1
|
Yu M, Wu M, Secundo F, Liu Z. Detection, production, modification, and application of arylsulfatases. Biotechnol Adv 2023; 67:108207. [PMID: 37406746 DOI: 10.1016/j.biotechadv.2023.108207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Arylsulfatase is a subset of sulfatase which catalyzes the hydrolysis of aryl sulfate ester. Arylsulfatase is widely distributed among microorganisms, mammals and green algae, but the arylsulfatase-encoding gene has not yet been found in the genomes of higher plants so far. Arylsulfatase plays an important role in the sulfur flows between nature and organisms. In this review, we present the maturation and catalytic mechanism of arylsulfatase, and the recent literature on the expression and production of arylsulfatase in wild-type and engineered microorganisms, as well as the modification of arylsulfatase by genetic engineering are summarized. We focus on arylsulfatases from microbial origin and give an overview of different assays and substrates used to determine the arylsulfatase activity. Furthermore, the researches about arylsulfatase application on the field of agar desulfation, soil sulfur cycle and soil evaluation are also discussed. Finally, the perspectives concerning the future research on arylsulfatase are prospected.
Collapse
Affiliation(s)
- Mengjiao Yu
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Meixian Wu
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, via Mario Bianco 9, Milan 20131, Italy
| | - Zhen Liu
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| |
Collapse
|
2
|
de Sousa Ferreira M, de Oliveira Silva Ribeiro F, Dourado FF, de Jesus Oliveira AC, Araújo TDS, Brito LM, Pessoa C, de Lima LRM, de Paula RCM, Silva-Filho EC, da Silva DA. Production of galactan phthalates derivatives extracted from Gracilaria birdie: Characterization, cytotoxic and antioxidant profile. Int J Biol Macromol 2023; 243:125254. [PMID: 37295699 DOI: 10.1016/j.ijbiomac.2023.125254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
The present work explores the esterification reaction in the polysaccharide extracted from the seaweed Gracilaria birdiae and investigates its antioxidant potential. The reaction process was conducted with phthalic anhydride at different reaction times (10, 20 and 30 min), using a molar ratio of 1:2 (polymer: phthalic anhydride). Derivatives were characterized by FTIR, TGA, DSC and XRD. The biological properties of derivatives were investigated by assays of cytotoxicity and antioxidant activity (2,2-diphenyl-1-picrylhydroxyl - DPPH and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt - ABTS). The results obtained by FT-IR confirmed the chemical modification, there was a reduction related to the presence of carbonyl and hydroxyl groups when compared to the in nature polysaccharide spectrum. TGA analysis showed a change in the thermal behavior of the modified materials. X-ray diffraction, it was shown that the in nature polysaccharide appeared as an amorphous material, while the material obtained after the chemical modification process had increased crystallinity, due to the introduction of phthalate groups. For the biological assays, it was observed that the phthalate derivative was more selective than the unmodified material for the murine metastatic melanoma tumor cell line (B16F10), revealing a good antioxidant profile for DPPH and ABTS radicals.
Collapse
Affiliation(s)
- Michelle de Sousa Ferreira
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaíba Delta Federal University, UFDPar, Parnaíba, PI, Brazil; Interdisciplinary Laboratory for Advanced Materials - LIMAV, Federal University of Piaui, Teresina, PI, Brazil
| | - Fábio de Oliveira Silva Ribeiro
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaíba Delta Federal University, UFDPar, Parnaíba, PI, Brazil; Center for Research in Applied Morphology and Immunology, NuPMIA, University of Brasilia, Brasilia, Brazil
| | - Flaviane França Dourado
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaíba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - Antônia Carla de Jesus Oliveira
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaíba Delta Federal University, UFDPar, Parnaíba, PI, Brazil; Interdisciplinary Laboratory for Advanced Materials - LIMAV, Federal University of Piaui, Teresina, PI, Brazil
| | - Thaís Danyelle Santos Araújo
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaíba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - Lucas Moreira Brito
- Department of Physiology and Pharmacology, Federal University of Ceará, UFC, Fortaleza, CE, Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology, Federal University of Ceará, UFC, Fortaleza, CE, Brazil
| | | | | | | | - Durcilene Alves da Silva
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaíba Delta Federal University, UFDPar, Parnaíba, PI, Brazil; Interdisciplinary Laboratory for Advanced Materials - LIMAV, Federal University of Piaui, Teresina, PI, Brazil.
