1
|
Esawy MA, Karam EA, Hassan ME, Kansoh AL, Gamal AA. Comparative study between the free and immobilized cells of Bacillus velezensis AMA2 P164707 and Bacillus atrophaeus AMA6 OP225343 for acidic β, α amylases production and applied experiment. Int J Biol Macromol 2025; 284:138087. [PMID: 39603307 DOI: 10.1016/j.ijbiomac.2024.138087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Nowadays, acid-stable α-amylase demand is increasing in starch liquefaction processes. Four bacterial honey isolates, numbers 2 and 6 showed the highest amylase production on commercial starch as the sole medium component and were immobilized in alginate beads. The highest cell immobilization capacity was obtained by organisms' Bacillus velezensis AMA2 and Bacillus atrophaeus AMA6. Amylase production increases after the immobilization process from 78 to 232 U/mg and 71 to 216 U/mg for isolates numbers 2 and 6 respectively. The isolates were identified as Bacillus velezensis AMA2 and Bacillus atrophaeus AMA6, which produced β and α-amylases, respectively. They were able to retain 85 % and 53 % of their production after 7 cycles. The optimum temperature and pH for enzyme production shifted from 40 °C to 45 °C and the pHs 7 shifted to 6, after the immobilization. The immobilized cells for both isolates were more tolerant to the temperature elevation and the alkaline pHs than the free enzymes. Ca (NO3)2 stimulated the free and immobilized Bacillus velezensis AMA2 amylase production, and all other tested metals had adverse effects on both. The activation energy decreased after the immobilization process to 41.60 and 22.2-fold, respectively, and the t1/2 and D values increased. The enzymes showed high stability in the presence of different detergents.
Collapse
Affiliation(s)
- Mona A Esawy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Eman A Karam
- Microbial Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Mohamed E Hassan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt.; Centre of Excellence, Encapsulation and Nanobiotechnology Group, National Research Centre, Dokki, Giza, Egypt
| | - Amany L Kansoh
- Microbial Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Amira A Gamal
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt..
| |
Collapse
|
2
|
Mehrabi Z, Harsij Z, Taheri-Kafrani A. Polydopamine-functionalized polyethersulfone membrane: A paradigm advancement in the field of α-amylase stability and immobilization. J Biotechnol 2024; 394:1-10. [PMID: 39153546 DOI: 10.1016/j.jbiotec.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Biocatalytic membranes have great potential in various industrial sectors, with the immobilization of enzymes being a crucial stage. Immobilizing enzymes through covalent bonds is a complex and time-consuming process for large-scale applications. Polydopamine (PDA) offers a more sustainable and eco-friendly alternative for enzyme immobilization. Therefore, surface modification with polydopamine as mussel-inspired antifouling coatings has increased resistance to fouling. In this study, α-amylase enzyme was covalently bound to a bioactive PDA-coated polyethersulfone (PES) membrane surface using cyanuric chloride as a linker. The optimal activity of α-amylase enzyme immobilized on PES/PDA membrane was obtained at temperature and pH of 55°C and 6.5, respectively. The immobilized enzyme can be reused up to five reaction cycles with 55 % retention of initial activity. Besides, it maintained 60 % of its activity after being stored for five weeks at 4°C. Additionally, the immobilized enzyme demonstrated increased Michaelis constant and maximum velocity values during starch hydrolysis. The results of the biofouling experiment of various membranes in a dead-end cell demonstrated that the PES membrane's water flux increased from 6722.7 Lmh to 7560.2 Lmh after PDA modification. Although α-amylase immobilization reduced the flux to 7458.5 Lmh due to enhanced hydrophilicity, compared to unmodified membrane. The findings of this study demonstrated that the membrane produced through co-deposition exhibited superior hydrophilicity, enhanced coating stability, and strong antifouling properties, positioning it as a promising candidate for industrial applications.
Collapse
Affiliation(s)
- Zahra Mehrabi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran
| | - Zohreh Harsij
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran
| | - Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran.
| |
Collapse
|
3
|
Si H, Xie F, Yang R, Gu W, Wu S, Zhang J, Zhang Y, Qiao Y. Recent developments in enzymatic preparation, physicochemical properties, bioactivity, and application of resistant starch type III from staple food grains. Int J Biol Macromol 2024; 279:135521. [PMID: 39260638 DOI: 10.1016/j.ijbiomac.2024.135521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Resistant starch (RS) was classified into five types and referred to the starch that cannot be digested and absorbed by the small intestine of healthy human beings. Among them, RS3 has received a lot of attention from researchers because of its good functional properties and greater application prospects. Meanwhile, the enzymatic method is widely used in the preparation of RS3 because of its high efficiency and environmental protection. α-Amylase and pullulanase as the main enzymes can effectively improve the yield of RS3. The physical properties of RS3 have an excellent potential for application in improving food crispness, texture and producing low glycemic index (GI) foods. It is more valuable because it has biological activities such as inducing apoptosis in tumor cells, lowering intestinal pH, and regulating blood glucose, etc. This paper summarized the current research progress of RS3 from different staple food grains, including current applications of enzymes commonly used in the preparation of RS3, physical properties and biological activities of RS3, and the application of RS3 in different areas to provide a theoretical basis for future research on RS3 as well as further development and applications based on the market requirement.
Collapse
Affiliation(s)
- Haoyu Si
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Fan Xie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ruifang Yang
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Wei Gu
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Songheng Wu
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jing Zhang
- Shanghai Jingliang Industry (Group) Co., Ltd., Shanghai 201210, China
| | - Yi Zhang
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Yongjin Qiao
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Shuneng Irradiation Technology Co., Ltd., Shanghai 201401, China.
| |
Collapse
|
4
|
Srivastava S, Pandey VK, Singh P, Bhagya Raj GVS, Dash KK, Singh R. Effects of microwave, ultrasound, and various treatments on the reduction of antinutritional factors in elephant foot yam: A review. EFOOD 2022. [DOI: 10.1002/efd2.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Shivangi Srivastava
- Department of Bioengineering Integral University Lucknow Uttar Pradesh India
| | - Vinay K. Pandey
- Department of Bioengineering Integral University Lucknow Uttar Pradesh India
- Department of Biotechnology Axis Institute of Higher Education Kanpur Uttar Pradesh India
| | - Poornima Singh
- Department of Bioengineering Integral University Lucknow Uttar Pradesh India
| | | | - Kshirod K. Dash
- Department of Food Processing Technology Ghani Khan Choudhury Institute of Engineering and Technology Malda West Bengal India
| | - Rahul Singh
- Department of Bioengineering Integral University Lucknow Uttar Pradesh India
| |
Collapse
|
5
|
Kikani BA, Suthar S, Joshi D. Nanomaterials: An efficient support to immobilize microbial α–amylases for improved starch hydrolysis. STARCH-STARKE 2022. [DOI: 10.1002/star.202200093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bhavtosh A. Kikani
- P. D. Patel Institute of Applied Sciences Charotar University of Science and Technology CHARUSAT Campus Changa – 388 421 Gujarat India
| | - Sadikhusain Suthar
- P. D. Patel Institute of Applied Sciences Charotar University of Science and Technology CHARUSAT Campus Changa – 388 421 Gujarat India
| | - Disha Joshi
- P. D. Patel Institute of Applied Sciences Charotar University of Science and Technology CHARUSAT Campus Changa – 388 421 Gujarat India
| |
Collapse
|
6
|
Guo W, Yang J, Huang T, Liu D, Liu Q, Li J, Sun W, Wang X, Zhu L, Tian C. Synergistic effects of multiple enzymes from industrial Aspergillus niger strain O1 on starch saccharification. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:225. [PMID: 34838099 PMCID: PMC8627030 DOI: 10.1186/s13068-021-02074-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/13/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Starch is one of the most important renewable polysaccharides in nature for production of bio-ethanol. The starch saccharification step facilitates the depolymerization of starch to yield glucose for biofuels production. The filamentous fungus Aspergillus niger (A. niger) is the most used microbial cell factory for production of the commercial glucoamylase. However, the role of each component in glucoamylases cocktail of A. niger O1 for starch saccharification remains unclear except glucoamylase. RESULTS In this study, we identified the key enzymes contributing to the starch saccharification process are glucoamylase, α-amylase and acid α-amylase out of 29 glycoside hydrolases from the 6-day fermentation products of A. niger O1. Through the synergistic study of the multienzymes for the starch saccharification in vitro, we found that increasing the amount of α-amylase by 5-10 times enhanced the efficiency of starch saccharification by 14.2-23.2%. Overexpression of acid α-amylase in strain O1 in vivo increased the total glucoamylase activity of O1 cultures by 15.0%. CONCLUSIONS Our study clarifies the synergistic effects among the components of glucoamylases cocktail, and provides an effective approach to optimize the profile of saccharifying enzymes of strain O1 for improving the total glucoamylase activity.
