1
|
Chen Z, Chen J, Ni D, Xu W, Zhang W, Mu W. Microbial dextran-hydrolyzing enzyme: Properties, structural features, and versatile applications. Food Chem 2024; 437:137951. [PMID: 37951078 DOI: 10.1016/j.foodchem.2023.137951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Dextran, an α-glucan mainly composed of (α1 → 6) linkages, has been widely applied in the food, cosmetic, and medicine industries. Dextranase can hydrolyze dextran to synthesize oligodextrans, which show prominent properties and promising applications in the food industry. Dextranases are widely distributed in bacteria, yeasts, and fungus, and classified into glycoside hydrolase (GH) 13, 15, 31, 49, and 66 families according to their sequence similarity, structural features, and reaction types. Dextranase, as a dextran-hydrolyzing enzyme, displays great application potential in the sugar-making, oral health care, medicine, and biotechnology industries. Here we mainly focused on presenting the enzymatic properties, structural features, and versatile (potential) applications of dextranase. To date, seven crystal structures of dextranases from GH 13, 15, 31, 49, and 66 families have been successfully solved. However, their molecular mechanisms for hydrolyzing dextran, especially on the size determinants of the hydrolysates, remain largely unknown. Additionally, the classification, microbial distribution, and immobilization technology of dextranase were also discussed in detail. This review discussed dextranase from different aspects with the ambition to present how they constitute the groundwork for promising future developments.
Collapse
Affiliation(s)
- Ziwei Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Wang B, Wu Y, Li Q, Wu X, Kang X, Zhang L, Lyu M, Wang S. The Screening and Identification of a Dextranase-Secreting Marine Actinmycete Saccharomonospora sp. K1 and Study of Its Enzymatic Characteristics. Mar Drugs 2024; 22:69. [PMID: 38393040 PMCID: PMC10890608 DOI: 10.3390/md22020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, an actinomycete was isolated from sea mud. The strain K1 was identified as Saccharomonospora sp. by 16S rDNA. The optimal enzyme production temperature, initial pH, time, and concentration of the inducer of this actinomycete strain K1 were 37 °C, pH 8.5, 72 h, and 2% dextran T20 of medium, respectively. Dextranase from strain K1 exhibited maximum activity at 8.5 pH and 50 °C. The molecular weight of the enzyme was <10 kDa. The metal ions Sr2+ and K+ enhanced its activity, whereas Fe3+ and Co2+ had an opposite effect. In addition, high-performance liquid chromatography showed that dextran was mainly hydrolyzed to isomaltoheptose and isomaltopentaose. Also, it could effectively remove biofilms of Streptococcus mutans. Furthermore, it could be used to prepare porous sweet potato starch. This is the first time a dextranase-producing actinomycete strain was screened from marine samples.
Collapse
Affiliation(s)
- Boyan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (B.W.); (Y.W.); (Q.L.); (X.W.); (L.Z.); (M.L.)
| | - Yizhuo Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (B.W.); (Y.W.); (Q.L.); (X.W.); (L.Z.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qiang Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (B.W.); (Y.W.); (Q.L.); (X.W.); (L.Z.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xudong Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (B.W.); (Y.W.); (Q.L.); (X.W.); (L.Z.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinxin Kang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (B.W.); (Y.W.); (Q.L.); (X.W.); (L.Z.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (B.W.); (Y.W.); (Q.L.); (X.W.); (L.Z.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (B.W.); (Y.W.); (Q.L.); (X.W.); (L.Z.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (B.W.); (Y.W.); (Q.L.); (X.W.); (L.Z.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
3
|
Hu X, Xia B, Ru W, Zhang Y, Yang J, Zhang H. Research progress on structure and catalytic mechanism of dextranase. EFOOD 2023. [DOI: 10.1002/efd2.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Xue‐Qin Hu
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Bing‐Bing Xia
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Wei‐Juan Ru
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Yu‐Xin Zhang
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Jing‐Wen Yang
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Hong‐Bin Zhang
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| |
Collapse
|
4
|
Ru WJ, Xia BB, Zhang YX, Yang JW, Zhang HB, Hu XQ. Development of thermostable dextranase from Streptococcus mutans (SmdexTM) through in silico design employing B-factor and Cartesian-ΔΔG. J Biotechnol 2022; 360:142-151. [PMID: 36343755 DOI: 10.1016/j.jbiotec.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
The thermal stability of enzymes dramatically limits their application in the industrial field. Based on the crystal structure, we conducted a semi-rational design according to the B-factor and free energy values to improve the stability of dextranase from Streptococcus mutans (SmdexTM). The B-factor values of Asn102, Asn503, Asp501 and Asp500 were the highest predicted by B-FITTER. Then Rosetta was used to simulate the saturation mutations of Asn102, Asn503, Asp501 and Asp500. The mutated amino acid was designed according to the change of acG. The results showed that the thermal stability of N102P, N102C, D500G, and D500T was improved, and the half-lives of N102P/D500G and N102P/D500T at 45 °C were increased to 3.14 times and 2.44 times, respectively. Analyzing the interaction of amino acids by using Discovery Studio 4.5, it was observed that the thermal stability of dextranase was improved due to the increase in hydrophobicity and the number of hydrogen bonds of the mutant enzyme. The catalytic efficiency of N102P/D500T was increased. Compared with the hydrolyzed products of SmdexTM, the mutant enzymes do not change the specificity of hydrolysates.
