1
|
Naseem MU, Tajti G, Gaspar A, Szanto TG, Borrego J, Panyi G. Optimization of Pichia pastoris Expression System for High-Level Production of Margatoxin. Front Pharmacol 2021; 12:733610. [PMID: 34658872 PMCID: PMC8511391 DOI: 10.3389/fphar.2021.733610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Margatoxin (MgTx) is a high-affinity blocker of voltage-gated potassium (Kv) channels. It inhibits Kv1.1–Kv1.3 ion channels in picomolar concentrations. This toxin is widely used to study physiological function of Kv ion channels in various cell types, including immune cells. Isolation of native MgTx in large quantities from scorpion venom is not affordable. Chemical synthesis and recombinant production in Escherichia coli need in vitro oxidative refolding for proper disulfide bond formation, resulting in a very low yield of peptide production. The Pichia pastoris expression system offers an economical approach to overcome all these limitations and gives a higher yield of correctly refolded recombinant peptides. In this study, improved heterologous expression of recombinant MgTx (rMgTx) in P. pastoris was obtained by using preferential codons, selecting the hyper-resistant clone against Zeocin, and optimizing the culturing conditions. About 36 ± 4 mg/L of >98% pure His-tagged rMgTx (TrMgTx) was produced, which is a threefold higher yield than has been previously reported. Proteolytic digestion of TrMgTx with factor Xa generated untagged rMgTx (UrMgTx). Both TrMgTx and UrMgTx blocked the Kv1.2 and Kv1.3 currents (patch-clamp) (Kd for Kv1.2 were 64 and 14 pM, and for Kv1.3, 86 and 50 pM, respectively) with comparable potency to the native MgTx. The analysis of the binding kinetics showed that TrMgTx had a lower association rate than UrMgTx for both Kv1.2 and Kv1.3. The dissociation rate of both the analogues was the same for Kv1.3. However, in the case of Kv1.2, TrMgTx showed a much higher dissociation rate with full recovery of the block than UrMgTx. Moreover, in a biological functional assay, both peptides significantly downregulated the expression of early activation markers IL2R and CD40L in activated CD4+ TEM lymphocytes whose activation was Kv1.3 dependent. In conclusion, the authors report that the Pichia expression system is a powerful method to produce disulfide-rich peptides, the overexpression of which could be enhanced noticeably through optimization strategies, making it more cost-effective. Since the presence of the His-tag on rMgTx only mildly altered the block equilibrium and binding kinetics, recombinant toxins could be used in ion channel research without removing the tag and could thus reduce the cost and time demand for toxin production.
Collapse
Affiliation(s)
- Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor Tajti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Gaspar
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, Institute of Chemistry, University of Debrecen, Debrecen, Hungary
| | - Tibor G Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jesús Borrego
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Das D, Selvaraj R, Ramananda Bhat M. Optimization of inulinase production by a newly isolated strain Aspergillus flavus var. flavus by solid state fermentation of Saccharum arundinaceum. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
3
|
Inulinase hyperproduction by Kluyveromyces marxianus through codon optimization, selection of the promoter, and high-cell-density fermentation for efficient inulin hydrolysis. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01457-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
4
|
Canales C, Altamirano C, Berrios J. The growth of Pichia pastoris Mut + on methanol-glycerol mixtures fits to interactive dual-limited kinetics: model development and application to optimised fed-batch operation for heterologous protein production. Bioprocess Biosyst Eng 2018; 41:1827-1838. [PMID: 30196441 DOI: 10.1007/s00449-018-2005-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/05/2018] [Indexed: 11/26/2022]
Abstract
The methanol-glycerol co-feeding during the induction stage for heterologous protein production in Pichia pastoris has shown significant productive applications. Available model analysis applied to this dual-limited condition is scarce and normally does not consider the interaction effects between the substrates. In this work, a dual-limited growth model of P. pastoris considering an interactive kinetic effect was applied to an optimised fed-batch process production of heterologous Rhizopus oryzae lipase (ROL). In the proposed model, the growth kinetics on glycerol is fully expressed, whereas methanol kinetics is modulated by the co-metabolisation of glycerol, resulting in an enhancing effect of glycerol-specific growth rate. The modelling approach of fed-batch cultures also included the methanol volatilisation caused by the aeration that was found to be a not-negligible phenomenon. The model predicts the ability of P. pastoris to keep control of the methanol concentration in the broth during ROL-optimised production process in fed batch and fits satisfactorily the specific cell growth rate and ROL production. Implications of interaction effect are discussed applying the general procedure of modelling approach.