Collapse
Affiliation(s)
- Wenzhu Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Jianhua Yang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Tianchen Huang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Dandan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Qian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Wenliang Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Xingji Wang
- Longda Biotechnology Inc, Shandong, 276400, China
| | - Leilei Zhu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
7
|
Bacillus velezensis Identification and Recombinant Expression, Purification, and Characterization of Its Alpha-Amylase. FERMENTATION 2021. [DOI: 10.3390/fermentation7040227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Amylases account for about 30% of the global market of industrial enzymes, and the current amylases cannot fully meet industrial needs. This study aimed to identify a high α-amylase producing bacterium WangLB, to clone its α-amylase coding gene, and to characterize the α-amylase. Results showed that WangLB belonged to Bacillus velezensis whose α-amylase gene was 1980 bp coding 659 amino acids designated as BvAmylase. BvAmylase was a hydrophilic stable protein with a signal peptide and a theoretical pI of 5.49. The relative molecular weight of BvAmylase was 72.35 kDa, and was verified by SDS-PAGE. Its modeled structure displayed that it was a monomer composed of three domains. Its optimum temperature and pH were 70 °C and pH 6.0, respectively. It also showed high activity in a wide range of temperatures (40–75 °C) and a relatively narrow pH (5.0–7.0). It was a Ca2+-independent enzyme, whose α-amylase activity was increased by Co2+, Tween 20, and Triton X-100, and severely decreased by SDS. The Km and the Vmax of BvAmylase were 3.43 ± 0.53 and 434.19 ± 28.57 U/mg. In conclusion, the α-amylase producing bacterium WangLB was identified, and one of its α-amylases was characterized, which will be a candidate enzyme for industrial applications.
Collapse
|
8
|
Microbial amylolytic enzymes in foods: Technological importance of the Bacillus genus. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Abe MM, Martins JR, Sanvezzo PB, Macedo JV, Branciforti MC, Halley P, Botaro VR, Brienzo M. Advantages and Disadvantages of Bioplastics Production from Starch and Lignocellulosic Components. Polymers (Basel) 2021; 13:2484. [PMID: 34372086 PMCID: PMC8348970 DOI: 10.3390/polym13152484] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 01/24/2023] Open
Abstract
The accumulation of plastic wastes in different environments has become a topic of major concern over the past decades; therefore, technologies and strategies aimed at mitigating the environmental impacts of petroleum products have gained worldwide relevance. In this scenario, the production of bioplastics mainly from polysaccharides such as starch is a growing strategy and a field of intense research. The use of plasticizers, the preparation of blends, and the reinforcement of bioplastics with lignocellulosic components have shown promising and environmentally safe alternatives for overcoming the limitations of bioplastics, mainly due to the availability, biodegradability, and biocompatibility of such resources. This review addresses the production of bioplastics composed of polysaccharides from plant biomass and its advantages and disadvantages.
Collapse
Affiliation(s)
- Mateus Manabu Abe
- Institute for Research in Bioenergy (IPBEN), São Paulo State University (UNESP), Rio Claro 13500-230, SP, Brazil; (M.M.A.); (J.R.M.); (J.V.M.)
| | - Júlia Ribeiro Martins
- Institute for Research in Bioenergy (IPBEN), São Paulo State University (UNESP), Rio Claro 13500-230, SP, Brazil; (M.M.A.); (J.R.M.); (J.V.M.)
| | - Paula Bertolino Sanvezzo
- Department of Materials Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Carlos 13566-590, SP, Brazil; (P.B.S.); (M.C.B.)
| | - João Vitor Macedo
- Institute for Research in Bioenergy (IPBEN), São Paulo State University (UNESP), Rio Claro 13500-230, SP, Brazil; (M.M.A.); (J.R.M.); (J.V.M.)
| | - Marcia Cristina Branciforti
- Department of Materials Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Carlos 13566-590, SP, Brazil; (P.B.S.); (M.C.B.)
| | - Peter Halley
- School of Chemical Engineering, The University of Queensland, Level 3, Don Nicklin Building (74), St Lucia, QLD 4072, Australia;
| | - Vagner Roberto Botaro
- Science and Technology Center for Sustainability—CCTS, Federal University of São Carlos, Rodovia João Leme dos Santos, Km 110, Sorocaba 18052-780, SP, Brazil;
| | - Michel Brienzo
- Institute for Research in Bioenergy (IPBEN), São Paulo State University (UNESP), Rio Claro 13500-230, SP, Brazil; (M.M.A.); (J.R.M.); (J.V.M.)
| |
Collapse
|
10
|
Kizhakedathil MPJ, C SD. Acid stable α-amylase from Pseudomonas balearica VITPS19-Production, purification and characterization. ACTA ACUST UNITED AC 2021; 30:e00603. [PMID: 33747801 PMCID: PMC7966826 DOI: 10.1016/j.btre.2021.e00603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/05/2021] [Accepted: 02/21/2021] [Indexed: 12/04/2022]
Abstract
α – Amylase was produced from a rhizobacteria Pseudomonas balearica VITPS19. One factor at a time method (OFAT) was employed to optimize the α –amylase production. Three step purification of α – amylase from the fermentation broth. Determining the optimal conditions for enzyme activity. Estimation of the enzymatic kinetic parameters of the α-amylase.
In the present study, α-amylase from Pseudomonas balearica VITPS19 isolated from Kolathur, Tamil Nadu, India was studied. Initially, one factor at a time (OFAT) approach was used to optimize the medium parameters like pH, temperature, carbon and nitrogen sources and the presence of metal ions to enhance the amylase activity. After the optimization, 6.5-fold increase in the enzyme production was observed. Enzyme purification was carried out in three stages. The molecular weight of purified α-amylase was estimated to be 47 kDa.The optimum activity for the purified enzyme was observed at pH 6 in 0.1 M phosphate buffer at 25 ± 2 °C and the activity is enhanced in the presence of ions like Mn2+, Mo6+, Na+, Mg2+and Zn2+ and was inhibited in the presence of Hg2+ ions. Compounds such as Sodium dodecyl sulfate (SDS), Ethylenediaminetetraacetic acid (EDTA), urea and β- mercaptoethanol reduced the amylase activity. The Km and Vmax of the α-amylase was estimated to be 45.23 mM and 20.83 U/mL, respectively.
Collapse
Affiliation(s)
- Moni Philip Jacob Kizhakedathil
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology University, Vellore - 632014, Tamil Nadu, India
| | - Subathra Devi C
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology University, Vellore - 632014, Tamil Nadu, India
| |
Collapse
|
11
|
Sadeghian Motahar SF, Ariaeenejad S, Salami M, Emam-Djomeh Z, Sheykh Abdollahzadeh Mamaghani A. Improving the quality of gluten-free bread by a novel acidic thermostable α-amylase from metagenomics data. Food Chem 2021; 352:129307. [PMID: 33691209 DOI: 10.1016/j.foodchem.2021.129307] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022]
Abstract
Development of gluten-free products is important due to their role in gluten related disorders and health improvement. α-Amylase enzymes have shown to have a positive effect on wheat bread quality. This study aimed to screen in-silico a novel acidic-thermostable α-amylase (PersiAmy2) from the sheep rumen metagenome to increase the quality of gluten-free bread. The PersiAmy2 was cloned, expressed, purified and characterized. The enzyme was highly stable at a wide range of pH, temperature and storage conditions. The PersiAmy2 had excellent activity in the presence of ions, inhibitors, and surfactants. Utilization of the acidic thermostable PersiAmy2 in gluten-free bread resulted in a softer crumb, higher specific volume, porosity, moisture content and caused a darker crust color. The rheological measurement showed a solid-elastic behavior in batters. Also the addition of this enzyme reduced the firmness. From the results of this study it can be concluded that the PersiAmy2 can be used to improve the quality of gluten-free bread.