| |
Collapse
|
3
|
Gu X, Zhao L, Tan J, Zhang Q, Fu L, Li J. Characterization of a novel β-agarase from Antarctic macroalgae-associated bacteria metagenomic library and anti-inflammatory activity of the enzymatic hydrolysates. Front Microbiol 2022; 13:972272. [PMID: 36118221 PMCID: PMC9478344 DOI: 10.3389/fmicb.2022.972272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
An agarase gene (aga1904) that codes a protein with 640 amino acids was obtained from the metagenomic library of macroalgae-associated bacteria collected from King George Island, Antarctica. Gene aga1904 was expressed in Escherichia coli BL21 (DE3) and recombinant Aga1904 was purified by His Bind Purification kit. The optimal temperature and pH for the activity of Aga1904 were 50°C and 6.0, respectively. Fe3+ and Cu2+ significantly inhibited the activity of Aga1904. The Vmax and Km values of recombinant Aga1904 were 108.70 mg/ml min and 6.51 mg/ml, respectively. The degradation products of Aga1904 against agarose substrate were mainly neoagarobiose, neoagarotetraose, and neoagarohexaose analyzed by thin layer chromatography. The cellular immunoassay of enzymatic hydrolysates was subsequently carried out, and the results showed that agaro-oligosaccharides dominated by neoagarobiose significantly inhibited key pro-inflammatory markers including, nitric oxide (NO), interleukins 6 (IL-6), and tumor necrosis factor α (TNF-α). This work provides a promising candidate for development recombinant industrial enzyme to prepare agaro-oligosaccharides, and paved up a new path for the exploitation of natural anti-inflammatory agent in the future.
Collapse
Affiliation(s)
- Xiaoqian Gu
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Luying Zhao
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Jiaojiao Tan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Qian Zhang
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Liping Fu
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Jiang Li
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- *Correspondence: Jiang Li,
| |
Collapse
|
4
|
Chemical modifications in the structure of seaweed polysaccharides as a viable antimicrobial application: A current overview and future perspectives. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Xu X, Deng X, Lin J, Yang J. Characterization and substrate-accelerated thermal inactivation kinetics of a new serine-type arylsulfatase. Enzyme Microb Technol 2021; 154:109961. [PMID: 34952364 DOI: 10.1016/j.enzmictec.2021.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 11/03/2022]
Abstract
Arylsulfatase is useful in industrial agar processing by removing sulfate groups. A full-length arylsulfatase gene, designated ArySMA1, was obtained from marine bacteria Serratia sp. SM1. The ArySMA1 gene encoded a novel serine-type arylsulfatase and the enzymatic properties were characterized. The enzyme presented notable capacity of removing sulfate groups from natural algae substrates. Kinetic study suggested that the microscopic thermal inactivation rate of ArySMA1 in free form was smaller than that of the enzyme-substrate complex. The presence of substrate could unexpectedly accelerate ArySMA1 to deactivate at high temperature. Such phenomenon was opposite to many findings that substrate could stabilize enzymes against heat. Molecular dynamics simulation and ANS fluorescent assay indicated the substrate led the hydrophobic regions of the active site more flexible and the sulfate group of the substrate could retard the processivity of ArySMA1 catalysis. This study provides guidance for agar desulfation and down-stream processing industry.
