1
|
Kantin G, Sapegin A, Dar'in D. 5-Diazo Dihydrouracils: Preparation and Some Transformations. J Org Chem 2024; 89:15197-15205. [PMID: 39344186 DOI: 10.1021/acs.joc.4c01973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
An approach to a new type of diazo reagents─diazo dihydrouracils─has been developed, and various transformations of the obtained diazo heterocycles have been studied, demonstrating their high synthetic potential for obtaining structurally diverse derivatives based on the privileged dihydrouracil scaffold. The X-H insertion reactions provide high yields of a variety of 5-substituted dihydrouracils. Cyclopropanation and 1,3-dipolar cycloaddition reactions involving a carbonyl ylide intermediate have been carried out to give spiro-annulated derivatives. The limitations of the modification methods with respect to the nature of substituents on the nitrogen atoms of the diazo heterocycle have been outlined.
Collapse
Affiliation(s)
- Grigory Kantin
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Alexander Sapegin
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Dmitry Dar'in
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
- Saint Petersburg Research Institute of Phthisiopulmonology, Saint Petersburg 191036, Russian Federation
| |
Collapse
|
2
|
Scheuerer S, Motlova L, Schäker-Hübner L, Sellmer A, Feller F, Ertl FJ, Koch P, Hansen FK, Barinka C, Mahboobi S. Biological and structural investigation of tetrahydro-β-carboline-based selective HDAC6 inhibitors with improved stability. Eur J Med Chem 2024; 276:116676. [PMID: 39067437 DOI: 10.1016/j.ejmech.2024.116676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Our previously reported HDAC6 inhibitor (HDAC6i) Marbostat-100 (4) has provided many arguments for further clinical evaluation. By the substitution of the acidic hydrogen of 4 for different carbon residues, we were able to generate an all-carbon stereocenter, which significantly improves the hydrolytic stability of the inhibitor. Further asymmetric synthesis has shown that the (S)-configured inhibitors preferentially bind to HDAC6. This led to the highly selective and potent methyl-substituted derivative S-29b, which elicited a long-lasting tubulin hyperacetylation in MV4-11 cells. Finally, a crystal structure of the HDAC6/S-29b complex provided mechanistic explanation for the high potency and stereoselectivity of synthesized compound series.
Collapse
Affiliation(s)
- Simon Scheuerer
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany
| | - Lucia Motlova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Linda Schäker-Hübner
- Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Andreas Sellmer
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany
| | - Felix Feller
- Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Fabian J Ertl
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry II, University of Regensburg, 93040, Regensburg, Germany
| | - Pierre Koch
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry II, University of Regensburg, 93040, Regensburg, Germany
| | - Finn K Hansen
- Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Siavosh Mahboobi
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
3
|
Meelua W, Thinkumrob N, Saparpakorn P, Pengthaisong S, Hannongbua S, Ketudat Cairns JR, Jitonnom J. Structural basis for inhibition of a GH116 β-glucosidase and its missense mutants by GBA2 inhibitors: Crystallographic and quantum chemical study. Chem Biol Interact 2023; 384:110717. [PMID: 37726065 DOI: 10.1016/j.cbi.2023.110717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/24/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023]
Abstract
The crystal structure of the Thermoanaerobacterium xylanolyticum in glycoside hydrolase family 116 (TxGH116) β-glucosidase provides a structural model for human GBA2 glucosylceramidase, an enzyme defective in hereditary spastic paraplegia and a potential therapeutic target for treating Gaucher disease. To assess the therapeutic potential of known inhibitors, the X-ray structure of TxGH116 in complex with isofagomine (IFG) was determined at 2.0 Å resolution and showed the IFG bound in a relaxed chair conformation. The binding of IFG and 7 other iminosugar inhibitors to wild-type and mutant enzymes (Asp508His and Arg786His) mimicking GBA2 pathogenic variants was then evaluated computationally by two-layered ONIOM calculations (at the B3LYP:PM7 level). Calculations showed that six charged residues, Glu441, Asp452, His507, Asp593, Glu777, and Arg786 influence inhibitor binding most. His507, Glu777 and Arg786, form strong hydrogen bonds with the inhibitors (∼1.4-1.6 Å). Thus, the missense mutation of one of these residues in Arg786His has a greater effect on the interaction energies for all inhibitors compared to Asp508His. In line with the experimental data for the inhibitors that have been tested, the favorable interaction energy between the inhibitors and the TxGH116 protein followed the trend: isofagomine > 1-deoxynojirimycin > glucoimidazole > N-butyl-deoxynojirimycin ≈ N-nonyl-deoxynojirimycin > conduritol B epoxide ≈ azepane 1 > azepane 2. The obtained structural and energetic properties and comparison to the GBA2 model can lead to understanding of structural requirement for inhibitor binding in GH116 to aid the design of high potency GBA2 inhibitors.