Collapse
Affiliation(s)
- Seyedeh Fatemeh Sadeghian Motahar
- Department of Food Science and Engineering, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Maryam Salami
- Department of Food Science and Engineering, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
| | - Zahra Emam-Djomeh
- Department of Food Science and Engineering, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Atefeh Sheykh Abdollahzadeh Mamaghani
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
12
|
A novel metagenome-derived thermostable and poultry feed compatible α-amylase with enhanced biodegradation properties. Int J Biol Macromol 2020; 164:2124-2133. [DOI: 10.1016/j.ijbiomac.2020.08.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/28/2022]
|
13
|
Pinto ÉSM, Dorn M, Feltes BC. The tale of a versatile enzyme: Alpha-amylase evolution, structure, and potential biotechnological applications for the bioremediation of n-alkanes. CHEMOSPHERE 2020; 250:126202. [PMID: 32092569 DOI: 10.1016/j.chemosphere.2020.126202] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/10/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
As the primary source of a wide range of industrial products, the study of petroleum-derived compounds is of pivotal importance. However, the process of oil extraction and refinement is among the most environmentally hazardous practices, impacting almost all levels of the ecological chain. So far, the most appropriate strategy to overcome such an issue is through bioremediation, which revolves around the employment of different microorganisms to degrade hazardous compounds, generating less environmental impact and lower monetary costs. In this sense, a myriad of organisms and enzymes are considered possible candidates for the bioremediation process. Amidst the potential candidates is α-amylase, an evolutionary conserved starch-degrading enzyme. Notably, α-amylase was not only seen to degrade n-alkanes, a subclass of alkanes considered the most abundant petroleum-derived compounds but also low-density polyethylene, a dangerous pollutant produced from petroleum. Thus, due to its high conservation in both eukaryotic and prokaryotic lineages, in addition to the capability to degrade different types of hazardous compounds, the study of α-amylase becomes a rising interest. Nevertheless, there are no studies that review all biotechnological applications of α-amylase for bioremediation. In this work, we critically review the potential biotechnological applications of α-amylase, focusing on the biodegradation of petroleum-derived compounds. Evolutionary aspects are discussed, as well for all structural information and all features that could impact on the employment of this protein in the biotechnological industry, such as pH, temperature, and medium conditions. New perspectives and critical assessments are conducted regarding the application of α-amylase in the bioremediation of n-alkanes.
Collapse
Affiliation(s)
- Éderson Sales Moreira Pinto
- Laboratory of Structural Bioinformatics and Computational Biology, Center for Biotechnology, Federal University of Rio Grande do Sul, Brazil
| | - Márcio Dorn
- Laboratory of Structural Bioinformatics and Computational Biology, Institute of Informatics, Federal University of Rio Grande do Sul, Brazil; Laboratory of Structural Bioinformatics and Computational Biology, Center for Biotechnology, Federal University of Rio Grande do Sul, Brazil
| | - Bruno César Feltes
- Laboratory of Structural Bioinformatics and Computational Biology, Institute of Informatics, Federal University of Rio Grande do Sul, Brazil.
| |
Collapse
|
14
|
Apostolidi ME, Kalantzi S, Hatzinikolaou DG, Kekos D, Mamma D. Catalytic and thermodynamic properties of an acidic α-amylase produced by the fungus Paecilomyces variotii ATHUM 8891. 3 Biotech 2020; 10:311. [PMID: 32582508 DOI: 10.1007/s13205-020-02305-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/13/2020] [Indexed: 02/08/2023] Open
Abstract
An extracellular acid stable α-amylase from Paecilomyces variotii ATHUM 8891 (PV8891 α-amylase) was purified to homogeneity applying ammonium sulfate fractionation, ion exchange and gel filtration chromatography and exhibited a reduced molecular weight of 75 kDa. The purified enzyme was optimally active at pH 5.0 and 60 °C and stable in acidic pH (3.0-6.0). K m, v max and k cat for starch hydrolysis were found 1.1 g L-1, 58.5 μmole min-1 (mg protein)-1, and 73.1 s-1, respectively. Amylase activity was marginally enhanced by Ca2+ and Fe2+ ions while Cu2+ ions strongly inhibited it. Thermodynamic parameters determined for starch hydrolysis (Ε α, ΔH*, ΔG*, ΔS*, Δ G E - S ∗ and Δ G E - T ∗ ) suggests an effective capacity of PV8891 α-amylase towards starch hydrolysis. Thermal stability of PV8891 α-amylase was assessed at different temperatures (30-80 οC). Thermodynamic parameters ( E a d , ΔH*, ΔG*, ΔS*) as well as the integral activity of a continuous system for starch hydrolysis by the PV8891 α-amylase revealed satisfactory thermostability up to 60 °C. The acidic nature and its satisfactory performance at temperatures lower than the industrially used amylases may represent potential applications of PV8891 α-amylase in starch processing industry.
Collapse
|
15
|
Maurya SS, Nadar SS, Rathod VK. A rapid self-assembled hybrid bio-microflowers of alpha–amylase with enhanced activity. J Biotechnol 2020; 317:27-33. [DOI: 10.1016/j.jbiotec.2020.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 01/05/2023]
|
16
|
Khusniati T, Trieska Dewi G, P. Roswiem A, Ayu Azhari S, Ishfahani F, Sulistiani S. CARBOHYDRATE DEGRADATION OF TUBER PASTE FLOUR BY THE ADDITION OF α-AMYLASE FROM TWO Lactobacillus SPECIES. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2020. [DOI: 10.6066/jtip.2020.31.1.60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
17
|
Kwon YM, Choi HS, Lim JY, Jang HS, Chung D. Characterization of Amylolytic Activity by a Marine-Derived Yeast Sporidiobolus pararoseus PH-Gra1. MYCOBIOLOGY 2020; 48:195-203. [PMID: 37970562 PMCID: PMC10635172 DOI: 10.1080/12298093.2020.1763100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 11/17/2023]
Abstract
Marine yeasts have tremendous potential in industrial applications but have received less attention than terrestrial yeasts and marine filamentous fungi. In this study, we have screened marine yeasts for amylolytic activity and identified an amylase-producing strain PH-Gra1 isolated from sea algae. PH-Gra1 formed as a coral-red colony on yeast-peptone-dextrose (YPD) agar; the maximum radial growth was observed at 22 °C, pH 6.5 without addition of NaCl to the media. Based on the morphology and phylogenetic analyses derived from sequences of internal transcribed spacer (ITS) and a D1/D2 domain of large subunit of ribosomal DNA, PH-Gra1 was designated Sporidiobolus pararoseus. S. pararoseus is frequently isolated from marine environments and known to produce lipids, carotenoids, and several enzymes. However, its amylolytic activity, particularly the optimum conditions for enzyme activity and stability, has not been previously characterized in detail. The extracellular crude enzyme of PH-Gra1 displayed its maximum amylolytic activity at 55 °C, pH 6.5, and 0%-3.0% (w/v) NaCl under the tested conditions, and the activity increased with time over the 180-min incubation period. In addition, the crude enzyme hydrolyzed potato starch more actively than corn and wheat starch, and was stable at temperatures ranging from 15 °C to 45 °C for 2 h. This report provides a basis for additional studies of marine yeasts that will facilitate industrial applications.