Collapse
Affiliation(s)
- Christian Canales
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaiso, 2340000, Chile
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción, 4080871, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaiso, 2340000, Chile
| | - Julio Berrios
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaiso, 2340000, Chile.
| |
Collapse
|
5
|
GOLUNSKI SIMONE, SILVA MARCELIF, MARQUES CAMILAT, ROSSETO VANUSA, KAIZER ROSILENER, MOSSI ALTEMIRJ, RIGO DIANE, DALLAGO ROGÉRIOM, DI LUCCIO MARCO, TREICHEL HELEN. Purification of inulinases by changing the ionic strength of the medium and precipitation with alcohols. AN ACAD BRAS CIENC 2017; 89:57-63. [DOI: 10.1590/0001-3765201720160367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/01/2017] [Indexed: 11/22/2022] Open
Affiliation(s)
- SIMONE GOLUNSKI
- Universidade Regional Integrada do Alto Uruguai e das Missões, Brazil; Universidade Federal da Fronteira Sul, Brazil
| | - MARCELI F. SILVA
- Universidade Regional Integrada do Alto Uruguai e das Missões, Brazil
| | | | | | | | | | - DIANE RIGO
- Universidade Regional Integrada do Alto Uruguai e das Missões, Brazil
| | | | | | | |
Collapse
|
6
|
Yedahalli SS, Rehmann L, Bassi A. Expression of exo-inulinase gene from Aspergillus niger 12 in E. coli strain Rosetta-gami B (DE3) and its characterization. Biotechnol Prog 2016; 32:629-37. [PMID: 26833959 DOI: 10.1002/btpr.2238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/27/2016] [Indexed: 11/08/2022]
Abstract
Inulin is a linear carbohydrate polymer of fructose subunits (2-60) with terminal glucose units, produced as carbon storage in selected plants. It cannot directly be taken up by most microorganisms due to its large size, unless prior hydrolysis through inulinase enzymes occurs. The hydrolyzed inulin can be taken up by microbes and/or recovered and used industrially for the production of high fructose syrup, inulo-oligosaccharides, biofuel, and nutraceuticals. Cell-free enzymatic hydrolysis would be desirable for industrial applications, hence the recombinant expression, purification and characterization of an Aspergillus niger derived exo-inulinase was investigated in this study. The eukaroyototic exo-inulinase of Aspergillus niger 12 has been expressed, for the first time, in an E. coli strain [Rosetta-gami B (DE3)]. The molecular weight of recombinant exo-inulinase was estimated to be ∼81 kDa. The values of Km and Vmax of the recombinant exo-inulinase toward inulin were 5.3 ± 1.1 mM and 402.1 ± 53.1 µmol min(-1) mg(-1) protein, respectively. Towards sucrose the corresponding values were 12.20 ± 1.6 mM and 902.8 ± 40.2 µmol min(-1) mg(-1) protein towards sucrose. The S/I ratio was 2.24 ± 0.7, which is in the range of native inulinase. The optimum temperature and pH of the recombinant exo-inulinase towards inulin was 55°C and 5.0, while they were 50°C and 5.5 towards sucrose. The recombinant exo-inulinase activity towards inulin was enhanced by Cu(2+) and reduced by Fe(2+) , while its activity towards sucrose was enhanced by Co(2+) and reduced by Zn(2+) . © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:629-637, 2016.
