1
|
Gül E, Kayaalp N. Modelling of hydrogenotrophic denitrification process in a venturi-integrated membrane bioreactor. ENVIRONMENTAL TECHNOLOGY 2024; 45:945-958. [PMID: 36173672 DOI: 10.1080/09593330.2022.2130827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study is to model a hydrogenotrophic denitrification process in a venturi-integrated submerged membrane bioreactor (MBR) system. The MBR was operated in batch mode using feed concentrations of 100 and 150 mg NO3-N/L. In contrast to most of the denitrification process models that represent the mixed culture with one composite biomass parameter, the biomass was subdivided into two main categories in this modelling study: mainly nitrate-reducing biomass and mainly nitrite-reducing biomass. The determination coefficients (r2) in the range of 0.97-0.99 indicate that the model successfully simulates the concentrations of nitrate- and nitrite-nitrogen in the bioreactor. The maximum specific growth rate of nitrite-reducing biomass (0.06 h-1) was found to be higher than that of nitrate-reducing biomass (0.0002 h-1). Similarly, the growth yield coefficient of nitrite-reducing biomass was higher than that of nitrate-reducing biomass (0.44 vs. 0.31 g biomass/g substrate). The kinetic and stoichiometric coefficients obtained from this modelling study suggest that the limiting step determining the overall conversion rate of hydrogenotrophic denitrification process is the conversion of nitrite to nitrogen gas.
Collapse
Affiliation(s)
- Ertuğrul Gül
- Environmental Health Department, Hakkari University, Hakkari, Turkey
| | - Necati Kayaalp
- Civil Engineering Department, Dicle University, Diyarbakir, Turkey
| |
Collapse
|
2
|
Almeida JCR, Bega JMM, Leite LDS, de Oliveira JN, Albertin LL, Matsumoto T. Membrane aerated biofilm reactor in recirculating aquaculture system for effluent treatment. ENVIRONMENTAL TECHNOLOGY 2023; 44:4071-4083. [PMID: 35574689 DOI: 10.1080/09593330.2022.2078674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The implementation of fish farming has been increasing worldwide over the last decades, as well the search for alternative production systems and the treatment of their generated effluent. Recirculating Aquaculture System (RAS) is a compact solution for future intensive fish farming. However, few configurations of treatment technologies were tested in RAS, such as systems with a Membrane Aerated Biofilm Reactor (MABR). In this scene, this study aimed to evaluate the RAS effluent treatment efficiency device for intensive Nile tilapia (Oreochromis niloticus) production, the fish species most cultivated worldwide. The novel RAS configuration was composed of a cultivation tank (CT), a Column Settler, and a MABR. The RAS performance was evaluated by pH, temperature, turbidity, dissolved oxygen (DO), total nitrogen (TN), ammonia, nitrite, nitrate, total solids (TS), and chemical oxygen demand (COD). The obtained results in average values for temperature, pH, and DO inside the CT were 25.22 ± 1.88°C, 7.61 ± 0.33, and 3.80 ± 1.30 mg L-1, respectively, as ideal for tilapias survival. Average removal efficiencies found in the RAS for turbidity, COD, TN, nitrite, nitrate, ammonia, and TS were 50.0, 40.5, 11.7, 40.2, 13.1, 35.0, and 11.4%, respectively. Overall, we observed removals for all parameters studied, with good results, particularly, for COD, turbidity, nitrite, and ammonia. The evaluated system proved an effective alternative for water reuse in RAS capable of maintaining water quality characteristics within the recommended values for fish farming.