Collapse
Affiliation(s)
- Yong Min Kwon
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Hyun Seok Choi
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Ji Yeon Lim
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Hyeong Seok Jang
- Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Dawoon Chung
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| |
Collapse
|
18
|
Salem K, Elgharbi F, Ben Hlima H, Perduca M, Sayari A, Hmida-Sayari A. Biochemical characterization and structural insights into the high substrate affinity of a dimeric and Ca 2+ independent Bacillus subtilis α-amylase. Biotechnol Prog 2020; 36:e2964. [PMID: 31951110 DOI: 10.1002/btpr.2964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/17/2019] [Accepted: 01/06/2020] [Indexed: 11/10/2022]
Abstract
An extracellular amylase (AmyKS) produced by a newly isolated Bacillus subtilis strain US572 was purified and characterized. AmyKS showed maximal activity at pH 6 and 60°C with a half-life of 10 min at 70°C. It is a Ca2+ independent enzyme and able to hydrolyze soluble starch into oligosaccharides consisting mainly of maltose and maltotriose. When compared to the studied α-amylases, AmyKS presents a high affinity toward soluble starch with a Km value of 0.252 mg ml-1 . Coupled with the size-exclusion chromatography data, MALDI-TOF/MS analysis indicated that the purified amylase is a dimer with a molecular mass of 136,938.18 Da. It is an unusual feature of a non-maltogenic α-amylase. A 3D model and a dimeric model of AmyKS were generated showing the presence of an additional domain suspected to be involved in the dimerization process. This dimer arrangement could explain the high substrate affinity and catalytic efficiency of this enzyme.
Collapse
Affiliation(s)
- Karima Salem
- Laboratoire de Biotechnologie Microbienne et d'Ingénierie des Enzymes (LBMIE), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Sfax, Tunisie
| | - Fatma Elgharbi
- Laboratoire de Biotechnologie Microbienne et d'Ingénierie des Enzymes (LBMIE), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Sfax, Tunisie
| | - Hajer Ben Hlima
- Unité de Biotechnologie des Algues, ENIS, Université de Sfax, Sfax, Tunisie
| | - Massimiliano Perduca
- Biocrystallography and Nanostructure Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Adel Sayari
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS, Université de Sfax, Sfax, Tunisie
| | - Aïda Hmida-Sayari
- Laboratoire de Biotechnologie Microbienne et d'Ingénierie des Enzymes (LBMIE), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Sfax, Tunisie
| |
Collapse
|
19
|
Extremophilic Amylases: Microbial Production and Applications. MICROORGANISMS FOR SUSTAINABILITY 2020. [DOI: 10.1007/978-981-15-1710-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Sánchez Castelblanco EM, Heredia Martín JP, Buitrago Morales SM, Medina Rodríguez JP. Aislamiento e identificación de microorganismos potencialmente amilolíticos y celulolíticos de suelos de humedales de Bogotá. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2020. [DOI: 10.15446/rev.colomb.biote.v22n1.71278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Las amilasas y celulasas de origen microbiano se han utilizado desde hace más de tres décadas en la industria; el aislamiento de cepas microbianas nativas productoras de enzimas es el punto de partida para aprovechar la biodiversidad microbiana para la obtención de enzimas con propiedades para la obtención de nuevos productos en la optimización de procesos industriales. El objetivo de este trabajo, fue aislar, a partir de suelo de cinco humedales en Bogotá, cepas microbianas con capacidad para producir enzimas amilolíticas y celulolíticas. Se realizó la medición de halos de hidrólisis en agar almidón y agar carboximetilcelulosa. Se determinaron las unidades enzimáticas (U/ml/min) por medio de azúcares reductores por la técnica de DNS. Se seleccionaron cuatro cepas de Bacillus subtillis amiloliquefaciens productoras de amilasas con actividades entre 752±33 y 480 ± 35 U/ml/min a 60ºC y cinco cepas celulolíticas identificadas como Bacillus subtillis amiloliquefaciens, Stenotrophomonas nitritireducens y Yersinia massiliensis, capaces de producir celulasas con actividades enzimáticas entre 19.11 ± 2.3 y 13.82 ± 2.5 UA/ml/min a 50ºC. Con estos resultados se demostró que a partir de suelos de humedales, se pueden recuperar microrganismos con capacidad de producción enzimática, como punto de partida para una posterior aplicación en procesos industriales.
Collapse
|
21
|
Alves KJ, da Silva MCP, Cotta SR, Ottoni JR, van Elsas JD, de Oliveira VM, Andreote FD. Mangrove soil as a source for novel xylanase and amylase as determined by cultivation-dependent and cultivation-independent methods. Braz J Microbiol 2019; 51:217-228. [PMID: 31741310 DOI: 10.1007/s42770-019-00162-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/19/2019] [Indexed: 11/25/2022] Open
Abstract
Xylanase and α-amylase enzymes participate in the degradation of organic matter, acting in hemicellulose and starch mineralization, respectively, and are in high demand for industrial use. Mangroves represent a promising source for bioprospecting enzymes due to their unique characteristics, such as fluctuations in oxic/anoxic conditions and salinity. In this context, the present work aimed to bioprospect xylanases from mangrove soil using cultivation-dependent and cultivation-independent methods. Through screening from a metagenomic library, three potentially xylanolytic clones were obtained and sequenced, and reads were assembled into contigs and annotated. The contig MgrBr135 was affiliated with the Planctomycetaceae family and was one of 30 ORFs selected for subcloning that demonstrated only amylase activity. Through the cultivation method, 38 bacterial isolates with xylanolytic activity were isolated. Isolate 11 showed an enzymatic index of 10.9 using the plate assay method. Isolate 39 achieved an enzyme activity of 0.43 U/mL using the colorimetric method with 3,5-dinitrosalicylic acid. Isolate 39 produced xylanase on culture medium with salinity ranging from 1.25 to 5%. Partial 16S rRNA gene sequencing identified isolates in the Bacillus and Paenibacillus genera. The results of this study highlight the importance of mangroves as an enzyme source and show that bacterial groups can be used for starch and hemicellulose degradation.
Collapse
Affiliation(s)
- Kelly Jaqueline Alves
- Department of Soil Science, Laboratory of Soil Microbiology, University of Sao Paulo, Padua Dias Avenue, 11 CP 09, Piracicaba, São Paulo, 13418-900, Brazil.
| | - Mylenne Calciolari Pinheiro da Silva
- Department of Soil Science, Laboratory of Soil Microbiology, University of Sao Paulo, Padua Dias Avenue, 11 CP 09, Piracicaba, São Paulo, 13418-900, Brazil
| | - Simone Raposo Cotta
- Center for Nuclear Energy in Agriculture, University of São Paulo, Centenario Avenue, 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Júlia Ronzella Ottoni
- University Center Dinâmica das Cataratas, Castelo Branco Street, 349, Foz do Iguaçu, Paraná, 85852-010, Brazil
| | - Jan Dirk van Elsas
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands
| | - Valeria Maia de Oliveira
- Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Alexandre Cazellato Avenue, 999, Paulínia, São Paulo, 13140-000, Brazil
| | - Fernando Dini Andreote
- Department of Soil Science, Laboratory of Soil Microbiology, University of Sao Paulo, Padua Dias Avenue, 11 CP 09, Piracicaba, São Paulo, 13418-900, Brazil
| |
Collapse
|
22
|
Gutiérrez-García AK, Alvarez-Guzmán CL, De Leon-Rodriguez A. Autodisplay of alpha amylase from Bacillus megaterium in E. coli for the bioconversion of starch into hydrogen, ethanol and succinic acid. Enzyme Microb Technol 2019; 134:109477. [PMID: 32044024 DOI: 10.1016/j.enzmictec.2019.109477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/29/2019] [Accepted: 11/16/2019] [Indexed: 11/16/2022]
Abstract
In this work, the expression of an α-amylase from Bacillus megaterium on the cell surface of Escherichia coli strains WDHA (Δ hycA and Δ ldhA) and WDHFP (Δ hycA, Δ frdD and Δ pta) by the autodisplay adhesin involved in diffuse adherence (AIDA) system was carried out with the purpose to confer the ability to E. coli strains to degrade starch and thus produce hydrogen, ethanol and succinic acid. For the characterization of the biocatalyst, the effect of temperature (30-70 °C), pH (3-6) and CaCl2 concentration (0-25 mM), as well as the thermostability of the biocatalyst (55-80 °C) at several time intervals (15-60 min) were evaluated. The results showed that the biocatalyst had a maximum activity at 55 °C and pH 4.5. Calcium was required for the activity as well for the thermal stability of the biocatalyst. The calculated Vmax and Km values were 0.24 U/cm3 and 5.8 mg/cm3, respectively. Furthermore, a set of anaerobic batch fermentations was carried out using 10 g/dm3 of starch and 1 g/dm3 of glucose as carbon sources in 120 cm3 serological bottles, using WDHA and WDHFP strains harboring the pAIDA-amyA plasmid. The hydrogen production for WDHA was 1056.06 cm3/dm3 and the succinic acid yield was 0.68 g/gstarch, whereas WDHFP strain produced 1689.68 cm3/dm3 of hydrogen and an ethanol yield of 0.28 g/gstarch. This work represents a promising strategy to improve the exploitation of starchy biomass for the production of biofuels (hydrogen and ethanol) or succinate without the need of a pre-saccharification process.