Collapse
Affiliation(s)
- Wijitra Meelua
- Demonstration School, University of Phayao, Phayao, 56000, Thailand; Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao, 56000, Thailand
| | - Natechanok Thinkumrob
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao, 56000, Thailand
| | | | - Salila Pengthaisong
- Center for Biomolecular Structure, Function and Application, and School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - James R Ketudat Cairns
- Center for Biomolecular Structure, Function and Application, and School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| | - Jitrayut Jitonnom
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao, 56000, Thailand.
| |
Collapse
|
4
|
Meelua W, Wanjai T, Thinkumrob N, Oláh J, Cairns JRK, Hannongbua S, Ryde U, Jitonnom J. A computational study of the reaction mechanism and stereospecificity of dihydropyrimidinase. Phys Chem Chem Phys 2023; 25:8767-8778. [PMID: 36912034 DOI: 10.1039/d2cp05262h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Dihydropyrimidinase (DHPase) is a key enzyme in the pyrimidine pathway, the catabolic route for synthesis of β-amino acids. It catalyses the reversible conversion of 5,6-dihydrouracil (DHU) or 5,6-dihydrothymine (DHT) to the corresponding N-carbamoyl-β-amino acids. This enzyme has the potential to be used as a tool in the production of β-amino acids. Here, the reaction mechanism and origin of stereospecificity of DHPases from Saccharomyces kluyveri and Sinorhizobium meliloti CECT4114 were investigated and compared using a quantum mechanical cluster approach based on density functional theory. Two models of the enzyme active site were designed from the X-ray crystal structure of the native enzyme: a small cluster to characterize the mechanism and the stationary points and a large model to probe the stereospecificity and the role of stereo-gate-loop (SGL) residues. It is shown that a hydroxide ion first performs a nucleophilic attack on the substrate, followed by the abstraction of a proton by Asp358, which occurs concertedly with protonation of the ring nitrogen by the same residue. For the DHT substrate, the enzyme displays a preference for the L-configuration, in good agreement with experimental observation. Comparison of the reaction energetics of the two models reveals the importance of SGL residues in the stereospecificity of catalysis. The role of the conserved Tyr172 residue in transition-state stabilization is confirmed as the Tyr172Phe mutation increases the activation barrier of the reaction by ∼8 kcal mol-1. A detailed understanding of the catalytic mechanism of the enzyme could offer insight for engineering in order to enhance its activity and substrate scope.
Collapse
Affiliation(s)
- Wijitra Meelua
- Demonstration School, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand.
| | - Tanchanok Wanjai
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand.
| | - Natechanok Thinkumrob
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand.
| | - Julianna Oláh
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rakpart 3, Budapest H-1111, Hungary
| | - James R Ketudat Cairns
- Center for Biomolecular Structure, Function and Application and School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, Lund SE-221 00, Sweden
| | - Jitrayut Jitonnom
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand.