Collapse
Affiliation(s)
- Wei-Juan Ru
- School of Food and Biological Engineering, Hefei University of Technology, Anhui, China
| | - Bing-Bing Xia
- School of Food and Biological Engineering, Hefei University of Technology, Anhui, China
| | - Yu-Xin Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Anhui, China
| | - Jing-Wen Yang
- School of Food and Biological Engineering, Hefei University of Technology, Anhui, China
| | - Hong-Bin Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Anhui, China.
| | - Xue-Qin Hu
- School of Food and Biological Engineering, Hefei University of Technology, Anhui, China.
| |
Collapse
|
5
|
Yang J, Zhang X, Lu Q, Wang L, Hu X, Zhang H. Preparation, Flocculation and Application in Sugar Refining of eco-friendly dextran-polylysine complex flocculant. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Sun R, Liu W, Kirk TV, Chen XD. A Dual-labeled Fluorescent Probe for Visualization of Dextranase Activity in A Simulated Food Digestion System. Food Chem 2022; 405:134744. [DOI: 10.1016/j.foodchem.2022.134744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 11/04/2022]
|
7
|
Barzkar N, Babich O, Das R, Sukhikh S, Tamadoni Jahromi S, Sohail M. Marine Bacterial Dextranases: Fundamentals and Applications. Molecules 2022; 27:molecules27175533. [PMID: 36080300 PMCID: PMC9458216 DOI: 10.3390/molecules27175533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Dextran, a renewable hydrophilic polysaccharide, is nontoxic, highly stable but intrinsically biodegradable. The α-1, 6 glycosidic bonds in dextran are attacked by dextranase (E.C. 3.2.1.11) which is an inducible enzyme. Dextranase finds many applications such as, in sugar industry, in the production of human plasma substitutes, and for the treatment and prevention of dental plaque. Currently, dextranases are obtained from terrestrial fungi which have longer duration for production but not very tolerant to environmental conditions and have safety concerns. Marine bacteria have been proposed as an alternative source of these enzymes and can provide prospects to overcome these issues. Indeed, marine bacterial dextranases are reportedly more effective and suitable for dental caries prevention and treatment. Here, we focused on properties of dextran, properties of dextran—hydrolyzing enzymes, particularly from marine sources and the biochemical features of these enzymes. Lastly the potential use of these marine bacterial dextranase to remove dental plaque has been discussed. The review covers dextranase-producing bacteria isolated from shrimp, fish, algae, sea slit, and sea water, as well as from macro- and micro fungi and other microorganisms. It is common knowledge that dextranase is used in the sugar industry; produced as a result of hydrolysis by dextranase and have prebiotic properties which influence the consistency and texture of food products. In medicine, dextranases are used to make blood substitutes. In addition, dextranase is used to produce low molecular weight dextran and cytotoxic dextran. Furthermore, dextranase is used to enhance antibiotic activity in endocarditis. It has been established that dextranase from marine bacteria is the most preferable for removing plaque, as it has a high enzymatic activity. This study lays the groundwork for the future design and development of different oral care products, based on enzymes derived from marine bacteria.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 74576, Iran
- Correspondence: or
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Rakesh Das
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas 14578, Iran
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
8
|
Wang L, Lu QM, Zeng T, Yang JW, Hu XQ, Zhang HB. Synthesis and characterization of a cationic dextran-based flocculant and its application in bacterial sedimentation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Liu N, Li P, Dong X, Lan Y, Xu L, Wei Z, Wang S. Purification, Characterization, and Hydrolysate Analysis of Dextranase From Arthrobacter oxydans G6-4B. Front Bioeng Biotechnol 2022; 9:813079. [PMID: 35223821 PMCID: PMC8867256 DOI: 10.3389/fbioe.2021.813079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022] Open
Abstract
Dextran has aroused increasingly more attention as the primary pollutant in sucrose production and storage. Although enzymatic hydrolysis is more efficient and environmentally friendly than physical methods, the utilization of dextranase in the sugar industry is restricted by the mismatch of reaction conditions and heterogeneity of hydrolysis products. In this research, a dextranase from Arthrobacter oxydans G6-4B was purified and characterized. Through anion exchange chromatography, dextranase was successfully purified up to 32.25-fold with a specific activity of 288.62 U/mg protein and a Mw of 71.12 kDa. The optimum reaction conditions were 55°C and pH 7.5, and it remained relatively stable in the range of pH 7.0-9.0 and below 60°C, while significantly inhibited by metal ions, such as Ni+, Cu2+, Zn2+, Fe3+, and Co2+. Noteworthily, a distinction of previous studies was that the hydrolysates of dextran were basically isomalto-triose (more than 73%) without glucose, and the type of hydrolysates tended to be relatively stable in 30 min; dextranase activity showed a great influence on hydrolysate. In conclusion, given the superior thermal stability and simplicity of hydrolysates, the dextranase in this study presented great potential in the sugar industry to remove dextran and obtain isomalto-triose.