Collapse
Affiliation(s)
- Shreyas S Yedahalli
- Dept. of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Lars Rehmann
- Dept. of Chemical and Biochemical Engineering, Faculty of Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Amarjeet Bassi
- Dept. of Chemical and Biochemical Engineering, Faculty of Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| |
Collapse
|
7
|
Ahmed N, Bashir H, Zafar AU, Khan MA, Tahir S, Khan F, Khan MI, Akram M, Husnain T. Optimization of conditions for high-level expression and purification of human recombinant consensus interferon (rh-cIFN) and its characterization. Biotechnol Appl Biochem 2015; 62:699-708. [PMID: 25402716 DOI: 10.1002/bab.1320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/09/2014] [Indexed: 02/04/2023]
Abstract
Recombinant human consensus interferon (rh-cIFN) is an artificially engineered interferon (IFN) developed by recombining and reordering the protein sequences that exist in standard IFN. This recombination resulted into a drug that has the potential to work better than natural, standard IFN. In this study, we described optimized conditions for high-level expression and recovery of biologically active consensus IFN from inclusion bodies (IBs). A synthetic gene coding 166 amino acids of consensus IFN was cloned under the T7 promoter. Escherichia coli strain BL21DE3Plys was used to transform expression construct. For high-level expression, shake-flask fermentation conditions were standardized. For isolation of IBs, the sonication method was optimized. A variety of chaotropic agents including guanidine hydrochloride, urea, SDS, and detergents were studied for solubilization of IBs. For renaturation of solubilized denatured protein by the dilution process, parameters of dilution factor, temperature, and l-arginine were optimized. A one-step chromatography method was developed for high-yield purification of consensus IFN. rh-cIFN was characterized by SDS-PAGE, Western blot, and high-performance liquid chromatography. Purified protein has a molecular weight of 19.5 kDa and specific activity was 2.0 × 10(8) as determined by the cytopathic inhibition assay. This study concludes that by using optimized conditions, we obtained a yield of 100 mg/L of biologically active rh-cIFN, which is highest ever reported according to available data.
Collapse
Affiliation(s)
- Nadeem Ahmed
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Hamid Bashir
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ahmad Usman Zafar
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Mohsin Ahmad Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Saad Tahir
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Faidad Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Islam Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Akram
- Centre for Applied Molecular Biology, Ministry of Science and Technology, Lahore, Pakistan
| | - Tayyab Husnain
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
8
|
Cloning and Characterization of an Inulinase Gene From the Marine Yeast Candida membranifaciens subsp. flavinogenie W14-3 and Its Expression in Saccharomyces sp. W0 for Ethanol Production. Mol Biotechnol 2014; 57:337-47. [DOI: 10.1007/s12033-014-9827-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Dong JX, Xie X, Hu DW, Chen SC, He YS, Beier RC, Shen YD, Sun YM, Xu ZL, Wang H, Yang JY. Codon modification for the DNA sequence of a single-chain Fv antibody against clenbuterol and expression in Pichia pastoris. Appl Microbiol Biotechnol 2013; 98:3679-89. [PMID: 24190495 DOI: 10.1007/s00253-013-5324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
Abstract
The expression efficiency was improved for the recombinant single-chain variable fragment (scFv) against clenbuterol (CBL) obtained from mouse and expressed in the methylotrophic yeast Pichia pastoris GS115, by redesigning and synthesizing the DNA sequence encoding for CBL-scFv based on the codon bias of P. pastoris. The codons encoding 124 amino acids were optimized, in which a total of 156 nucleotides were changed, and the G+C ratio was simultaneously decreased from 53 to 47.2 %. Under the optimized expression conditions, the yield of the recombinant CBL-scFv (41 kDa) antibodies was 0.223 g L⁻¹ in shake culture. Compared to the non-optimized control, the expression level of the optimized recombinant CBL-scFv based on preferred codons in P. pastoris demonstrated a 2.35-fold higher yield. Furthermore, the recombinant CBL-scFv was purified by Ni-NTA column chromatography, and the purity was 95 %. The purified CBL-scFv showed good CBL recognition by a competitive indirect enzyme-linked immunoassay. The average concentration required for 50 % inhibition of binding and the limit of detection for the assay were 5.82 and 0.77 ng mL⁻¹, respectively.