| |
Collapse
|
5
|
Martínez-Rodríguez S, Torres JM, Sánchez P, Ortega E. Overview on Multienzymatic Cascades for the Production of Non-canonical α-Amino Acids. Front Bioeng Biotechnol 2020; 8:887. [PMID: 32850740 PMCID: PMC7431475 DOI: 10.3389/fbioe.2020.00887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
The 22 genetically encoded amino acids (AAs) present in proteins (the 20 standard AAs together with selenocysteine and pyrrolysine), are commonly referred as proteinogenic AAs in the literature due to their appearance in ribosome-synthetized polypeptides. Beyond the borders of this key set of compounds, the rest of AAs are generally named imprecisely as non-proteinogenic AAs, even when they can also appear in polypeptide chains as a result of post-transductional machinery. Besides their importance as metabolites in life, many of D-α- and L-α-"non-canonical" amino acids (NcAAs) are of interest in the biotechnological and biomedical fields. They have found numerous applications in the discovery of new medicines and antibiotics, drug synthesis, cosmetic, and nutritional compounds, or in the improvement of protein and peptide pharmaceuticals. In addition to the numerous studies dealing with the asymmetric synthesis of NcAAs, many different enzymatic pathways have been reported in the literature allowing for the biosynthesis of NcAAs. Due to the huge heterogeneity of this group of molecules, this review is devoted to provide an overview on different established multienzymatic cascades for the production of non-canonical D-α- and L-α-AAs, supplying neophyte and experienced professionals in this field with different illustrative examples in the literature. Whereas the discovery of new or newly designed enzymes is of great interest, dusting off previous enzymatic methodologies by a "back and to the future" strategy might accelerate the implementation of new or improved multienzymatic cascades.
Collapse
|
6
|
Nagy B, Galla Z, Bencze LC, Toșa MI, Paizs C, Forró E, Fülöp F. Covalently Immobilized Lipases are Efficient Stereoselective Catalysts for the Kinetic Resolution of rac-(5-Phenylfuran-2-yl)-β-alanine Ethyl Ester Hydrochlorides. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Botond Nagy
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 6701 Szeged Hungary
- Faculty of Chemistry and Chemical Engineering; Biocatalysis and Biotransformation Research Centre; Arany János str. 11 400028 Cluj-Napoca Romania
| | - Zsolt Galla
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 6701 Szeged Hungary
| | - László Csaba Bencze
- Faculty of Chemistry and Chemical Engineering; Biocatalysis and Biotransformation Research Centre; Arany János str. 11 400028 Cluj-Napoca Romania
| | - Monica Ioana Toșa
- Faculty of Chemistry and Chemical Engineering; Biocatalysis and Biotransformation Research Centre; Arany János str. 11 400028 Cluj-Napoca Romania
| | - Csaba Paizs
- Faculty of Chemistry and Chemical Engineering; Biocatalysis and Biotransformation Research Centre; Arany János str. 11 400028 Cluj-Napoca Romania
| | - Enikő Forró
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 6701 Szeged Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 6701 Szeged Hungary
| |
Collapse
|
7
|
Slomka C, Zhong S, Fellinger A, Engel U, Syldatk C, Bräse S, Rudat J. Chemical synthesis and enzymatic, stereoselective hydrolysis of a functionalized dihydropyrimidine for the synthesis of β-amino acids. AMB Express 2015; 5:85. [PMID: 26705241 PMCID: PMC4690820 DOI: 10.1186/s13568-015-0174-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/11/2015] [Indexed: 11/29/2022] Open
Abstract
A novel substrate, 6-(4-nitrophenyl)dihydropyrimidine-2,4(1H,3H)-dione (pNO2PheDU), was chemically synthesized and analytically verified for the potential biocatalytic synthesis of enantiopure β-amino acids. The hydantoinase (EC 3.5.2.2) from Arthrobacter crystallopoietes DSM20117 was chosen to prove the enzymatic hydrolysis of this substrate, since previous investigations showed activities of this enzyme toward 6-monosubstituted dihydrouracils. Whole cell biotransformations with recombinant Escherichia coli expressing the hydantoinase showed degradation of pNO2PheDU. Additionally, the corresponding N-carbamoyl-β-amino acid (NCarbpNO2βPhe) was chemically synthesized, an HPLC-method with chiral stationary phases for detection of this product was established and thus (S)-enantioselectivity toward pNO2PheDU has been shown. Consequently this novel substrate is a potential precursor for the enantiopure β-amino acid para-nitro-β-phenylalanine (pNO2βPhe).
Collapse
|
8
|
Ko YM, Chen CI, Lin CC, Kan SC, Zang CZ, Yeh CW, Chang WF, Shieh CJ, Liu YC. Enhanced d-hydantoinase activity performance via immobilized cobalt ion affinity membrane and its kinetic study. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|