pellets formation. In addition, it was also observed that once the pellet was formed the lHGU had an important influence on its final diameter. Finally, the biotechnological significance of such results was discussed as well.
Collapse
|
20
|
Statistical optimization of glucose oxidase production from Aspergillus niger NRC9 under submerged fermentation using response surface methodology. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0497-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
21
|
Cunha FM, Esperança MN, Zangirolami TC, Badino AC, Farinas CS. Sequential solid-state and submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulase. BIORESOURCE TECHNOLOGY 2012; 112:270-274. [PMID: 22409979 DOI: 10.1016/j.biortech.2012.02.082] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/07/2012] [Accepted: 02/16/2012] [Indexed: 05/31/2023]
Abstract
Sequential solid-state and submerged cultivation with sugarcane bagasse as substrate for cellulase production by Aspergillus niger A12 was assessed by measuring endoglucanase activity. An unconventional pre-culture with an initial fungal growth phase under solid-state cultivation was followed by a transition to submerged fermentation by adding the liquid culture medium to the mycelium grown on solid substrate. For comparison, control experiments were conducted using conventional submerged cultivation. The cultures were carried out in shake flasks and in a 5-L bubble column bioreactor. An endoglucanase productivity of 57 ± 13 IU/L/h was achieved in bubble column cultivations prepared using the new method, representing an approximately 3-fold improvement compared to conventional submerged fermentation. Therefore, the methodology proposed here of a sequential fermentation process offers a promising alternative for cellulase production.
Collapse
Affiliation(s)
- F M Cunha
- Department of Chemical Engineering, Federal University of São Carlos, C.P. 676, 13565-905 São Carlos, SP, Brazil
| | | | | | | | | |
Collapse
|
22
|
Yu L, Chao Y, Wensel P, Chen S. Hydrodynamic and kinetic study of cellulase production by Trichoderma reesei with pellet morphology. Biotechnol Bioeng 2012; 109:1755-68. [DOI: 10.1002/bit.24433] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/23/2011] [Accepted: 01/03/2012] [Indexed: 11/10/2022]
|
23
|
Zhao L, Cao GL, Yao J, Ren HY, Ma F, Ren NQ, Wang AJ. Optimization of immobilization parameters of Thermoanaerobacterium thermosaccharolyticum W16 on a new carrier for enhanced hydrogen production. RSC Adv 2012. [DOI: 10.1039/c2ra20870a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
BARRY D, WILLIAMS G. Microscopic characterisation of filamentous microbes: towards fully automated morphological quantification through image analysis. J Microsc 2011; 244:1-20. [DOI: 10.1111/j.1365-2818.2011.03506.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Gurkok S, Cekmecelioglu D, Ogel ZB. Optimization of culture conditions for Aspergillus sojae expressing an Aspergillus fumigatus α-galactosidase. BIORESOURCE TECHNOLOGY 2011; 102:4925-4929. [PMID: 21316941 DOI: 10.1016/j.biortech.2011.01.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 01/11/2011] [Accepted: 01/14/2011] [Indexed: 05/30/2023]
Abstract
Using Response Surface Methodology, carbon and nitrogen sources and agitation speed for cultivation of Aspergillus sojae expressing the α-galactosidase gene, aglB of Aspergillus fumigatus IMI 385708 were optimized. Compared to cultivation in modified YpSs medium, cultivation in 250-mL Erlenmeyer flasks agitated at 276 rpm and containing 100 mL of optimized medium consisting of 10.5% molasses (w/v) and 1.3% NH(4)NO(3) (w/v), 0.1% K(2)HPO(4), and 0.005% MgSO(4)·7H(2)O achieved a 4-fold increase in α-galactosidase production (10.4 U/mL). These results suggest the feasibility of industrial large scale production of an α-galactosidase known to be valuable in galactomannan modification.
Collapse
Affiliation(s)
- Sumeyra Gurkok
- Department of Biotechnology, Middle East Technical University, 06531 Ankara, Turkey.