Collapse
Affiliation(s)
- Jie-Xian Dong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cao TS, Wang GY, Chi Z, Wang ZP, Chi ZM. Cloning, characterization and heterelogous expression of the INU1 gene from Cryptococcus aureus HYA. Gene 2013; 516:255-62. [DOI: 10.1016/j.gene.2012.11.081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 11/26/2022]
|
11
|
GAO M, SHI Z. Process Control and Optimization for Heterologous Protein Production by Methylotrophic Pichia pastoris. Chin J Chem Eng 2013. [DOI: 10.1016/s1004-9541(13)60461-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Expression of an exoinulinase gene from Aspergillus ficuum in Escherichia coli and its characterization. Carbohydr Polym 2013; 92:1984-90. [DOI: 10.1016/j.carbpol.2012.11.087] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 11/23/2012] [Accepted: 11/26/2012] [Indexed: 11/24/2022]
|
13
|
Liu GL, Li Y, Zhou HX, Chi ZM, Madzak C. Over-expression of a bacterial chitosanase gene in Yarrowia lipolytica and chitosan hydrolysis by the recombinant chitosanase. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Liu GL, Chi Z, Chi ZM. Molecular characterization and expression of microbial inulinase genes. Crit Rev Microbiol 2012; 39:152-65. [PMID: 22734928 DOI: 10.3109/1040841x.2012.694411] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Many genes encoding exo- and endo-inulinases from bacteria, yeasts and filamentous fungi have been cloned and characterized. All the inulinases have several conserved motifs, such as WMND(E)PNGL, RDP, EC(V)P, SVEVF, Q and FS(T), which play an important role in inulinase catalysis and substrate binding. However, the exo-inulinases produced by yeasts has no conserved motif SVEVF and the yeasts do not produce any endo-inulinase. Exo- and endo-inulinases found in different microorganisms cluster separately at distant positions from each other. Most of the cloned inulinase genes have been expressed in Yarrowia lipolytica, Saccharomyces cerevisiae, Pichia pastoris, Klyuveromyces lactis and Escherichia coli, respectively. The recombinant inulinases produced and the engineered hosts using the cloned inulinase genes have many potential applications. Expression of most of the inulinase genes is repressed by glucose and fructose and induced by inulin and sucrose. However, the detailed mechanisms of the repression and induction are still unknown.
Collapse
Affiliation(s)
- Guang-Lei Liu
- Unesco Chinese Center of Marine Biotechnology, Ocean University of China, Yushan Road, Qingdao, China
| | | | | |
Collapse
|
15
|
|
16
|
Improvement of ATP regeneration efficiency and operation stability in porcine interferon-α production by Pichia pastoris under lower induction temperature. KOREAN J CHEM ENG 2011. [DOI: 10.1007/s11814-010-0527-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Zhao CH, Chi Z, Zhang F, Guo FJ, Li M, Song WB, Chi ZM. Direct conversion of inulin and extract of tubers of Jerusalem artichoke into single cell oil by co-cultures of Rhodotorula mucilaginosa TJY15a and immobilized inulinase-producing yeast cells. BIORESOURCE TECHNOLOGY 2011; 102:6128-6133. [PMID: 21411313 DOI: 10.1016/j.biortech.2011.02.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 05/30/2023]
Abstract
In this study, it was found that the immobilized inulinase-producing cells of Pichia guilliermondii M-30 could produce 169.3 U/ml of inulinase activity while the free cells of the same yeast strain only produced 124.3 U/ml of inulinase activity within 48 h. When the immobilized inulinase-producing yeast cells were co-cultivated with the free cells of Rhodotorula mucilaginosa TJY15a, R. mucilaginosa TJY15a could accumulate 53.2% oil from inulin in its cells and cell dry weight reached 12.2g/l. Under the similar conditions, R. mucilaginosa TJY15a could accumulate 55.4% (w/w) oil from the extract of Jerusalem artichoke tubers in its cells and cell dry weight reached 12.8 g/l within 48 h. When the co-cultures were grown in 2l fermentor, R. mucilaginosa TJY15a could accumulate 56.6% (w/w) oil from the extract of Jerusalem artichoke tubers in its cells and cell dry weight reached 19.6g/l within 48 h. Over 90.0% of the fatty acids from the yeast strain TJY15a grown in the extract of Jerusalem artichoke tubers was C(16:0), C(18:1) and C(18:2), especially C(18:1) (50.6%).