Collapse
Affiliation(s)
- Nannan Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Peiting Li
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Xiujin Dong
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Yusi Lan
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Linxiang Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Zhen Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Shujun Wang
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
10
|
Ning Z, Dong D, Tian X, Zu H, Tian X, Lyu M, Wang S. Alkalic dextranase produced by marine bacterium Cellulosimicrobium sp. PX02 and its application. J Basic Microbiol 2021; 61:1002-1015. [PMID: 34528722 DOI: 10.1002/jobm.202100310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 11/08/2022]
Abstract
The enzyme dextranase is widely used in the sugar and food industries, as well as in the medical field. Most land-derived dextranases are produced by fungi and have the disadvantages of long production cycles, low tolerance to environmental conditions, and low safety. The use of marine bacteria to produce dextranases may overcome these problems. In this study, a dextranase-producing bacterium was isolated from the Rizhao seacoast of Shandong, China. The bacterium, denoted as PX02, was identified as Cellulosimicrobium sp. and its growing conditions and the production and properties of its dextranase were investigated. The dextranase had a molecular weight of approximately 40 kDa, maximum activity at 40°C and pH 7.5, with a stability range of up to 45°C and pH 7.0-9.0. High-performance liquid chromatography showed that the dextranase hydrolyzed dextranT20 to isomaltotriose, maltopentaose, and isomaltooligosaccharides. Hydrolysis by dextranase produced excellent antioxidant effects, suggesting its potential use in the health food industry. Investigation of the action of the dextranase on Streptococcus mutans biofilm and scanning electron microscopy showed that it to be effective both for removing and inhibiting the formation of biofilms, suggesting its potential application in the dental industry.
Collapse
Affiliation(s)
- Zhe Ning
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Dongxue Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Xiaopeng Tian
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Hangtian Zu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Xueqing Tian
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
11
|
Chen H, Pu Y, Zou Q, Hou D, Chen S. Enzymatic degradation of aqueous dextrans as affected by initial molecular weight and concentration. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03351-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Dong D, Wang X, Deng T, Ning Z, Tian X, Zu H, Ding Y, Wang C, Wang S, Lyu M. A novel dextranase gene from the marine bacterium Bacillus aquimaris S5 and its expression and characteristics. FEMS Microbiol Lett 2021; 368:6105217. [PMID: 33476380 DOI: 10.1093/femsle/fnab007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/18/2021] [Indexed: 01/18/2023] Open
Abstract
Dextranase specifically hydrolyzes dextran and is used to produce functional isomalto-saccharide prebiotics. Moreover, dextranase is used as an additive in mouthwash to remove dental plaque. We cloned and expressed the dextranase gene of the marine bacterium Bacillus aquimaris S5. The length of the BaDex gene was 1788 bp, encoding 573 amino acids. Using bioinformatics to predict and analyze the amino acid sequence of BaDex, we found the isoelectric point and instability coefficient to be 4.55 and 29.22, respectively. The average hydrophilicity (GRAVY) was -0.662. The secondary structure of BaDex consisted of 145 alpha helices, accounting for 25.31% of the protein; 126 extended strands, accounting for 21.99%; and 282 random coils, accounting for 49.21%. The 3D structure of the BaDex protein was predicted and simulated using SWISS-MODEL, and BaDex was classified as a Glycoside Hydrolase Family 66 protein. The optimal temperature and pH for BaDex activity were 40°C and 6.0, respectively. The hydrolysates had excellent antioxidant activity, and 8 U/mL of BaDex could remove 80% of dental plaque in MBRC experiment. This recombinant protein thus has great promise for applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Dongxue Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China
| | - Xuelian Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China
| | - Tian Deng
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China
| | - Zhe Ning
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China
| | - Xiaopeng Tian
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China
| | - Hangtian Zu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China
| | - Yanshuai Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China
| | - Cang Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Collaborative Innovation Center of Modern Biological Manufacturing, Anhui University, 111 Jiulong Road, Hefei 230039, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Collaborative Innovation Center of Modern Biological Manufacturing, Anhui University, 111 Jiulong Road, Hefei 230039, China
| |
Collapse
|
13
|
Zhao J, Wang L, Wei X, Li K, Liu J. Food-Grade Expression and Characterization of a Dextranase from Chaetomium gracile Suitable for Sugarcane Juice Clarification. Chem Biodivers 2020; 18:e2000797. [PMID: 33245200 DOI: 10.1002/cbdv.202000797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/26/2020] [Indexed: 11/09/2022]
Abstract
The microbial production of dextranase using cheap carbon sources is beneficial to solve the economic loss caused by the accumulation of dextran in syrup. A food-grade microbial cell factory was constructed by introducing the dextranase encoding gene DEX from Chaetomium gracile to the chromosome of Bacillus subtilis, and the antibiotic resistance marker gene was subsequently deleted via the Cre/loxP strategy. The dual-promoter system with a sequentially arranged constitutive P43 promoter resulted in an 85 % increase in DEX expression. Under the optimal fermentation conditions of 10 g/L maltose, 15 g/L casein, 1 g/L Na2 HPO4 , 1 g/L FeSO4 and 8 g/L NaCl, DEX activity was increased from 2.625 to 64.34 U/mL. Recombinant DEX was purified 5.98-fold with a recovery ratio of 26.67 % and specific activity of 3935.02 U/mg. Enzyme activity was optimal at 55 °C and pH 5.0 and remained 80.34 % and 71.36 % of the initial activity at 55 °C and pH 4.0 after 60 min, respectively. The enzyme possessed high activity in the presence of Co2+ , while Ag+ showed the strongest inhibition ability. The optimal substrate was 20 g/L dextran T-2000. The findings could facilitate the low-cost, large-scale production of food-grade DEX for use in the sugar industry.