Collapse
Affiliation(s)
- Ana K Gutiérrez-García
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C. Camino a la Presa San José 2055, Col. Lomas 4ª Sección, C.P. 78216, San Luis Potosí, México
| | - Cecilia Lizeth Alvarez-Guzmán
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C. Camino a la Presa San José 2055, Col. Lomas 4ª Sección, C.P. 78216, San Luis Potosí, México
| | - Antonio De Leon-Rodriguez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C. Camino a la Presa San José 2055, Col. Lomas 4ª Sección, C.P. 78216, San Luis Potosí, México.
| |
Collapse
|
23
|
Naidu K, Maseko S, Kruger G, Lin J. Purification and characterization of α-amylase from Paenibacillus sp. D9 and Escherichia coli recombinants. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1628738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kayleen Naidu
- Discipline of Microbiology, School of Life sciences, University of KwaZulu-Natal (Westville Campus), Durban, South Africa
| | - Sibusiso Maseko
- Discipline of Microbiology, School of Life sciences, University of KwaZulu-Natal (Westville Campus), Durban, South Africa
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal (Westville Campus), Durban, South Africa
| | - Gert Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal (Westville Campus), Durban, South Africa
| | - Johnson Lin
- Discipline of Microbiology, School of Life sciences, University of KwaZulu-Natal (Westville Campus), Durban, South Africa
| |
Collapse
|
24
|
Influence of molecular structure on the susceptibility of starch to α-amylase. Carbohydr Res 2019; 479:23-30. [DOI: 10.1016/j.carres.2019.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/24/2019] [Accepted: 05/07/2019] [Indexed: 01/22/2023]
|
25
|
Directed evolution of α-amylase from Bacillus licheniformis to enhance its acid-stable performance. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00262-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Sakwa L, Cripwell RA, Rose SH, Viljoen-Bloom M. Consolidated bioprocessing of raw starch with Saccharomyces cerevisiae strains expressing fungal alpha-amylase and glucoamylase combinations. FEMS Yeast Res 2019; 18:5061630. [PMID: 30085077 DOI: 10.1093/femsyr/foy085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/27/2018] [Indexed: 01/10/2023] Open
Abstract
Cost-effective consolidated bioprocessing (CBP) of raw starch for biofuel production requires recombinant Saccharomyces cerevisiae strains expressing α-amylases and glucoamylases. Native Aureobasidium pullulans apuA, Aspergillus terreus ateA, Cryptococcus sp. S-2 cryA and Saccharomycopsis fibuligera sfiA genes encoding raw-starch α-amylases were cloned and expressed in the S. cerevisiae Y294 laboratory strain. Recombinant S. cerevisiae Y294[ApuA] and Y294[AteA] strains produced the highest extracellular α-amylase activities (2.17 U mL-1 and 2.98 U mL-1, respectively). Both the ApuA and AteA α-amylases displayed a preference for pH 4 to 5 and retained more than 75% activity after 5 days at 30°C. When ateA was co-expressed with the previously reported Aspergillus. tubingensis glucoamylase gene (glaA), the amylolytic S. cerevisiae Y294[AteA-GlaA] strain produced 45.77 g L-1 ethanol after 6 days. Ethanol production by this strain was improved with the addition of either 2.83 μL STARGEN 002 (54.54 g L-1 ethanol and 70.44% carbon conversion) or 20 μL commercial glucoamylase from Sigma-Aldrich (73.80 g L-1 ethanol and 90.19% carbon conversion). This is the first report of an engineered yeast strain that can replace up to 90% of the enzymes required for raw starch hydrolysis, and thus contributes to the realisation of a CBP yeast for starch-based biofuel production.
Collapse
Affiliation(s)
- L Sakwa
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - R A Cripwell
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - S H Rose
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - M Viljoen-Bloom
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
27
|
Trabelsi S, Ben Mabrouk S, Kriaa M, Ameri R, Sahnoun M, Mezghani M, Bejar S. The optimized production, purification, characterization, and application in the bread making industry of three acid-stable alpha-amylases isoforms from a new isolated Bacillus subtilis strain US586. J Food Biochem 2019; 43:e12826. [PMID: 31353531 DOI: 10.1111/jfbc.12826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 01/10/2023]
Abstract
A new alpha-amylase-producing strain was assigned as Bacillus subtilis US586. The used statistical methodology indicated that amylase production was enhanced by 5.3 folds. The crude enzyme analysis proved the presence of three amylases isoforms Amy1, Amy2, and Amy3 called Amy586. The purified amylases had molecular masses of 48, 52, and 68 kDa with a total specific activity of 2,133 U/mg. Amy586 generated maltose, maltotriose, and maltopentaose as main final products after starch hydrolysis. It exhibited a large 4-6 optimal pH, a 60°C temperature activity, and a moderate thermostability. Amy586 displayed a high pH stability ranging from 3.5 to 6. The addition of Amy586 to weak wheat flour decreased its P/L ratio from 1.9 to 1.2 and increased its dough baking strength (W) from 138 × 10-4 to 172 × 10-4 J. Amy586 also improved the bread texture parameters by reducing its firmness and boosting the cohesion and elasticity values. PRACTICAL APPLICATIONS: Bacterial alpha-amylases with novel properties have been the major extent of recent research. In this paper, we managed to demonstrate that the addition of a purified amylolytic extract from the new isolated Bacillus subtilis strain US586 to weak local flour improves dough rheological proprieties and bread quality. Therefore, Amy586 can be considered as a bread making improver.
Collapse
Affiliation(s)
- Sahar Trabelsi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Sameh Ben Mabrouk
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Mouna Kriaa
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Rihab Ameri
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Mouna Sahnoun
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Monia Mezghani
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Samir Bejar
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| |
Collapse
|
28
|
Biochemical analysis of elephant foot yam (Amorphophallus paeoniifolius) lacto-pickle with probiotic Lactobacillus plantarum. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
29
|
Afzali E, Forootanfar H, Eslaminejad T, Amirpour-Rostami S, Ansari M. Enhancing purification of α-amylase by superparamagnetic complex with alginate/chitosan/β-cyclodextrin/TPP. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2018.1529171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Elham Afzali
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Touba Eslaminejad
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sahar Amirpour-Rostami
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ansari
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Food and Drug Control, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
30
|
Enhanced acidic adaptation of Bacillus subtilis Ca-independent alpha-amylase by rational engineering of pKa values. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Parashar D, Satyanarayana T. An Insight Into Ameliorating Production, Catalytic Efficiency, Thermostability and Starch Saccharification of Acid-Stable α-Amylases From Acidophiles. Front Bioeng Biotechnol 2018; 6:125. [PMID: 30324103 PMCID: PMC6172347 DOI: 10.3389/fbioe.2018.00125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 08/20/2018] [Indexed: 02/03/2023] Open
Abstract
Most of the extracellular enzymes of acidophilic bacteria and archaea are stable at acidic pH with a relatively high thermostability. There is, however, a dearth of information on their acid stability. Although several theories have been postulated, the adaptation of acidophilic proteins to low pH has not been explained convincingly. This review highlights recent developments in understanding the structure and biochemical characteristics, and production of acid-stable and calcium-independent α-amylases by acidophilic bacteria with special reference to that of Bacillus acidicola.