Collapse
Affiliation(s)
- Chun-Hai Zhao
- Unesco Chinese Center of Marine Biotechnology and Institute of Marine Biodiversity and Evolution, Ocean University of China, No. 5 Yushan Road, Qingdao, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Golunski S, Astolfi V, Carniel N, de Oliveira D, Di Luccio M, Mazutti MA, Treichel H. Ethanol precipitation and ultrafiltration of inulinases from Kluyveromyces marxianus. Sep Purif Technol 2011. [DOI: 10.1016/j.seppur.2011.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Peng Y, Liu GL, Yu XJ, Wang XH, Jing L, Chi ZM. Cloning of exo-β-1,3-glucanase gene from a marine yeast Williopsis saturnus and its overexpression in Yarrowia lipolytica. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:193-204. [PMID: 20336338 DOI: 10.1007/s10126-010-9281-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 01/26/2010] [Indexed: 05/29/2023]
Abstract
The exo-β-1,3-glucanase structural gene (WsEXG1 gene, accession number: FJ875997.2) was isolated from both the genomic DNA and cDNA of the marine yeast Williopsis saturnus WC91-2 by inverse PCR and RT-PCR. An open reading frame of 1,254 bp encoding a 417 amino acid protein (isoelectric point: 4.5) with calculated molecular weight of 46.2 kDa was characterized. The promoter of the gene (intronless) was located from -28 to -77 and had one TATA box while its terminator contained the sequence AAGAACAATAAACAA from +1,386 to +1,401. The protein had the Family 5 glycoside hydrolase signature IGLELLNEPL and a fragment with the sequence of NLCGEWSAA, where the Glu-310 (E) was considered to be the catalytic nucleophile. The WsEXG1 gene was overexpressed in Yarrowia lipolytica Po1h and the recombinant WsEXG1 was purified and characterized. The molecular weight of the purified rWsEXG1 was 46.0 kDa. The optimal pH and temperature of the purified rWsEXG1 were 5.0°C and 40°C, respectively. The purified rWsEXG1 had high exo-β-1,3-glucanase activity. Therefore, the recombinant β-1,3-glucanase may have highly potential applications in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Ying Peng
- UNESCO Chinese Center of Marine Biotechnology, Ocean University of China, Yushan Road, No.5, Qingdao, China
| | | | | | | | | | | |
Collapse
|
20
|
Chi ZM, Zhang T, Cao TS, Liu XY, Cui W, Zhao CH. Biotechnological potential of inulin for bioprocesses. BIORESOURCE TECHNOLOGY 2011; 102:4295-4303. [PMID: 21247760 DOI: 10.1016/j.biortech.2010.12.086] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 05/30/2023]
Abstract
Inulin consists of linear chains of β-2,1-linked D-fructofuranose molecules terminated by a glucose residue through a sucrose-type linkage at the reducing end. In this review article, inulin and its applications in bioprocesses are overviewed. The tubers of many plants, such as Jerusalem artichoke, chicory, dahlia, and yacon contain a large amount of inulin. Inulin can be actively hydrolyzed by microbial inulinases to produce fructose, glucose and inulooligosaccharides (IOS). The fructose and glucose formed can be further transformed into ethanol, single-cell protein, single cell oil and other useful products by different microorganisms. IOS formed have many functions. Therefore, inulin can be widely used in food, feed, pharmaceutical, chemical and biofuels industries.
Collapse
Affiliation(s)
- Zhen-Ming Chi
- Unesco Chinese Center of Marine Biotechnology, Ocean University of China, Yushan Road, No. 5, Qingdao 266003, China.