Collapse
Affiliation(s)
- Jingyi Zhao
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
| | - Leyi Wang
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
| | - Xin Wei
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China.,Sugar Industry Collaborative Innovation Center, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
| | - Jidong Liu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China.,Sugar Industry Collaborative Innovation Center, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
| |
Collapse
|
14
|
Purification, Characterization, and Biocatalytic and Antibiofilm Activity of a Novel Dextranase from Talaromyces sp. Int J Microbiol 2020. [DOI: 10.1155/2020/9198048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dextranase is a useful enzyme that catalyzes the degradation of dextran to low-molecular-weight fractions, which have many critical commercial and clinical applications. Endophytic fungi represent a source of both high heat-stable and pH-stable enzymes. In this study, from Delonix regia bark by plate assay, out of 12 isolated fungal strains, hyaline zones were detected in only one strain. By using the standard ITS rDNA sequencing analysis, the isolated strain was identified as Talaromyces sp. In the case of carbon source, in a medium containing 1% dextran T2000 as the sole carbon source, the maximum dextranase activity reached approximately 120 U/ml after incubation of 2 days where the optimum pH was 7.4. Peptone addition to the production medium as a sole nitrogen source was accompanied by a significant increase in the dextranase production. Similarly, some metal ions, such as Fe2+ and Zn2+, increased significantly enzyme production. However, there was no significant difference resulting from the addition of Cu2+. The crude dextranase was purified by ammonium sulfate fractionation, followed by Sephadex G100 chromatography with 28-fold purification. The produced dextranase was 45 kDa with an optimum activity at 37°C and a pH of 7. Moreover, the presence of MgSO4, FeSO4, and NH4SO4 increased the purified dextranase activity; however, SDS and EDTA decreased it. Interestingly, the produced dextranase expressed remarkable pH stability, temperature stability, and biofilm inhibition activity, reducing old-established biofilm by 86% and biofilm formation by 6%.
Collapse
|
15
|
Zhang X, Chen F, He C, Fang W, Fang Z, Zhang X, Wang X, Xiao Y. Improving the thermostability of a GH97 dextran glucosidase by rational design. Biotechnol Lett 2020; 42:2211-2221. [DOI: 10.1007/s10529-020-02928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/29/2020] [Indexed: 11/24/2022]
|
16
|
Liu X, Deng T, Liu X, Lai X, Feng Y, Lyu M, Wang S. Isomalto-Oligosaccharides Produced by Endodextranase Shewanellasp. GZ-7 From Sugarcane Plants. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20953286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oligosaccharides have important alimental and medical applications. Dextranase has been used to produce isomalto-oligosaccharides (IMOs). In this study, we isolated dextranase-producing bacteria from sugarcane-cultivated soil. Identification of the isolate based on its phenotypical, physiological, and biochemical characteristics, as well as 16S ribosomal deoxyribonucleic acid gene sequencing yielded Shewanella sp. strain GZ-7. The molecular weight of the dextranase produced by this strain was 100-135 kDa. The optimum temperature and pH for dextranase production were 40 °C and 7.5, respectively. The enzyme was found to be stable at the pH range of 6.0-8.0 and the temperature range of 20 °C-40 °C. Thin-layer chromatography and high-performance liquid chromatography of the enzymolysis products of the substrate confirmed the enzyme to be endodextranase. Under the optimal conditions, the ratio of IMOs could reach 91.8% of the hydrolyzate. The final products were found to efficiently scavenge the 2,2-diphenyl-1-picrylhydrazyl, hydroxyl, and superoxide anion radicals. In general, dextranase and hydrolyzates have high potential prospects for application in the future.