Collapse
Affiliation(s)
- Deepak Parashar
- Functional Genomic Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Tulasi Satyanarayana
- Division of Biological Sciences and Engineering, Netaji Subhas Institute of Technology, New Delhi, India
| |
Collapse
|
32
|
Wang J, Zhang Y, Wang X, Shang J, Li Y, Zhang H, Lu F, Liu F. Biochemical characterization and molecular mechanism of acid denaturation of a novel α-amylase from Aspergillus niger. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
33
|
Transient responses of Wickerhamia sp. yeast continuous cultures to qualitative changes in carbon source supply: induction and catabolite repression of α-amylase synthesis. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1369-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
34
|
Wang J, Li Y, Lu F. Molecular cloning and biochemical characterization of an α-amylase family from Aspergillus niger. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2018.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
35
|
Belakhov VV, Garabadzhiu AV. A New Sorption Method for the Production of Bacillus subtilis α-Amylase with the Use of FAF Microfine Anion Exchanger. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363217130023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Montor-Antonio JJ, Hernández-Heredia S, Ávila-Fernández Á, Olvera C, Sachman-Ruiz B, Del Moral S. Effect of differential processing of the native and recombinant α-amylase from Bacillus amyloliquefaciens JJC33M on specificity and enzyme properties. 3 Biotech 2017; 7:336. [PMID: 28955633 DOI: 10.1007/s13205-017-0954-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/07/2017] [Indexed: 12/07/2022] Open
Abstract
AmyJ33, an α-amylase isolated from Bacillus amyloliquefaciens JJC33M, has been characterized as a non-metalloenzyme that hydrolyzes raw starch. In this work, the gene that codifies for AmyJ33 was isolated and cloned. The recombinant α-amylase (AmyJ33r) produced had a molecular weight of 72 kDa, 25 kDa higher than the native α-amylase (AmyJ33). Our results suggest that the C-terminal was processed in a different way in the native and the recombinant enzyme causing the difference observed in the molecular weight. Additionally, the enzyme activity, specificity and biochemical behavior were affected by this larger C-terminal extra region in AmyJ33r, since the enzyme lost the ability to hydrolyze raw starch compared to the native but increased its thermal stability and pH stability, and modified the profile of activity toward alkaline pH. It is suggested that the catalytic domain in recombinant enzyme, AmyJ33r, could be interfered or blocked by the amino acids involved in the C-terminal additional region producing changes in the enzyme properties.
Collapse
Affiliation(s)
- Juan José Montor-Antonio
- División de Estudios de Posgrado, Universidad del Papaloapan, Circuito Central 200, CP 68400 Tuxtepec, Oaxaca Mexico
| | - Sarahi Hernández-Heredia
- Instituto de Biotecnología, Universidad del Papaloapan, Circuito Central 200, CP 68400 Tuxtepec, Oaxaca Mexico
| | - Ángela Ávila-Fernández
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, CP 86150 Villahermosa, Centro, Tabasco Mexico
| | - Clarita Olvera
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, CP 62210 Cuernavaca, Morelos Mexico
| | - Bernardo Sachman-Ruiz
- Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria del Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, CP 62550 Jiutepec, Morelos Mexico
| | - Sandra Del Moral
- División de Estudios de Posgrado, Universidad del Papaloapan, Circuito Central 200, CP 68400 Tuxtepec, Oaxaca Mexico
| |
Collapse
|
37
|
Kanpiengjai A, Nguyen TH, Haltrich D, Khanongnuch C. Expression and comparative characterization of complete and C-terminally truncated forms of saccharifying α-amylase from Lactobacillus plantarum S21. Int J Biol Macromol 2017; 103:1294-1301. [PMID: 28587961 DOI: 10.1016/j.ijbiomac.2017.05.168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/16/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
Lactobacillus plantarum S21 α-amylase possesses 475 amino acids at the C-terminal region identified as the starch-binding domain (SBD) and has been previously reported to play a role in raw starch degradation. To understand the specific roles of this SBD, cloning and expression of the complete (AmyL9) and C-terminally truncated (AmyL9ΔSBD) forms of α-amylase were conducted for enzyme purification and comparative characterization. AmyL9 and AmyL9ΔSBD were overproduced in Escherichia coli at approximately 10- and 20-times increased values of volumetric productivity when compared to α-amylase produced by the wild type, respectively. AmyL9ΔSBD was unable to hydrolyze raw starch and exhibited substrate specificity in a similar manner to that of AmyL9, but it was weakly active toward amylopectin and glycogen. The hydrolysis products obtained from the amylaceous substrates of both enzymes were the same. In addition, AmyL9ΔSBD showed comparatively higher Km values than AmyL9 when it reacted with starch and amylopectin, and lower values for other kinetic constants namely vmax, kcat, and kcat/Km. The results indicated that the C-terminal SBDs of L. plantarum S21 α-amylase contribute to not only substrate preference but also substrate affinity and the catalytic efficiency of the α-amylase without any changes in the degradation mechanisms of the enzyme.
Collapse
Affiliation(s)
- Apinun Kanpiengjai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Thu-Ha Nguyen
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU University of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU University of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Chartchai Khanongnuch
- Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
38
|
Parashar D, Satyanarayana T. Production of Chimeric Acidic α-Amylase by the Recombinant Pichia pastoris and Its Applications. Front Microbiol 2017; 8:493. [PMID: 28382032 PMCID: PMC5360700 DOI: 10.3389/fmicb.2017.00493] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/09/2017] [Indexed: 01/15/2023] Open
Abstract
Recombinant chimeric α-amylase (Ba-Gt-amy) has been produced extracellularly in Pichia pastoris under AOX promoter. Clones of P. pastoris with multiple gene copies have been generated by multiple transformations and post-transformational vector amplification, which led to 10.7-fold enhancement in α-amylase titre as compared to a clone with a copy of the gene. The recombinant P. pastoris integrated eight copies of Ba-Gt-amy in the genome of P. pastoris, as revealed by real time PCR data analysis. Heterologous protein expression as well as mRNA level of Ba-Gt-amy was higher in multi-copy clone than that with single copy. The pure Ba-Gt-amy expressed in P. pastoris is a glycoprotein of 75 kDa, which is optimally active at pH 4.0 and 60°C with T1/2 of 40 min at 70°C. The Kinetic parameters and end product analysis suggested that glycosylation has no effect on catalytic properties of Ba-Gt-amy. The enzyme saccharifies soluble as well as raw starches efficiently and generates maltose and maltooligosaccharides, thus, useful in baking and sugar syrup industries. The strategy for generating multi-copy clones is being reported for the first time, which could be useful in enhancing the production of other recombinant proteins.
Collapse
Affiliation(s)
- Deepak Parashar
- Department of Microbiology, University of Delhi New Delhi, India
| | | |
Collapse
|
39
|
Li Z, Duan X, Chen S, Wu J. Improving the reversibility of thermal denaturation and catalytic efficiency of Bacillus licheniformis α-amylase through stabilizing a long loop in domain B. PLoS One 2017; 12:e0173187. [PMID: 28253342 PMCID: PMC5333897 DOI: 10.1371/journal.pone.0173187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/16/2017] [Indexed: 11/29/2022] Open
Abstract
The reversibility of thermal denaturation and catalytic efficiency of Bacillus licheniformis α-amylase were improved through site-directed mutagenesis. By using multiple sequence alignment and PoPMuSiC algorithm, Ser187 and Asn188, which located within a long loop in Domain B of Bacillus licheniformis α-amylase, were selected for mutation. In addition, Ala269, which is adjacent to Ser187 and Asn188, was also investigated. Seven mutants carrying the mutations S187D, N188T, N188S, A269K, A269K/S187D, S187D/N188T, and A269K/S187D/N188T were generated and characterized. The most thermostable mutant, A269K/S187D/N188T, exhibited a 9-fold improvement in half-life at 95°C and pH 5.5, compared with that of the wild-type enzyme. Mutant A269K/S187D/N188T also exhibited improved catalytic efficiency. The catalytic efficiency of mutant A269K/S187D/N188T reached 5.87×103±0.17 g·L-1·s-1 at pH 5.5, which is 1.84-fold larger than the corresponding value determined for the wild-type enzyme. Furthermore, the structure analysis showed that immobilization of the loop containing Ser187 and Asn188 plays a significant role in developing the properties of Bacillus licheniformis α-amylase.