| | | | | | | | | | | |
Collapse
|
21
|
Zhang T, Chi Z, Zhao CH, Chi ZM, Gong F. Bioethanol production from hydrolysates of inulin and the tuber meal of Jerusalem artichoke by Saccharomyces sp. W0. BIORESOURCE TECHNOLOGY 2010; 101:8166-70. [PMID: 20598527 DOI: 10.1016/j.biortech.2010.06.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 06/01/2010] [Accepted: 06/02/2010] [Indexed: 05/29/2023]
Abstract
It has been confirmed that Saccharomyces sp. W0 can produce high concentration of ethanol. However, this yeast strain cannot secrete inulinase. Therefore, in this study, inulin was hydrolyzed into reducing sugar by the recombinant inulinase produced by Pichia pastoris X-33/pPICZaA-INU1. It was found that 38.2U of the recombinant inulinase per gram of inulin was suitable for the inulin hydrolysis and ethanol production by Saccharomyces sp. W0 and the fermentation period was 120 h. At the end of the fermentation, over 14.6 ml of ethanol per 100ml of the fermented medium was produced, the ethanol productivity was over 0.384 g of ethanol/g of inulin and over 98.8% of total sugar was utilized. When the Saccharomyces sp. W0 was grown in the mixture of 4.0% hydrolysate of soybean meal and 20.0% of the hydrolysate of inulin for 120 h, over 14.9 ml of ethanol per 100ml of the fermented medium was yielded, the ethanol productivity was over 0.393 g of ethanol/g of inulin and 98.9% of total sugar was used by the yeast strain. When Saccharomyces sp. W0 carrying the same inulinase gene was grown in the medium containing 50 g of the tuber meal of Jerusalem artichoke per 100ml for 144 h, over 12.1+/-0.35%ml of ethanol per 100ml of the fermented medium was yielded, the ethanol productivity was 0.319+/-0.9 g of ethanol/g of sugar and 3.7% (w/v) of total sugar and 0.5% (w/v) of reducing sugar were left in the fermented media.
Collapse
Affiliation(s)
- T Zhang
- Unesco Chinese Center of Marine Biotechnology and Institute of Marine Biodiversity and Evolution, Ocean University of China, Yushan Road, No. 5. Qingdao, China
| | | | | | | | | |
Collapse
|
22
|
Liu XY, Chi Z, Liu GL, Wang F, Madzak C, Chi ZM. Inulin hydrolysis and citric acid production from inulin using the surface-engineered Yarrowia lipolytica displaying inulinase. Metab Eng 2010; 12:469-76. [DOI: 10.1016/j.ymben.2010.04.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 04/14/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
|
23
|
Zhao CH, Zhang T, Li M, Chi ZM. Single cell oil production from hydrolysates of inulin and extract of tubers of Jerusalem artichoke by Rhodotorula mucilaginosa TJY15a. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.04.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Zhang T, Chi Z, Chi Z, Parrou JL, Gong F. Expression of the inulinase gene from the marine-derived Pichia guilliermondii in Saccharomyces sp. W0 and ethanol production from inulin. Microb Biotechnol 2010; 3:576-82. [PMID: 21255354 PMCID: PMC3815770 DOI: 10.1111/j.1751-7915.2010.00175.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
It has been confirmed that Saccharomyces sp. W0 can produce high concentration of ethanol. In this study, the INU1 gene cloned from the marine-derived Pichia guilliermondii was transformed into uracil mutant of Saccharomyces sp. W0. The positive transformant Inu-66 obtained could produce 34.2 U ml⁻¹ of extracellular inulinase within 72 h of cultivation. It was found that 15.2 U of inulinase activity per one gram of inulin was suitable for inulin hydrolysis and ethanol production by the transformant Inu-66. During the small-scale fermentation, 13.7 ml of ethanol in 100 ml of medium was produced and 99.1% of the added inulin was utilized by the transformant. During the 2 l fermentation, 14.9% (v/v) of ethanol was produced from inulin and 99.5% of the added inulin was converted into ethanol, CO₂ and cell mass.
Collapse
Affiliation(s)
- Tong Zhang
- Unesco Chinese Center of Marine Biotechnology, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | | | | | | | | |
Collapse
|
25
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
26
|
Chi ZM, Liu G, Zhao S, Li J, Peng Y. Marine yeasts as biocontrol agents and producers of bio-products. Appl Microbiol Biotechnol 2010; 86:1227-41. [DOI: 10.1007/s00253-010-2483-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 01/29/2010] [Accepted: 01/29/2010] [Indexed: 10/19/2022]
|