Collapse
Affiliation(s)
- Xin Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/ Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, P. R. China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, P. R. China
| | - Tian Deng
- Jiangsu Key Laboratory of Marine Bioresources and Environment/ Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, P. R. China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, P. R. China
| | - Xueqin Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/ Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, P. R. China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, P. R. China
| | - Xiaohua Lai
- Jiangsu Key Laboratory of Marine Bioresources and Environment/ Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, P. R. China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, P. R. China
| | - Yanli Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment/ Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, P. R. China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, P. R. China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/ Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, P. R. China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, P. R. China
- Collaborative Innovation Center of Modern Biological Manufacturing, Anhui University, Hefei, P. R. China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/ Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, P. R. China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, P. R. China
- Collaborative Innovation Center of Modern Biological Manufacturing, Anhui University, Hefei, P. R. China
| |
Collapse
|
17
|
Su Z, Luo J, Li X, Pinelo M. Enzyme membrane reactors for production of oligosaccharides: A review on the interdependence between enzyme reaction and membrane separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116840] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Zhao B, Du R, Wang J, Xu M, Han Y, Han X, Zhou Z. Purification and biochemical characterization of a novel glucansucrase from Leuconostoc citreum B-2. Biotechnol Lett 2020; 42:1535-1545. [DOI: 10.1007/s10529-020-02881-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/31/2020] [Indexed: 01/02/2023]
|
19
|
Lai X, Liu X, Liu X, Deng T, Feng Y, Tian X, Lyu M, Wang AS. The Marine Catenovulum agarivorans MNH15 and Dextranase: Removing Dental Plaque. Mar Drugs 2019; 17:md17100592. [PMID: 31635432 PMCID: PMC6835279 DOI: 10.3390/md17100592] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/03/2022] Open
Abstract
Dextranase, a hydrolase that specifically hydrolyzes α-1,6-glucosidic bonds, has been used in the pharmaceutical, food, and biotechnology industries. In this study, the strain of Catenovulum agarivorans MNH15 was screened from marine samples. When the temperature, initial pH, NaCl concentration, and inducer concentration were 30 °C, 8.0, 5 g/L, and 8 g/L, respectively, it yielded more dextranase. The molecular weight of the dextranase was approximately 110 kDa. The maximum enzyme activity was achieved at 40 °C and a pH of 8.0. The enzyme was stable at 30 °C and a pH of 5–9. The metal ion Sr2+ enhanced its activity, whereas NH4+, Co2+, Cu2+, and Li+ had the opposite effect. The dextranase effectively inhibited the formation of biofilm by Streptococcus mutans. Moreover, sodium fluoride, xylitol, and sodium benzoate, all used in dental care products, had no significant effect on dextranase activity. In addition, high-performance liquid chromatography (HPLC) showed that dextran was mainly hydrolyzed to glucose, maltose, and maltoheptaose. The results indicated that dextranase has high application potential in dental products such as toothpaste and mouthwash.
Collapse
Affiliation(s)
- Xiaohua Lai
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Xin Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Xueqin Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Tian Deng
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Yanli Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Xiaopeng Tian
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
- Collaborative Innovation Center of Modern Biological Manufacturing, Anhui University, Hefei 230039, China.
| | - And Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
- Collaborative Innovation Center of Modern Biological Manufacturing, Anhui University, Hefei 230039, China.
| |
Collapse
|
20
|
Purification, Characterization and Degradation Performance of a Novel Dextranase from Penicillium cyclopium CICC-4022. Int J Mol Sci 2019; 20:ijms20061360. [PMID: 30889875 PMCID: PMC6471568 DOI: 10.3390/ijms20061360] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 11/17/2022] Open
Abstract
A novel dextranase was purified from Penicillium cyclopium CICC-4022 by ammonium sulfate fractional precipitation and gel filtration chromatography. The effects of temperature, pH and some metal ions and chemicals on dextranase activity were investigated. Subsequently, the dextranase was used to produce dextran with specific molecular mass. Weight-average molecular mass (Mw) and the ratio of weight-average molecular mass/number-average molecular mass, or polydispersity index (Mw/Mn), of dextran were measured by multiple-angle laser light scattering (MALS) combined with gel permeation chromatography (GPC). The dextranase was purified to 16.09-fold concentration; the recovery rate was 29.17%; and the specific activity reached 350.29 U/mg. Mw of the dextranase was 66 kDa, which is similar to dextranase obtained from other Penicillium species reported previously. The highest activity was observed at 55 °C and a pH of 5.0. This dextranase was identified as an endodextranase, which specifically degraded the α-1,6 glucosidic bonds of dextran. According to metal ion dependency tests, Li+, Na+ and Fe2+ were observed to effectively improve the enzymatic activity. In particular, Li+ could improve the activity to 116.28%. Furthermore, the dextranase was efficient at degrading dextran and the degradation rate can be well controlled by the dextranase activity, substrate concentration and reaction time. Thus, our results demonstrate the high potential of this dextranase from Penicillium cyclopium CICC-4022 as an efficient enzyme to produce specific clinical dextrans.
Collapse
|
21
|
Volkov PV, Gusakov AV, Rubtsova EA, Rozhkova AM, Matys VY, Nemashkalov VA, Sinitsyn AP. Properties of a recombinant GH49 family dextranase heterologously expressed in two recipient strains of Penicillium species. Biochimie 2019; 157:123-130. [DOI: 10.1016/j.biochi.2018.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
|
22
|
Purification, characterization, and biocatalytic potential of a novel dextranase from Chaetomium globosum. Biotechnol Lett 2018; 40:1407-1418. [DOI: 10.1007/s10529-018-2599-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
|
23
|
Purification and Characterization of a Biofilm-Degradable Dextranase from a Marine Bacterium. Mar Drugs 2018; 16:md16020051. [PMID: 29414837 PMCID: PMC5852479 DOI: 10.3390/md16020051] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/27/2018] [Accepted: 01/31/2018] [Indexed: 12/03/2022] Open
Abstract
This study evaluated the ability of a dextranase from a marine bacterium Catenovulum sp. (Cadex) to impede formation of Streptococcus mutans biofilms, a primary pathogen of dental caries, one of the most common human infectious diseases. Cadex was purified 29.6-fold and had a specific activity of 2309 U/mg protein and molecular weight of 75 kDa. Cadex showed maximum activity at pH 8.0 and 40 °C and was stable at temperatures under 30 °C and at pH ranging from 5.0 to 11.0. A metal ion and chemical dependency study showed that Mn2+ and Sr2+ exerted positive effects on Cadex, whereas Cu2+, Fe3+, Zn2+, Cd2+, Ni2+, and Co2+ functioned as inhibitors. Several teeth rinsing product reagents, including carboxybenzene, ethanol, sodium fluoride, and xylitol were found to have no effects on Cadex activity. A substrate specificity study showed that Cadex specifically cleaved the α-1,6 glycosidic bond. Thin layer chromatogram and high-performance liquid chromatography indicated that the main hydrolysis products were isomaltoogligosaccharides. Crystal violet staining and scanning electron microscopy showed that Cadex impeded the formation of S. mutans biofilm to some extent. In conclusion, Cadex from a marine bacterium was shown to be an alkaline and cold-adapted endo-type dextranase suitable for development of a novel marine agent for the treatment of dental caries.