Collapse
Affiliation(s)
- Zhu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xuguo Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Department of Food Science and Engineering, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
40
|
Gao Y, Huang M, Sun X, Zhang X, Zhang Y, Zhou X, Cai M. Single-site mutation of C363G or N463T strengthens thermostability improvement of IG181–182 deleted acidic α-amylase from deep-sea thermophile Geobacillus sp. FOOD BIOTECHNOL 2017. [DOI: 10.1080/08905436.2016.1276462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yanyun Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Mengmeng Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaoyue Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaoxu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
41
|
Hero JS, Pisa JH, Perotti NI, Romero CM, Martínez MA. Endoglucanase and xylanase production by Bacillus sp. AR03 in co-culture. Prep Biochem Biotechnol 2017; 47:589-596. [PMID: 28106512 DOI: 10.1080/10826068.2017.1280826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The behavior of three isolates retrieved from different cellulolytic consortia, Bacillus sp. AR03, Paenibacillus sp. AR247 and Achromobacter sp. AR476-2, were examined individually and as co-cultures in order to evaluate their ability to produce extracellular cellulases and xylanases. Utilizing a peptone-based medium supplemented with carboxymethyl cellulose (CMC), an increase estimation of 1.30 and 1.50 times was obtained by the co-culture containing the strains AR03 and AR247, with respect to enzyme titles registered by their individual cultivation. On the contrary, the extracellular enzymatic production decreased during the co-cultivation of strain AR03 with the non-cellulolytic Achromobacter sp. AR476-2. The synergistic behavior observed through the combined cultivation of the strains AR03 and AR247 might be a consequence of the consumption by Paenibacillus sp. AR247 of the products of the CMC hydrolysis (i.e., cellobiose and/or cello-oligosaccharides), which were mostly generated by the cellulase producer Bacillus sp. AR03. The effect observed could be driven by the requirement to fulfill the nutritional supply from both strains on the substrate evaluated. These results would contribute to a better description of the degradation of the cellulose fraction of the plant cell walls in nature, expected to an efficient utilization of renewable sources.
Collapse
Affiliation(s)
- Johan S Hero
- a PROIMI Planta Piloto de Procesos Industriales Microbiológicos , CONICET , Tucumán , Argentina
| | - José H Pisa
- a PROIMI Planta Piloto de Procesos Industriales Microbiológicos , CONICET , Tucumán , Argentina
| | - Nora I Perotti
- a PROIMI Planta Piloto de Procesos Industriales Microbiológicos , CONICET , Tucumán , Argentina.,b Facultad de Ciencias Exactas y Tecnología , Universidad Nacional de Tucumán , Tucumán , Argentina
| | - Cintia M Romero
- a PROIMI Planta Piloto de Procesos Industriales Microbiológicos , CONICET , Tucumán , Argentina.,c Facultad de Bioquímica, Química y Farmacia , Universidad Nacional de Tucumán , Tucumán , Argentina
| | - María A Martínez
- a PROIMI Planta Piloto de Procesos Industriales Microbiológicos , CONICET , Tucumán , Argentina.,b Facultad de Ciencias Exactas y Tecnología , Universidad Nacional de Tucumán , Tucumán , Argentina
| |
Collapse
|
42
|
Purification and characterization of β-mannanase from Aspergillus terreus and its applicability in depolymerization of mannans and saccharification of lignocellulosic biomass. 3 Biotech 2016; 6:136. [PMID: 28330208 PMCID: PMC4912962 DOI: 10.1007/s13205-016-0454-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/03/2016] [Indexed: 12/30/2022] Open
Abstract
Aspergillus terreus FBCC 1369 was grown in solid-state culture under statistically optimized conditions. β-Mannanase was purified to apparent homogeneity by ultrafiltration, anion exchange and gel filtration chromatography. A purification factor of 10.3-fold was achieved, with the purified enzyme exhibiting specific activity of 53 U/mg protein. The purified β-mannanase was optimally active at pH 7.0 and 70 °C and displayed stability over a broad pH range of 4.0–8.0 and a 30 min half-life at 80 °C. The molecular weight of β-mannanase was calculated as ~49 kDa by SDS-PAGE. The enzyme exhibited Km and Vmax values of 5.9 mg/ml and 39.42 µmol/ml/min, respectively. β-Mannanase activity was stimulated by β-mercaptoethanol and strongly inhibited by Hg2+. The β-Mannanase did not hydrolyze mannobiose and mannotriose, but only mannotetraose liberating mannose and mannotriose. This indicated that at least four mannose residues were required for catalytic activity. Oligosaccharide with a degree of polymerization (DP) three was the predominant product in the case of locust bean gum (16.5 %) and guar gum (15.8 %) hydrolysis. However, the enzyme liberated DP4 oligosaccharide (24 %) exclusively from konjac gum. This property can be exploited in oligosaccharides production with DP 3–4. β-Mannanase hydrolyzed pretreated lignocelluloses and liberated reducing sugars (% theoretical yield) from copra meal (30 %). This property is an important factor for the bioconversion of the biomass.
Collapse
|
43
|
Kim SM, Park H, Choi JI. Cloning and Characterization of Cold-Adapted α-Amylase from Antarctic Arthrobacter agilis. Appl Biochem Biotechnol 2016; 181:1048-1059. [PMID: 27714640 DOI: 10.1007/s12010-016-2267-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
Abstract
In this study, the gene encoding an α-amylase from a psychrophilic Arthrobacter agilis PAMC 27388 strain was cloned into a pET-28a(+) vector and heterologously expressed in Escherichia coli BL21(DE3). The recombinant α-amylase with a molecular mass of about 80 kDa was purified by using Ni2+-NTA affinity chromatography. This recombinant α-amylase exhibited optimal activity at pH 3.0 and 30 °C and was highly stable at varying temperatures (30-60 °C) and within the pH range of 4.0-8.0. Furthermore, α-amylase activity was enhanced in the presence of FeCl3 (1 mM) and β-mercaptoethanol (5 mM), while CoCl2 (1 mM), ammonium persulfate (5 mM), SDS (10 %), Triton X-100 (10 %), and urea (1 %) inhibited the enzymatic activity. Importantly, the presence of Ca2+ ions and phenylmethylsulfonyl fluoride (PMSF) did not affect enzymatic activity. Thin layer chromatography (TLC) analysis showed that recombinant A. agilis α-amylase hydrolyzed starch, maltotetraose, and maltotriose, producing maltose as the major end product. These results make recombinant A. agilis α-amylase an attractive potential candidate for industrial applications in the textile, paper, detergent, and pharmaceutical industries.
Collapse
Affiliation(s)
- Su-Mi Kim
- Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy and Biomaterials, Chonnam National University, Gwangju, 61186, South Korea
| | - Hyun Park
- Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy and Biomaterials, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
44
|
Parashar D, Satyanarayana T. A chimeric α-amylase engineered from Bacillus acidicola and Geobacillus thermoleovorans with improved thermostability and catalytic efficiency. ACTA ACUST UNITED AC 2016; 43:473-84. [DOI: 10.1007/s10295-015-1721-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/10/2015] [Indexed: 11/27/2022]
Abstract
Abstract
The α-amylase (Ba-amy) of Bacillus acidicola was fused with DNA fragments encoding partial N- and C-terminal region of thermostable α-amylase gene of Geobacillus thermoleovorans (Gt-amy). The chimeric enzyme (Ba-Gt-amy) expressed in Escherichia coli displays marked increase in catalytic efficiency [K cat: 4 × 104 s−1 and K cat/K m: 5 × 104 mL−1 mg−1 s−1] and higher thermostability than Ba-amy. The melting temperature (T m) of Ba-Gt-amy (73.8 °C) is also higher than Ba-amy (62 °C), and the CD spectrum analysis revealed the stability of the former, despite minor alteration in secondary structure. Langmuir–Hinshelwood kinetic analysis suggests that the adsorption of Ba-Gt-amy onto raw starch is more favourable than Ba-amy. Ba-Gt-amy is thus a suitable biocatalyst for raw starch saccharification at sub-gelatinization temperatures because of its acid stability, thermostability and Ca2+ independence, and better than the other known bacterial acidic α-amylases.