Collapse
Affiliation(s)
| | | | - Luan de Souza Leite
- Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | | | | | - Tsunao Matsumoto
- Ilha Solteira School of Engineering, São Paulo State University, Ilha Solteira, Brazil
| |
Collapse
|
3
|
Tian T, Yu HQ. Denitrification with non-organic electron donor for treating low C/N ratio wastewaters. BIORESOURCE TECHNOLOGY 2020; 299:122686. [PMID: 31902635 DOI: 10.1016/j.biortech.2019.122686] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 05/21/2023]
Abstract
Denitrification with non-organic electron donors for treating low C/N ratio wastewater has attracted growing interests. Hydrogen, reduced sulfur compounds and ferrous ions are mainly used in autotrophic denitrification, holding promise for achieving practical applications. Recently, the development of autotrophic denitrification-based processes, such as bioelectrochemically-supported hydrogenotrophic denitrification and sulfur-/iron-based denitrification assisted multi-contaminant removal, provide opportunities for applying these processes in wastewater treatment. Exploration of the autotrophic denitrification process in terms of contaminant removal mechanism, interaction among functional microorganisms, and potential full-scale applications is thus of great importance. Here, an overview of the commonly used non-organic electron donors, e.g., hydrogen, reduced sulfur compounds and ferrous ions, in denitrification for treating low C/N ratio wastewater is provided. Also, the feasibility of applying the combined processes based on autotrophic denitrification with the compounds is discussed. Furthermore, challenges and future possibilities as well as concerns about the practical applications are envisaged in this review.
Collapse
Affiliation(s)
- Tian Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
4
|
Nguyen TNP, Chao SJ, Chen PC, Huang C. Effects of C/N ratio on nitrate removal and floc morphology of autohydrogenotrophic bacteria in a nitrate-containing wastewater treatment process. J Environ Sci (China) 2018; 69:52-60. [PMID: 29941269 DOI: 10.1016/j.jes.2017.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 06/08/2023]
Abstract
The effects of C/N ratio of a nitrate-containing wastewater on nitrate removal performed by autohydrogenotrophic bacteria as well as on the morphological parameters of floc such as floc morphology, floc number distribution, mean particle size (MPS), aspect ratio and transparency were examined in this study. The results showed that the nitrate reduction rate increased with increasing C/N ratio from 0.5 to 10 and that the nitrogen removal of up to 95% was found at the C/N ratios of higher than 5 (between 0.5-10). Besides, high C/N ratio values reflected a corresponding high nitrite accumulation after 12-hr operation, and a fast decreasing rate of nitrite in the rest of operational time. The final pH values increased with the C/N ratio increasing from 0.5 to 2.5, but decreased with the C/N ratio increasing from 2.5 to 10. There were no significant changes in floc morphology with the MPSs ranging from 35 to 40μm. Small and medium-sized flocs were dominant in the sludge suspension, and the number of flocs increased with the increasing C/N ratios. Furthermore, the highest apparent frequency of 10% was observed at aspect ratios of 0.5 and 0.6, while the transparency of flocs changed from 0.1 to 0.7.
Collapse
Affiliation(s)
- Tran Ngoc Phu Nguyen
- Institute of Environmental Engineering, National Chiao Tung University, Hsinchu 300, Chinese Taipei
| | - Shu-Ju Chao
- Institute of Environmental Engineering, National Chiao Tung University, Hsinchu 300, Chinese Taipei
| | - Pei-Chung Chen
- Institute of Environmental Engineering, National Chiao Tung University, Hsinchu 300, Chinese Taipei
| | - Chihpin Huang
- Institute of Environmental Engineering, National Chiao Tung University, Hsinchu 300, Chinese Taipei.