Collapse
|
24
|
Abstract
Dextran from Weissella confusa R003 isolated from sugar cane juice was purified and characterized. Dextran synthesis was performed by fermenting W. confusa R003 in MRS medium containing 10% (w/v) sucrose with continuous shaking at 125 rpm and at 30°C. For 24 hours, the 50% efficiency yield was obtained. Dextran in the culture medium was purified by ethanol precipitation. Structural analysis of dextran using 1H NMR, 13C NMR, and 2D NMR techniques showed the existence of glucoses with 97.4% α (1→6) linkage in the main chains and 2.6% α (1→3) in branches. The estimation of molecular weight by dynamic light scattering exhibited average molecular weight of 1.0 × 104 kDa. At low concentration (2.5% w/v), dextran behaved like liquid structure, while, increasing the concentration (5.0 and 10.0% w/v), it was revealed as viscoelastic behavior. The highest gelling phenomenon was found in the concentration of 10% w/v and at 37°C. Due to its production and properties, it may be suitable for commercial production and application in the field of foods as well as hydrogel.
Collapse
|
25
|
Zhang YQ, Li RH, Zhang HB, Wu M, Hu XQ. Purification, characterization, and application of a thermostable dextranase from Talaromyces pinophilus. ACTA ACUST UNITED AC 2017; 44:317-327. [DOI: 10.1007/s10295-016-1886-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 12/14/2016] [Indexed: 11/25/2022]
Abstract
Abstract
Dextranase can hydrolyze dextran to low-molecular-weight polysaccharides, which have important medical applications. In the study, dextranase-producing strains were screened from various soil sources. The strain H6 was identified as Talaromyces pinophilus by a standard ITS rDNA analysis. Crude dextranase was purified by ammonium sulfate fractionation and Sepharose 6B chromatography, which resulted in a 6.69-fold increase in the specific activity and an 11.27% recovery. The enzyme was 58 kDa, lower than most dextranase, with an optimum temperature of 45 °C and an optimum pH of 6.0, and identified as an endodextranase. It was steady over a pH range from 3.0 to 10.0 and had reasonable thermal stability. The dextranase activity was increased by urea, which enhanced its activity to 115.35% and was conducive to clinical dextran production. Therefore, T. pinophilus H6 dextranase could show its superiority in practical applications.
Graphical Abstract
Collapse
Affiliation(s)
- Yu-Qi Zhang
- grid.256896.6 Department of Pharmaceutical Engineering, School of Biological and Medical Engineering Hefei University of Technology 230009 Hefei People’s Republic of China
| | - Ruo-Han Li
- grid.256896.6 Department of Pharmaceutical Engineering, School of Biological and Medical Engineering Hefei University of Technology 230009 Hefei People’s Republic of China
| | - Hong-Bin Zhang
- grid.256896.6 Department of Pharmaceutical Engineering, School of Biological and Medical Engineering Hefei University of Technology 230009 Hefei People’s Republic of China
| | - Min Wu
- grid.256896.6 Department of Pharmaceutical Engineering, School of Biological and Medical Engineering Hefei University of Technology 230009 Hefei People’s Republic of China
| | - Xue-Qin Hu
- grid.256896.6 Department of Pharmaceutical Engineering, School of Biological and Medical Engineering Hefei University of Technology 230009 Hefei People’s Republic of China
| |
Collapse
|
26
|
Wang X, Cheng H, Lu M, Fang Y, Jiao Y, Li W, Zhao G, Wang S. Dextranase from Arthrobacter oxydans KQ11-1 inhibits biofilm formation by polysaccharide hydrolysis. BIOFOULING 2016; 32:1223-1233. [PMID: 27762637 DOI: 10.1080/08927014.2016.1239722] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Dental plaque is a biofilm of water-soluble and water-insoluble polysaccharides, produced primarily by Streptococcus mutans. Dextranase can inhibit biofilm formation. Here, a dextranase gene from the marine microorganism Arthrobacter oxydans KQ11-1 is described, and cloned and expressed using E. coli DH5α competent cells. The recombinant enzyme was then purified and its properties were characterized. The optimal temperature and pH were determined to be 60°C and 6.5, respectively. High-performance liquid chromatography data show that the final hydrolysis products were glucose, maltose, maltotriose, and maltotetraose. Thus, dextranase can inhibit the adhesive ability of S. mutans. The minimum biofilm inhibition and reduction concentrations (MBIC50 and MBRC50) of dextranase were 2 U ml-1 and 5 U ml-1, respectively. Scanning electron microscopy and confocal laser scanning microscope (CLSM) observations confirmed that dextranase inhibited biofilm formation and removed previously formed biofilms.
