1
|
Bashir KMI, Chakniramol S, Mansoor S, Jahn A, Cho MG, Choi JS. Antioxidant Activity of Protein Hydrolysates from Redlip Mullet ( Chelon haematocheilus) Muscle and Byproducts. Foods 2024; 13:3009. [PMID: 39335938 PMCID: PMC11431201 DOI: 10.3390/foods13183009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Fish muscle and byproducts represent a valuable source of bioactive compounds, with their protein hydrolysates exhibiting noteworthy antioxidant properties. This study assessed the antioxidant activity of protein hydrolysates derived from the muscle and byproducts of redlip mullet (Chelon haematocheilus), utilizing different proteases (Neutrase, Alcalase, and Protamex). Hydrolysates were prepared from various parts of the fish, including muscle (white and red meat) and byproducts (frames, head, viscera, fins, skin, and scales). The enzymatic hydrolysis resulted in the highest degree of hydrolysis, achieving 83.24 ± 1.45% for skin at 60 min and 82.14 ± 4.35% for head at 30 min, when treated with Neutrase. Frames treated with Neutrase exhibited the highest protein concentration, measured at 1873.01 ± 71.11 µg/mL at 15 min. Significantly, skin hydrolysates treated with Protamex showed the highest DPPH• scavenging activity (70.07 ± 3.99% at 120 min), while those treated with Alcalase demonstrated the highest ABTS• scavenging activity (93.47 ± 0.02% at 15 min). The highest superoxide dismutase (SOD) activity (92.01 ± 1.47%) was observed in head hydrolysates treated with Protamex after 90 min. These results suggest that C. haematocheilus protein hydrolysates possess significant antioxidant activity within a short time frame of less than 120 min.
Collapse
Affiliation(s)
- Khawaja Muhammad Imran Bashir
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea
- German Engineering Research and Development Center, LSTME-Busan Branch, Busan 46742, Republic of Korea
| | - Sukwasa Chakniramol
- Department of Bio-Chemical Engineering, Division of Energy and Bioengineering, Dongseo University, Busan 47011, Republic of Korea
| | - Sana Mansoor
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Alexander Jahn
- Bioprocess Technology, Management Center Innsbruck (MCI), 6020 Tyrol, Austria
| | - Man-Gi Cho
- German Engineering Research and Development Center, LSTME-Busan Branch, Busan 46742, Republic of Korea
| | - Jae-Suk Choi
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| |
Collapse
|
2
|
Jeong S, Jung JH, Jung KW, Ryu S, Lim S. From microbes to molecules: a review of microbial-driven antioxidant peptide generation. World J Microbiol Biotechnol 2023; 40:29. [PMID: 38057638 DOI: 10.1007/s11274-023-03826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023]
Abstract
Oxidative stress, arising from excess reactive oxygen species (ROS) or insufficient antioxidant defenses, can damage cellular components, such as lipids, proteins, and nucleic acids, resulting in cellular dysfunction. The relationship between oxidative stress and various health disorders has prompted investigations into potent antioxidants that counteract ROS's detrimental impacts. In this context, antioxidant peptides, composed of two to twenty amino acids, have emerged as a unique group of antioxidants and have found applications in food, nutraceuticals, and pharmaceuticals. Antioxidant peptides are sourced from natural ingredients, mainly proteins derived from foods like milk, eggs, meat, fish, and plants. These peptides can be freed from their precursor proteins through enzymatic hydrolysis, fermentation, or gastrointestinal digestion. Previously published studies focused on the origin and production methods of antioxidant peptides, describing their structure-activity relationship and the mechanisms of food-derived antioxidant peptides. Yet, the role of microorganisms hasn't been sufficiently explored, even though the production of antioxidant peptides frequently employs a variety of microorganisms, such as bacteria, fungi, and yeasts, which are recognized for producing specific proteases. This review aims to provide a comprehensive overview of microorganisms and their proteases participating in enzymatic hydrolysis and microbial fermentation to produce antioxidant peptides. This review also covers endogenous peptides originating from microorganisms. The information obtained from this review might guide the discovery of novel organisms adept at generating antioxidant peptides.
Collapse
Affiliation(s)
- Soyoung Jeong
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong-Hyun Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Kwang-Woo Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangyong Lim
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
- Department of Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
3
|
Hashem AMA, Venmarath A, Kudre TG. Preparation, purification, and identification of novel antioxidant peptides from red-bellied pacu ( Piaractus brachypomus) fish meat protein hydrolysate. Food Sci Biotechnol 2023; 32:2057-2068. [PMID: 37860743 PMCID: PMC10581988 DOI: 10.1007/s10068-023-01316-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/08/2023] [Accepted: 04/17/2023] [Indexed: 10/21/2023] Open
Abstract
The current study investigates the preparation, purification, and identification of novel antioxidant peptides from Piaractus brachypomus fish (RBPF) meat. Antioxidant peptides from RBPF meat protein hydrolysate (RPMPH) were fractionated by ultrafiltration (3 kDa MWCO membrane). RPMPH-IF (MW < 3 kDa) fraction displayed significantly higher antioxidant activities (P < 0.05) (DPPH, ABTS, FRAP, and Fe2+chelating activity). RPMPH-IF was purified by Sephadex G-25 gel filtration chromatography, and the RPMPH-1 fraction exhibited significantly higher antioxidant activities (P < 0.05). Subsequently, the RPMPH-1 fraction was purified by reversed-phase high-performance liquid chromatography. RPH-8 showed the highest antioxidant activities. The sequence of peptides of the RPH-8 fraction was later identified by LC-MS/MS and MASCOT software. RPH-8 fraction showed the two peptides with MW of 1105.52 Da and 748.25 Da, and the sequence of peptides was identified as His-Asn-Leu-Gly-Leu-Leu-His-Gly-Asp-Met and Asp-Ala-Pro-Ser-Met-Asn-Asp, respectively. Thus, RPMPH or purified antioxidant peptides produced by probiotic Bacillus strain could be a bio-functional ingredient in food and nutraceutical applications.