| |
Collapse
|
5
|
Marx Sander E, Virdis B, Freguia S. Bioelectrochemical Denitrification for the Treatment of Saltwater Recirculating Aquaculture Streams. ACS OMEGA 2018; 3:4252-4261. [PMID: 30023889 PMCID: PMC6044578 DOI: 10.1021/acsomega.8b00287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 03/27/2018] [Indexed: 05/25/2023]
Abstract
Maintaining low concentrations of nitrogen compounds (ammonium, nitrate and nitrite) in recirculating aquaculture waters is extremely important for a larger and healthier fish production, as well as for water discharge purposes. Although ammonium removal from aquaculture streams is usually done within a nitrifying step, nitrate removal via denitrification is still partially limited by the low organic matter availability. Therefore, an easy-to-operate autotrophic denitrifying bioelectrochemical system is herein proposed for the treatment of seawater aquaculture streams. The nitrate-containing synthetic stream flows sequentially through a biological denitrifying cathode (placed at the lower portion of a tubular reactor) and an abiotic anode (generating electrons and oxygen from water splitting, at the upper portion). Experimental results with synthetic seawater showed that the system reached denitrification rates of 0.13 ± 0.01 kg N m-3 day-1, operating with minimum ammonium and nitrite accumulation, as well as minimum chlorine formation in the abiotic anode, despite the high chloride concentration. There results support the technical potential for simultaneous bioelectrochemical denitrification and partial re-oxygenation of aquaculture waters either for recirculation or discharge purposes.
Collapse
Affiliation(s)
- Elisa Marx Sander
- Advanced Water
Management
Centre, The University of Queensland, Level 4, Gehrmann Laboratories Building
(60), Brisbane, QLD 4072, Australia
| | - Bernardino Virdis
- Advanced Water
Management
Centre, The University of Queensland, Level 4, Gehrmann Laboratories Building
(60), Brisbane, QLD 4072, Australia
| | - Stefano Freguia
- Advanced Water
Management
Centre, The University of Queensland, Level 4, Gehrmann Laboratories Building
(60), Brisbane, QLD 4072, Australia
| |
Collapse
|
6
|
Nguyen TNP, Chen PC, Huang C. Nitrate removal and extracellular polymeric substances of autohydrogenotrophic bacteria under various pH and hydrogen flow rates. J Environ Sci (China) 2018; 63:50-57. [PMID: 29406116 DOI: 10.1016/j.jes.2017.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 06/07/2023]
Abstract
In recent years there has been an increasing interest in the use of autohydrogenotrophic bacteria to treat nitrate from wastewater. However, our knowledge about the characteristics of extracellular polymeric substances (EPS) releasing by these activities is not yet very advanced. This study aimed to investigate the change in EPS compositions under various pH values and hydrogen flow rates, taking into consideration nitrogen removal. Results showed that pH7.5 and a hydrogen flow rate of 90mL/min were the optimal operating conditions, resulting in 100% nitrogen removal after 6hr of operation. Soluble and bound polysaccharides decreased, while bound proteins increased with increasing pH. Polysaccharides increased with increasing hydrogen flow rate. No significant change of bound proteins was observed at various hydrogen flow rates.
Collapse
Affiliation(s)
- Tran-Ngoc-Phu Nguyen
- Institute of Environmental Engineering, National Chiao Tung University, Hsinchu 300, Chinese Taipei
| | - Pei-Chung Chen
- Institute of Environmental Engineering, National Chiao Tung University, Hsinchu 300, Chinese Taipei
| | - Chihpin Huang
- Institute of Environmental Engineering, National Chiao Tung University, Hsinchu 300, Chinese Taipei.
| |
Collapse
|
7
|
Mousavi S, Ibrahim S, Aroua MK, Ghafari S. Development of nitrate elimination by autohydrogenotrophic bacteria in bio-electrochemical reactors – A review. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.04.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Dead-end and tangential ultrafiltration of natural salted water: Influence of operating parameters on specific energy consumption. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2011.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Xia S, Zhang Y, Zhong F. A continuous stirred hydrogen-based polyvinyl chloride membrane biofilm reactor for the treatment of nitrate contaminated drinking water. BIORESOURCE TECHNOLOGY 2009; 100:6223-6228. [PMID: 19656675 DOI: 10.1016/j.biortech.2009.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 06/30/2009] [Accepted: 07/04/2009] [Indexed: 05/28/2023]
Abstract
A continuous stirred hydrogen-based polyvinyl chloride (PVC) membrane biofilm reactor (MBfR) was investigated to remove nitrate from the drinking water. The reactor was operated over 100 days, and the result showed that the average nitrate denitrification rate of 1.2 g NO(3)(-)-N/m(2) d and the total nitrogen (TN) removal of 95.1% were achieved with the influent nitrate concentration of 50 mg NO(3)(-)-N/L and the hydrogen pressure of 0.05 MPa. Under the same conditions, the average rate of hydrogen utilization by biofilm was 0.031 mg H(2)/cm(2) d, which was sufficient to remove 50 mg NO(3)(-)-N/L from the contaminated water with the effluent nitrate and nitrite concentrations below drinking water limit values. The average hydrogen utilization efficiency was achieved as high as 99.5%. Flux analysis demonstrated that, compared to sulfate reduction, nitrate reduction competed more strongly for hydrogen electron, and obtained more electrons in high influent nitrate loading.