| | | | | |
Collapse
|
26
|
Heterogeneity of Aspergillus niger microcolonies in liquid shaken cultures. Appl Environ Microbiol 2010; 77:1263-7. [PMID: 21169437 DOI: 10.1128/aem.02134-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fungus Aspergillus niger forms (sub)millimeter microcolonies within a liquid shaken culture. Here, we show that such microcolonies are heterogeneous with respect to size and gene expression. Microcolonies of strains expressing green fluorescent protein (GFP) from the promoter of the glucoamlyase gene glaA or the ferulic acid esterase gene faeA were sorted on the basis of diameter and fluorescence using the Complex Object Parametric Analyzer and Sorter (COPAS) technology. Statistical analysis revealed that the liquid shaken culture consisted of two populations of microcolonies that differ by 90 μm in diameter. The population of small microcolonies of strains expressing GFP from the glaA or faeA promoter comprised 39% and 25% of the culture, respectively. Two populations of microcolonies could also be distinguished when the expression of GFP in these strains was analyzed. The population expressing a low level of GFP consisted of 68% and 44% of the culture, respectively. We also show that mRNA accumulation is heterogeneous within microcolonies of A. niger. Central and peripheral parts of the mycelium were isolated with laser microdissection and pressure catapulting (LMPC), and RNA from these samples was used for quantitative PCR analysis. This analysis showed that the RNA content per hypha was about 45 times higher at the periphery than in the center of the microcolony. Our data imply that the protein production of A. niger can be improved in industrial fermentations by reducing the heterogeneity within the culture.
Collapse
|
27
|
Biswas R, Sahai V, Mishra S, Bisaria VS. Bioprocess strategies for enhanced production of xylanase by Melanocarpus albomyces IITD3A on agro-residual extract. J Biosci Bioeng 2010; 110:702-8. [DOI: 10.1016/j.jbiosc.2010.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/21/2010] [Accepted: 07/23/2010] [Indexed: 10/19/2022]
|
28
|
Effect of volumetric power input by aeration and agitation on pellet morphology and product formation of Aspergillus niger. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2009.12.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Wucherpfennig T, Kiep K, Driouch H, Wittmann C, Krull R. Morphology and Rheology in Filamentous Cultivations. ADVANCES IN APPLIED MICROBIOLOGY 2010; 72:89-136. [DOI: 10.1016/s0065-2164(10)72004-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Luiza de Farias V, Ximenes Monteiro K, Rodrigues S, André Narciso Fernandes F, Adolfo Saavedra Pinto G. Comparison of Aspergillus niger spore production on Potato Dextrose Agar (PDA) and crushed corncob medium. J GEN APPL MICROBIOL 2010; 56:399-402. [DOI: 10.2323/jgam.56.399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Patel N, Choy V, Malouf P, Thibault J. Growth of Trichoderma reesei RUT C-30 in stirred tank and reciprocating plate bioreactors. Process Biochem 2009. [DOI: 10.1016/j.procbio.2009.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Kim YM, Song HG. Effect of fungal pellet morphology on enzyme activities involved in phthalate degradation. J Microbiol 2009; 47:420-4. [DOI: 10.1007/s12275-009-0051-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 05/01/2009] [Indexed: 11/30/2022]
|
33
|
Scale up and design of processes in aerated-stirred fermenters for the industrial production of vinegar. J FOOD ENG 2009. [DOI: 10.1016/j.jfoodeng.2009.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
González-Sáiz JM, Garrido-Vidal D, Pizarro C. Modelling the industrial production of vinegar in aerated-stirred fermentors in terms of process variables. J FOOD ENG 2009. [DOI: 10.1016/j.jfoodeng.2008.08.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Changes in morphology of Rhizopus chinensis in submerged fermentation and their effect on production of mycelium-bound lipase. Bioprocess Biosyst Eng 2008; 32:397-405. [PMID: 18779980 DOI: 10.1007/s00449-008-0259-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 08/19/2008] [Indexed: 10/21/2022]
Abstract
In order to control suitable mycelium morphology to obtain high lipase productivity by Rhizopus chinensis in submerged fermentation, the effects of fungal morphology on the lipase production by this strain both in shake flask and fermentor were investigated. Different inoculum level and shear stress were used to develop distinctive morphologies. Analyses and investigations both on micromorphology and macromorphology were performed. Study of micromorphology reveals that micromorphologies for dispersed mycelia and aggregated mycelia are different in cell shape, biosynthetic activity. Macromorphology and broth rheology study in fermentor indicate that pellet formation results in low broth viscosity. Under this condition, the oil can disperse sufficiently in broth which is very important for lipase production. These results indicate that morphology changes affected the lipase production significantly for R. chinensis and the aggregated mycelia were suggested to achieve high lipase production.
Collapse
|
36
|
Impact of dissolved oxygen concentration on some key parameters and production of rhG-CSF in batch fermentation. J Ind Microbiol Biotechnol 2008; 35:991-1000. [DOI: 10.1007/s10295-008-0374-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 05/12/2008] [Indexed: 10/22/2022]
|