Collapse
Affiliation(s)
- Xiaobei Wang
- a Marine Resources Development Institute of Jiangsu , Lianyungang , PR China
- b Key Laboratory of Marine Biology , Nanjing Agricultural University , Nanjing , Jiangsu , PR China
| | - Huaixu Cheng
- a Marine Resources Development Institute of Jiangsu , Lianyungang , PR China
- c Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening , Huaihai Institute of Technology , Lianyungang , PR China
- d Co-Innovation Center of Jiangsu Marine Bio-industry Technology , Huaihai Institute of Technology , Lianyungang , PR China
| | - Mingsheng Lu
- a Marine Resources Development Institute of Jiangsu , Lianyungang , PR China
- c Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening , Huaihai Institute of Technology , Lianyungang , PR China
- d Co-Innovation Center of Jiangsu Marine Bio-industry Technology , Huaihai Institute of Technology , Lianyungang , PR China
| | - Yaowei Fang
- a Marine Resources Development Institute of Jiangsu , Lianyungang , PR China
- c Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening , Huaihai Institute of Technology , Lianyungang , PR China
- d Co-Innovation Center of Jiangsu Marine Bio-industry Technology , Huaihai Institute of Technology , Lianyungang , PR China
| | - Yuliang Jiao
- a Marine Resources Development Institute of Jiangsu , Lianyungang , PR China
- c Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening , Huaihai Institute of Technology , Lianyungang , PR China
- d Co-Innovation Center of Jiangsu Marine Bio-industry Technology , Huaihai Institute of Technology , Lianyungang , PR China
| | - Weijuan Li
- a Marine Resources Development Institute of Jiangsu , Lianyungang , PR China
| | - Gengmao Zhao
- b Key Laboratory of Marine Biology , Nanjing Agricultural University , Nanjing , Jiangsu , PR China
- d Co-Innovation Center of Jiangsu Marine Bio-industry Technology , Huaihai Institute of Technology , Lianyungang , PR China
| | - Shujun Wang
- a Marine Resources Development Institute of Jiangsu , Lianyungang , PR China
- c Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening , Huaihai Institute of Technology , Lianyungang , PR China
- d Co-Innovation Center of Jiangsu Marine Bio-industry Technology , Huaihai Institute of Technology , Lianyungang , PR China
| |
Collapse
|
27
|
Virgen-Ortíz J, Ibarra-Junquera V, Escalante-Minakata P, Ornelas-Paz JDJ, Osuna-Castro J, González-Potes A. Kinetics and thermodynamic of the purified dextranase from Chaetomium erraticum. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Zohra RR, Aman A, Ansari A, Haider MS, Qader SAU. Purification, characterization and end product analysis of dextran degrading endodextranase from Bacillus licheniformis KIBGE-IB25. Int J Biol Macromol 2015; 78:243-8. [PMID: 25881960 DOI: 10.1016/j.ijbiomac.2015.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/28/2022]
Abstract
Degradation of high molecular weight dextran for obtaining low molecular weight dextran is based on the hydrolysis using chemical and enzymatic methods. Current research study focused on production, purification and characterization of dextranase from a newly isolated strain of Bacillus licheniformis KIBGE-IB25. Dextranase was purified up to 36 folds with specific activity of 1405 U/mg and molecular weight of 158 kDa. It was found that enzyme performs optimum cleavage of dextran (5000 Da, 0.5%) at 35 °C in 15 min at pH 4.5 with a Km and Vmax of 0.374 mg/ml and 182 μmol/min, respectively. Relative amino acid composition analysis of purified enzyme suggested the presence of higher number of hydrophobic, acidic and glycosylation promoting amino acids. The N-terminal sequence of dextranase KIBGE-IB25 was AYTVTLYLQG. It exhibited distinct amino acid sequence yet shared some inherent characteristics with glycosyl hydrolases (GH) family 49 and also testified the presence of O-glycosylation at N-terminal end.
Collapse
Affiliation(s)
- Rashida Rahmat Zohra
- The Karachi Institute of Biotechnology & Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Afsheen Aman
- The Karachi Institute of Biotechnology & Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Asma Ansari
- The Karachi Institute of Biotechnology & Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Samee Haider
- Food & Marine Resource Research Centre, Pakistan Council of Scientific & Industrial Research (PCSIR) Laboratories Complex, Karachi 75280, Pakistan
| | - Shah Ali Ul Qader
- The Karachi Institute of Biotechnology & Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
29
|
Widenbring R, Frenning G, Malmsten M. Chain and Pore-Blocking Effects on Matrix Degradation in Protein-Loaded Microgels. Biomacromolecules 2014; 15:3671-8. [DOI: 10.1021/bm5009525] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ronja Widenbring
- Department of Pharmacy, Uppsala University, P.O.
Box 580, SE-751 23 Uppsala, Sweden
| | - Göran Frenning
- Department of Pharmacy, Uppsala University, P.O.
Box 580, SE-751 23 Uppsala, Sweden
| | - Martin Malmsten
- Department of Pharmacy, Uppsala University, P.O.