Collapse
Affiliation(s)
- Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | | | | |
Collapse
|
10
|
Zhang Y, Zhong F, Xia S, Wang X, Li J. Autohydrogenotrophic denitrification of drinking water using a polyvinyl chloride hollow fiber membrane biofilm reactor. JOURNAL OF HAZARDOUS MATERIALS 2009; 170:203-209. [PMID: 19473764 DOI: 10.1016/j.jhazmat.2009.04.114] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 04/13/2009] [Accepted: 04/27/2009] [Indexed: 05/27/2023]
Abstract
A hollow fiber membrane biofilm reactor (MBfR) using polyvinyl chloride (PVC) hollow fiber was evaluated in removing nitrate form contaminated drinking water. During a 279-day operation period, the denitrification rate increased gradually with the increase of influent nitrate loading. The denitrification rate reached a maximum value of 414.72 g N/m(3)d (1.50 g N/m(2)d) at an influent NO(3)(-)-N concentration of 10mg/L and a hydraulic residence time of 37.5 min, and the influent nitrate was completely reduced. At the same time, the effluent quality analysis showed the headspace hydrogen content (3.0%) was lower enough to preclude having an explosive air. Under the condition of the influent nitrate surface loading of 1.04 g N/m(2)d, over 90% removal efficiencies of the total nitrogen and nitrate were achieved at the hydrogen pressure above 0.04 MPa. The results of denaturing gel gradient electrophoresis (DGGE), 16S rDNA gene sequence analysis, and hierarchical cluster analysis showed that the microbial community structures in MBfR were of low diversity, simple and stable at mature stages; and the beta-Proteobacteria, including Rhodocyclus, Hydrogenophaga, and beta-Proteobacteria HTCC379, probably play an important role in autohydrogenotrophic denitrification.
Collapse
Affiliation(s)
- Yanhao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | | | | | | | | |
Collapse
|
11
|
De Schryver P, Verstraete W. Nitrogen removal from aquaculture pond water by heterotrophic nitrogen assimilation in lab-scale sequencing batch reactors. BIORESOURCE TECHNOLOGY 2009; 100:1162-1167. [PMID: 18842400 DOI: 10.1016/j.biortech.2008.08.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 08/26/2008] [Accepted: 08/27/2008] [Indexed: 05/26/2023]
Abstract
The potential use of sequencing batch reactors (SBRs) as an alternative bio-flocs technology (BFT) approach in aquaculture was explored. One SBR was dosed with glycerol and one with acetate for the decrease of the nitrogen concentration in simulated aquaculture water by microbial assimilation. At an optimal C/N ratio between 10 and 15, the nitrogen removal efficiency reached up to 98% (=110 mg N L(-1) reactor day(-1)) for both SBRs. The estimated biomass productivity reached 0.62-0.94 g C L(-1)r eactor day(-1) for the glycerol SBR and 0.54-0.82 g C L(-1) reactor day(-1) for the acetate SBR. The floc protein content, indicating biomass quality, reached up to 57% if grown on glycerol. With acetate, it attained a value of 61%. The highest average poly-beta-hydroxybutyrate (PHB) content was 16% on a dry weight basis for the acetate biomass.
Collapse
Affiliation(s)
- Peter De Schryver
- Laboratory of Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | | |
Collapse
|