Collapse
Affiliation(s)
- Xinqi Xu
- College of Biological Science and Engineering, Fuzhou University, 350116, China
| | - Xiangzhen Deng
- College of Biological Science and Engineering, Fuzhou University, 350116, China
| | - Juan Lin
- College of Biological Science and Engineering, Fuzhou University, 350116, China
| | - Jie Yang
- College of Biological Science and Engineering, Fuzhou University, 350116, China.
| |
Collapse
|
6
|
Shen S, Chen X, Shen Z, Chen H. Marine Polysaccharides for Wound Dressings Application: An Overview. Pharmaceutics 2021; 13:1666. [PMID: 34683959 PMCID: PMC8541487 DOI: 10.3390/pharmaceutics13101666] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 01/11/2023] Open
Abstract
Wound dressings have become a crucial treatment for wound healing due to their convenience, low cost, and prolonged wound management. As cutting-edge biomaterials, marine polysaccharides are divided from most marine organisms. It possesses various bioactivities, which allowing them to be processed into various forms of wound dressings. Therefore, a comprehensive understanding of the application of marine polysaccharides in wound dressings is particularly important for the studies of wound therapy. In this review, we first introduce the wound healing process and describe the characteristics of modern commonly used dressings. Then, the properties of various marine polysaccharides and their application in wound dressing development are outlined. Finally, strategies for developing and enhancing marine polysaccharide wound dressings are described, and an outlook of these dressings is given. The diverse bioactivities of marine polysaccharides including antibacterial, anti-inflammatory, haemostatic properties, etc., providing excellent wound management and accelerate wound healing. Meanwhile, these biomaterials have higher biocompatibility and biodegradability compared to synthetic ones. On the other hand, marine polysaccharides can be combined with copolymers and active substances to prepare various forms of dressings. Among them, emerging types of dressings such as nanofibers, smart hydrogels and injectable hydrogels are at the research frontier of their development. Therefore, marine polysaccharides are essential materials in wound dressings fabrication and have a promising future.
Collapse
Affiliation(s)
- Shenghai Shen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
| | - Xiaowen Chen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
| | - Zhewen Shen
- School of Humanities, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia;
| | - Hao Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| |
Collapse
|
7
|
Zhang C, Jiang Z, Li H, Ni H, Zheng M, Li Q, Zhu Y. Preparation of immobilized arylsulfatase on magnetic Fe 3O 4 nanoparticles and its application for agar quality improvement. Food Sci Nutr 2021; 9:4952-4962. [PMID: 34532007 PMCID: PMC8441490 DOI: 10.1002/fsn3.2446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 04/19/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022] Open
Abstract
The presence of sulfate groups in agar compromises the agar quality by affecting the crosslinking during gelling process. Some arylsulfatases can catalyze the hydrolysis of sulfate bonds in agar to improve the agar quality. Immobilized arylsulfatases prove beneficial advantages for their industrial applications. Here, a previously characterized mutant arylsulfatase K253H/H260L was immobilized on the synthesized magnetic Fe3O4 nanoparticles after functionalization by tannic acid (MNPs@TA). The surface properties and molecular structures of the immobilized arylsulfatase (MNPs@TA@ARS) were examined by scanning electron microscopy and Fourier transform infrared spectroscopy. Enzymatic characterization showed that MNPs@TA@ARS exhibited shifted optimal temperature and pH with deviated apparent Km and Vmax compared to its free counterpart. The immobilized arylsulfatase demonstrated improved thermal and pH stability and enhanced storage stability with modest reusability. In addition, MNPs@TA@ARS displayed enhanced tolerance to various inhibitors and detergents. The utilization of the immobilized arylsulfatase for agar desulfation brought the treated agar with improved quality.