Box 580, SE-751 23 Uppsala, Sweden
| |
Collapse
|
30
|
Wang D, Lu M, Wang X, Jiao Y, Fang Y, Liu Z, Wang S. Improving stability of a novel dextran-degrading enzyme from marine Arthrobacter oxydans KQ11. Carbohydr Polym 2014; 103:294-9. [DOI: 10.1016/j.carbpol.2013.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/10/2013] [Accepted: 12/09/2013] [Indexed: 11/27/2022]
|
31
|
Wang D, Lu M, Wang S, Jiao Y, Li W, Zhu Q, Liu Z. Purification and characterization of a novel marine Arthrobacter oxydans KQ11 dextranase. Carbohydr Polym 2014; 106:71-6. [PMID: 24721052 DOI: 10.1016/j.carbpol.2014.01.102] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 01/29/2014] [Accepted: 01/31/2014] [Indexed: 11/18/2022]
Abstract
Dextranases can hydrolyze dextran deposits and have been used in the sugar industry. Microbial strains which produce dextranases for industrial use are chiefly molds, which present safety issues, and dextranase production from them is impractically long. Thus, marine bacteria to produce dextranases may overcome these problems. Crude dextranase was purified by a combination of ammonium sulfate fractionation and ion-exchange chromatography, and then the enzyme was characterized. The enzyme was 66.2 kDa with an optimal temperature of 50°C and a pH of 7. The enzyme had greater than 60% activity at 60°C for 1h. Moreover, 10mM Co(2+) enhanced dextranase activity (196%), whereas Ni(2+) and Fe(3+) negatively affected activity. 0.02% xylitol and 1% alcohol enhanced activity (132.25% and 110.37%, respectively) whereas 0.05% SDS inhibited activity (14.07%). The thickness of S. mutans and mixed-species oral biofilm decreased from 54,340 nm to 36,670 nm and from 64,260 nm to 43,320 nm, respectively.
Collapse
Affiliation(s)
- Delong Wang
- School of Marine Science and Technology, Huaihai Institute of Technology, Lianyungang, Jiangsu 222005, China; Key Laboratory of Marine Biology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Mingsheng Lu
- School of Marine Science and Technology, Huaihai Institute of Technology, Lianyungang, Jiangsu 222005, China; Jiangsu Marine Resources Development Research Insititute, Lianyungang, Jiangsu 222005, China
| | - Shujun Wang
- School of Marine Science and Technology, Huaihai Institute of Technology, Lianyungang, Jiangsu 222005, China.
| | - Yuliang Jiao
- School of Marine Science and Technology, Huaihai Institute of Technology, Lianyungang, Jiangsu 222005, China
| | - Weijuan Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiang Zhu
- School of Marine Science and Technology, Huaihai Institute of Technology, Lianyungang, Jiangsu 222005, China
| | - Zhaopu Liu
- Key Laboratory of Marine Biology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
32
|
|
33
|
Wu DT, Xie J, Hu DJ, Zhao J, Li SP. Characterization of polysaccharides from Ganoderma spp. using saccharide mapping. Carbohydr Polym 2013; 97:398-405. [PMID: 23911463 DOI: 10.1016/j.carbpol.2013.04.101] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 11/25/2022]
Abstract
Polysaccharides from Ganoderma spp. and their adulterants were firstly investigated and compared using saccharide mapping, enzymatic (endo-1,3-β-D-glucanase and pectinase) digestion followed by polysaccharide analysis using carbohydrate gel electrophoresis analysis. The results showed that both 1,3-β-D-glucosidic and 1,4-α-D-galactosiduronic linkages were existed in Lingzhi (Ganoderma lucidum and Ganoderma sinense), and the similarity of polysaccharides from G. lucidum and G. sinense was high, which may contribute to rational use of Lingzhi. Different species of Ganoderma and their adulterants can be differentiated based on the saccharide mapping, which is helpful to well understand the structural characters of polysaccharides from different species of Ganoderma and to improve the quality control of polysaccharides in Lingzhi.
Collapse
Affiliation(s)
- Ding-Tao Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | | | | | | | | |
Collapse
|
34
|
Purushe S, Prakash D, Nawani NN, Dhakephalkar P, Kapadnis B. Biocatalytic potential of an alkalophilic and thermophilic dextranase as a remedial measure for dextran removal during sugar manufacture. BIORESOURCE TECHNOLOGY 2012; 115:2-7. [PMID: 22277209 DOI: 10.1016/j.biortech.2012.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 12/30/2011] [Accepted: 01/03/2012] [Indexed: 05/12/2023]
Abstract
The present study is focused on dextranase from Streptomyces sp. NK458 with potential to remove dextran formed during sugar manufacture. The dextranase had molecular weight of 130 kDa and hydrolyzed 15-25 and 410 kDa dextran. Dextranase production was optimized using statistical designs and the enzyme was purified 1.8-fold with 55.5% recovery. It displayed maximum activity at pH 9.0 and 60°C and was stable over a wide range of pH from 5.0 to 10.0. The k(m) and V(max) values were 3.05 mM and 17.97 mmol/ml/h, respectively. Ten units of dextranase could reduce dextran content by 67% in 24h and 56% in 72 h from sugarcane juice of cane variety CoS 86032. The enzyme was stable up to 3 days at 30°C beyond which its activity decreased and dextran removal could be retained by supplementation of 5 U of dextranase. These properties make it a promising biocatalyst for sugar industry.
Collapse
Affiliation(s)
- Shweta Purushe
- Department of Microbiology, University of Pune, Pune 411007, India
| | | | | | | | | |
Collapse
|