Collapse
Affiliation(s)
- Deepak Parashar
- grid.8195.5 0000000121094999 Department of Microbiology University of Delhi South Campus Benito Juarez Road 110021 New Delhi India
| | - T Satyanarayana
- grid.8195.5 0000000121094999 Department of Microbiology University of Delhi South Campus Benito Juarez Road 110021 New Delhi India
| |
Collapse
|
45
|
Carrasco M, Villarreal P, Barahona S, Alcaíno J, Cifuentes V, Baeza M. Screening and characterization of amylase and cellulase activities in psychrotolerant yeasts. BMC Microbiol 2016; 16:21. [PMID: 26895625 PMCID: PMC4759947 DOI: 10.1186/s12866-016-0640-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 02/13/2016] [Indexed: 11/16/2022] Open
Abstract
Background Amylases and cellulases have great potential for application in industries such as food, detergent, laundry, textile, baking and biofuels. A common requirement in these fields is to reduce the temperatures of the processes, leading to a continuous search for microorganisms that secrete cold-active amylases and cellulases. Psychrotolerant yeasts are good candidates because they inhabit cold-environments. In this work, we analyzed the ability of yeasts isolated from the Antarctic region to grow on starch or carboxymethylcellulose, and their potential extracellular amylases and cellulases. Result All tested yeasts were able to grow with soluble starch or carboxymethylcellulose as the sole carbon source; however, not all of them produced ethanol by fermentation of these carbon sources. For the majority of the yeast species, the extracellular amylase or cellulase activity was higher when cultured in medium supplemented with glucose rather than with soluble starch or carboxymethylcellulose. Additionally, higher amylase activities were observed when tested at pH 5.4 and 6.2, and at 30–37 °C, except for Rhodotorula glacialis that showed elevated activity at 10–22 °C. In general, cellulase activity was high until pH 6.2 and between 22–37 °C, while the sample from Mrakia blollopis showed high activity at 4–22 °C. Peptide mass fingerprinting analysis of a potential amylase from Tetracladium sp. of about 70 kDa, showed several peptides with positive matches with glucoamylases from other fungi. Conclusions Almost all yeast species showed extracellular amylase or cellulase activity, and an inducing effect by the respective substrate was observed in a minor number of yeasts. These enzymatic activities were higher at 30 °C in most yeast, with highest amylase and cellulase activity in Tetracladium sp. and M. gelida, respectively. However, Rh. glacialis and M. blollopis displayed high amylase or cellulase activity, respectively, under 22 °C. In this sense, these yeasts are interesting candidates for industrial processes that require lower temperatures. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0640-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mario Carrasco
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| | - Pablo Villarreal
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| |
Collapse
|
46
|
Li Z, Duan X, Wu J. Improving the thermostability and enhancing the Ca(2+) binding of the maltohexaose-forming α-amylase from Bacillus stearothermophilus. J Biotechnol 2016; 222:65-72. [PMID: 26869314 DOI: 10.1016/j.jbiotec.2016.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/05/2016] [Indexed: 11/26/2022]
Abstract
The thermostability of the maltohexaose-forming α-amylase from Bacillus stearothermophilus (AmyMH) without added Ca(2+) was improved through structure-based rational design in this study. Through comparison of a homologous model structure of AmyMH with the crystal structure of the thermostable α-amylase from Bacillus licheniformis, Ser242, which located at the beginning of fourth α-helix of the central (β/α)8 barrel was selected for mutation to improve thermostability. In addition, an amide-containing side chain (Asn193) and a loop in domain B (ΔIG mutation), which have been proven to be important for thermostability in corresponding position of other α-amylases, were also investigated. Five mutants carrying the mutations ΔIG, N193F, S242A, ΔIG/N193F, and ΔIG/N193F/S242A were generated and their proteins characterized. The most thermostable mutant protein, ΔIG/N193F/S242A, exhibited a 26-fold improvement in half-life at 95°C compared to the wild-type enzyme without added Ca(2+). Mutant ΔIG/N193F/S242A also exhibited substantially better activity and stability in the presence of the chelator EDTA, demonstrating enhanced Ca(2+) binding. These results suggest that mutant ΔIG/N193F/S242A has potential for use in the industrial liquefaction of starch.
Collapse
Affiliation(s)
- Zhu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Xuguo Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
47
|
Xu QS, Yan YS, Feng JX. Efficient hydrolysis of raw starch and ethanol fermentation: a novel raw starch-digesting glucoamylase from Penicillium oxalicum. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:216. [PMID: 27777618 PMCID: PMC5069817 DOI: 10.1186/s13068-016-0636-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/08/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Starch is a very abundant and renewable carbohydrate and is an important feedstock for industrial applications. The conventional starch liquefaction and saccharification processes are energy-intensive, complicated, and not environmentally friendly. Raw starch-digesting glucoamylases are capable of directly hydrolyzing raw starch to glucose at low temperatures, which significantly simplifies processing and reduces the cost of producing starch-based products. RESULTS A novel raw starch-digesting glucoamylase PoGA15A with high enzymatic activity was purified from Penicillium oxalicum GXU20 and biochemically characterized. The PoGA15A enzyme had a molecular weight of 75.4 kDa, and was most active at pH 4.5 and 65 °C. The enzyme showed remarkably broad pH stability (pH 2.0-10.5) and substrate specificity, and was able to degrade various types of raw starches at 40 °C. Its adsorption ability for different raw starches was consistent with its degrading capacities for the corresponding substrate. The cDNA encoding the enzyme was cloned and heterologously expressed in Pichia pastoris. The recombinant enzyme could quickly and efficiently hydrolyze different concentrations of raw corn and cassava flours (50, 100, and 150 g/L) with the addition of α-amylase at 40 °C. Furthermore, when used in the simultaneous saccharification and fermentation of 150 g/L raw flours to ethanol with the addition of α-amylase, the ethanol yield reached 61.0 g/L with a high fermentation efficiency of 95.1 % after 48 h when raw corn flour was used as the substrate. An ethanol yield of 57.0 g/L and 93.5 % of fermentation efficiency were achieved with raw cassava flour after 36 h. In addition, the starch-binding domain deletion analysis revealed that SBD plays a very important role in raw starch hydrolysis by the enzyme PoGA15A. CONCLUSIONS A novel raw starch-digesting glucoamylase from P. oxalicum, with high enzymatic activity, was biochemically, molecularly, and genetically identified. Its efficient hydrolysis of raw starches and its high efficiency during the direct conversion of raw corn and cassava flours via simultaneous saccharification and fermentation to ethanol suggests that the enzyme has a number of potential applications in industrial starch processing and starch-based ethanol production.
Collapse
Affiliation(s)
- Qiang-Sheng Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Yu-Si Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| |
Collapse
|
48
|
Kumar S, Grewal J, Sadaf A, Hemamalini R, K. Khare S. Halophiles as a source of polyextremophilic α-amylase for industrial applications. AIMS Microbiol 2016. [DOI: 10.3934/microbiol.2016.1.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
49
|
A novel GH13 subfamily of α-amylases with a pair of tryptophans in the helix α3 of the catalytic TIM-barrel, the LPDlx signature in the conserved sequence region V and a conserved aromatic motif at the C-terminus. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Singh S, Gupta N, Kaur J, Gupta A. Valorization of Sal Deoiled Cake as Media for Acidic Amylase and Invertase Co-Production by A
spergillus niger
NJ-1: Optimization by Response Surface Methodology and Application in Oligosaccharide Synthesis. J FOOD PROCESS PRES 2015. [DOI: 10.1111/jfpp.12505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Samsher Singh
- University School of Environment Management; Guru Gobind Singh Indraprastha University; New Delhi 110078 India
| | - Neetu Gupta
- University School of Environment Management; Guru Gobind Singh Indraprastha University; New Delhi 110078 India
- School of Biotechnology; Shoolini University; Solan Himachal Pradesh India
| | - Jasdeep Kaur
- University School of Environment Management; Guru Gobind Singh Indraprastha University; New Delhi 110078 India
- School of Biotechnology; Shoolini University; Solan Himachal Pradesh India
| | - Anshu Gupta
- University School of Environment Management; Guru Gobind Singh Indraprastha University; New Delhi 110078 India
| |
Collapse
|