Collapse
Affiliation(s)
- Chenghao Zhang
- College of Food and Biological EngineeringJimei UniversityXiamenChina
| | - Zedong Jiang
- College of Food and Biological EngineeringJimei UniversityXiamenChina
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme EngineeringXiamenChina
- Research Center of Food Biotechnology of Xiamen CityXiamenChina
- Key Laboratory of Systemic Utilization and In‐depth Processing of Economic SeaweedXiamen Southern Ocean Technology Center of ChinaXiamenChina
| | - Hebin Li
- Xiamen Medical CollegeXiamenChina
| | - Hui Ni
- College of Food and Biological EngineeringJimei UniversityXiamenChina
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme EngineeringXiamenChina
- Research Center of Food Biotechnology of Xiamen CityXiamenChina
- Key Laboratory of Systemic Utilization and In‐depth Processing of Economic SeaweedXiamen Southern Ocean Technology Center of ChinaXiamenChina
| | - Mingjing Zheng
- College of Food and Biological EngineeringJimei UniversityXiamenChina
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme EngineeringXiamenChina
- Research Center of Food Biotechnology of Xiamen CityXiamenChina
- Key Laboratory of Systemic Utilization and In‐depth Processing of Economic SeaweedXiamen Southern Ocean Technology Center of ChinaXiamenChina
| | - Qingbiao Li
- College of Food and Biological EngineeringJimei UniversityXiamenChina
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme EngineeringXiamenChina
- Research Center of Food Biotechnology of Xiamen CityXiamenChina
- Key Laboratory of Systemic Utilization and In‐depth Processing of Economic SeaweedXiamen Southern Ocean Technology Center of ChinaXiamenChina
| | - Yanbing Zhu
- College of Food and Biological EngineeringJimei UniversityXiamenChina
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme EngineeringXiamenChina
- Research Center of Food Biotechnology of Xiamen CityXiamenChina
- Key Laboratory of Systemic Utilization and In‐depth Processing of Economic SeaweedXiamen Southern Ocean Technology Center of ChinaXiamenChina
| |
Collapse
|
8
|
Jiang C, Cheng D, Liu Z, Sun J, Mao X. Advances in agaro-oligosaccharides preparation and bioactivities for revealing the structure-function relationship. Food Res Int 2021; 145:110408. [PMID: 34112411 DOI: 10.1016/j.foodres.2021.110408] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 11/24/2022]
Abstract
Agaro-oligosaccharides originating from red algae have attracted increasing attention in both basic theoretical research and applied fields due to their excellent bioactivities, which indicates the wide prospects of agaro-oligosaccharides for application in the food, pharmaceutical and cosmetic industries. Thus, a considerable number of studies regarding functional agaro-oligosaccharides preparation as well as the bioactivities exploration have been carried out. Based on these studies, this review first introduced different methods that have been used in agar extraction from red algae, and further provided research progress on arylsulfatase. Then, different methods used for agaro-oligosaccharides production were summarized. Moreover, the abundant bioactivities of agaro-oligosaccharides were described in detail. Finally, this review has discussed current research problems and further provided critical aspects, which may be helpful for revealing the structure-function relationship of agaro-oligosaccharide.
Collapse
Affiliation(s)
- Chengcheng Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Danyang Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
9
|
Chen X, Fu X, Huang L, Xu J, Gao X. Agar oligosaccharides: A review of preparation, structures, bioactivities and application. Carbohydr Polym 2021; 265:118076. [PMID: 33966840 DOI: 10.1016/j.carbpol.2021.118076] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/28/2021] [Accepted: 04/10/2021] [Indexed: 12/14/2022]
Abstract
Agar, a gelatinous polysaccharide which is in the cell wall of many red algae, is widely used as food and gelling agent. Agar oligosaccharides (AOs), the hydrolysate of agar, show much more kinds of bio-activities because of its lower molecular weight, better water solubility and higher absorption efficiency. It is indicated that AOs with different structure and degree of polymerization, i.e. series of agaro-oligosaccharides and neoagaro-oligosaccharides, can be obtained under different preparation conditions. In addition, the biological activities of AOs are diversely and closely correlated to the composition and structure. This review aims to comprehensively summarize the preparation, structural characteristics and bio-activities of AOs, so as to provide a reference for applications of AOs as marine natural products in pharmacological, cosmetics and nutraceutical fields.
Collapse
Affiliation(s)
- Xiaodan Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Xiaoting Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| | - Luqiang Huang
- Key Laboratory of Special Marine Bio-resources Sustainable Utilization of Fujian Province, College of Life Science, Fujian Normal University, Fuzhou, 350108, China
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Xin Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
10
|
Detection, production, and application of microbial arylsulfatases. Appl Microbiol Biotechnol 2016; 100:9053-9067. [PMID: 27654655 DOI: 10.1007/s00253-016-7838-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
Abstract
Arylsulfatases are enzymes which catalyze the hydrolysis of arylsulfate ester bonds to release a free sulfonate. They are widespread in nature and are found in microorganisms, most animal and human tissues, and plant seeds. However, this review focuses on arylsulfatases from microbial origin and gives an overview of different assays and substrates used to determine the arylsulfatase activity. Furthermore, the production of microbial arylsulfatases using wild-type organisms as well as the recombinant production using Escherichia coli and Kluyveromyces lactis as expression hosts is discussed. Finally, various potential applications of these enzymes are reviewed.
Collapse
|
11
|
Characterization of a novel alkaline arylsulfatase from Marinomonas sp. FW-1 and its application in the desulfation of red seaweed agar. J Ind Microbiol Biotechnol 2015; 42:1353-62. [PMID: 26286088 DOI: 10.1007/s10295-015-1625-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/25/2015] [Indexed: 10/23/2022]
Abstract
A bacterial strain capable of hydrolyzing sulfate ester bonds of p-nitrophenyl sulfate (pNPS) and agar was isolated from the coast area of Qingdao, China. It was identified as Marinomonas based on its 16S rRNA gene sequence and named as Marinomonas sp. FW-1. An arylsulfatase with a recovery of 13 % and a fold of 12 was purified to a homogeneity using ion exchange and gel filtration chromatographies. The enzyme was composed of a single polypeptide chain with the molecular mass of 33 kDa estimated using SDS-PAGE. The optimal pH and temperature of arylsulfatase were pH 9.0 and 45, respectively. Arylsulfatase was stable over pH 8-11 and at temperature below 55 °C. The K m and V max of this enzyme for the hydrolysis of pNPS were determined to be 13.73 and 270.27 μM/min, respectively. The desulfation ratio against agar from red seaweed Gelidium amansii and Gracilaria lemaneiformis were 86.11 and 89.61 %, respectively. There was no difference between the DNA electrophoresis spectrum on the gel of the arylsulfatase-treated G. amansii agar and that of the commercial agarose. Therefore, this novel alkaline arylsulfatase might have a great potential for application in enzymatic conversion of agar to agarose.
Collapse
|
12
|
Sudha PN, Aisverya S, Nithya R, Vijayalakshmi K. Industrial applications of marine carbohydrates. ADVANCES IN FOOD AND NUTRITION RESEARCH 2014; 73:145-181. [PMID: 25300546 DOI: 10.1016/b978-0-12-800268-1.00008-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Biomaterials have been used increasingly in various fields, such as drug delivery, imaging, and tissue engineering. The main reason justifying the widespread use of biomaterials relies on its valuable and low-cost source of new drugs. Current research goals are focused on identifying more potent and specific compounds with antitumor, immunomodulatory, antihyperlipidemic, anticoagulant, and antiviral activities. The increasing knowledge of structural analysis and chemical modifications enables the use of these marine carbohydrates in a newer way for the human welfare. This chapter focuses on the recent developments related to industrial and biomedical applications using chitin, chitosan, alginate, agar, and carrageenan derivatives and reports the main advances published over the last 10-15 years.
Collapse
Affiliation(s)
- Prasad N Sudha
- Department of Chemistry, D.K.M. College for Women, Thiruvalluvar University, Vellore, Tamil Nadu, India.
| | - S Aisverya
- Department of Chemistry, D.K.M. College for Women, Thiruvalluvar University, Vellore, Tamil Nadu, India
| | - R Nithya
- Department of Chemistry, D.K.M. College for Women, Thiruvalluvar University, Vellore, Tamil Nadu, India
| | - K Vijayalakshmi
- Department of Chemistry, D.K.M. College for Women, Thiruvalluvar University, Vellore, Tamil Nadu, India
| |
Collapse
|