Collapse
Affiliation(s)
- Aliaa M. A. Hashem
- Meat and Marine Sciences Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
- Meat and Fish Technology Research Department, Food Technology Research Institute, Agricultural Research Center, Giza, 12619 Egypt
| | - Anushma Venmarath
- Meat and Marine Sciences Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
| | - Tanaji G. Kudre
- Meat and Marine Sciences Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
| |
Collapse
|
4
|
Belleggia L, Osimani A. Fermented fish and fermented fish-based products, an ever-growing source of microbial diversity: A literature review. Food Res Int 2023; 172:113112. [PMID: 37689879 DOI: 10.1016/j.foodres.2023.113112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Fermented fish and fermented fish-based products are part of the diet of many countries all over the world. Their popularity is not only due to the unique flavor, the distinct texture, and the good nutritional quality, but also to the easiness of the production process, that is commonly based on empirical traditional methods. Fish fermentation techniques ususally rely on the combination of some key steps, including salting, addition of spices or additives, and maintenance of anaerobic conditions, thus selecting for the multiplication of some pro-technological microorganisms. The objective of the present review was to provide an overview of the current knowledge of the microbial communities occurring in fermented fish and fish-based products. Specific information was collected from scientific publications published from 2000 to 2022 with the aim of generating a comprehensive database. The production of fermented fish and fish-based foods was mostly localized in West African countries, Northern European countries, and Southeast Asian countries. Based on the available literature, the microbial composition of fermented fish and fish-based products was delineated by using viable counting combined with identification of isolates, and culture-independent techniques. The data obtained from viable counting highlighted the occurrence of microbial groups usually associated with food fermentation, namely lactic acid bacteria, staphylococci, Bacillus spp., and yeasts. The identification of isolates combined with culture-independent methods showed that the fermentative process of fish-based products was generally guided by lactobacilli (Lactiplantibacillus plantarum, Latilactobacillus sakei, and Latilactobacillus curvatus) or Tetragenococcus spp. depending on the salt concentration. Among lactic acid bacteria populations, Lactococcus spp., Pediococcus spp., Leuconostoc spp., Weissella spp., Enterococcus spp., Streptococcus spp., and Vagococcus spp. were frequently identified. Staphylococcus spp. and Bacillus spp. confirmed a great adaptation to fermented fish-based products. Other noteworthy bacterial taxa included Micrococcus spp., Pseudomonas spp., Psychrobacter spp., Halanaerobium spp., and Halomonas spp. Among human pathogenic bacteria, the occurrence of Clostridium spp. and Vibrio spp. was documented. As for yeast populations, the predominance of Candida spp., Debaryomyces spp., and Saccharomyces spp. was evidenced. The present literature review could serve as comprehensive database for the scientific community, and as a reference for the food industry in order to formulate tailored starter or adjunctive cultures for product improvement.
Collapse
Affiliation(s)
- Luca Belleggia
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy.
| |
Collapse
|
5
|
Shekoohi N, Naik AS, Amigo-Benavent M, Harnedy-Rothwell PA, Carson BP, FitzGerald RJ. Physicochemical, technofunctional, in vitro antioxidant, and in situ muscle protein synthesis properties of a sprat ( Sprattus sprattus) protein hydrolysate. Front Nutr 2023; 10:1197274. [PMID: 37426190 PMCID: PMC10328741 DOI: 10.3389/fnut.2023.1197274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Sprat (Sprattus sprattus) is an underutilized fish species that may act as an economic and sustainable alternative source of protein due to its good amino acid (AA) profile along with its potential to act as a source of multiple bioactive peptide sequences. Method and results This study characterized the physicochemical, technofunctional, and in vitro antioxidant properties along with the AA profile and score of a sprat protein enzymatic hydrolysate (SPH). Furthermore, the impact of the SPH on the growth, proliferation, and muscle protein synthesis (MPS) in skeletal muscle (C2C12) myotubes was examined. The SPH displayed good solubility and emulsion stabilization properties containing all essential and non-essential AAs. Limited additional hydrolysis was observed following in vitro-simulated gastrointestinal digestion (SGID) of the SPH. The SGID-treated SPH (SPH-SGID) displayed in vitro oxygen radical antioxidant capacity (ORAC) activity (549.42 μmol TE/g sample) and the ability to reduce (68%) reactive oxygen species (ROS) production in C2C12 myotubes. Muscle growth and myotube thickness were analyzed using an xCELLigence™ platform in C2C12 myotubes treated with 1 mg protein equivalent.mL-1 of SPH-SGID for 4 h. Anabolic signaling (phosphorylation of mTOR, rpS6, and 4E-BP1) and MPS (measured by puromycin incorporation) were assessed using immunoblotting. SPH-SGID significantly increased myotube thickness (p < 0.0001) compared to the negative control (cells grown in AA and serum-free medium). MPS was also significantly higher after incubation with SPH-SGID compared with the negative control (p < 0.05). Conclusions These preliminary in situ results indicate that SPH may have the ability to promote muscle enhancement. In vivo human studies are required to verify these findings.
Collapse
Affiliation(s)
- Niloofar Shekoohi
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Azza Silotry Naik
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Miryam Amigo-Benavent
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Pádraigín A. Harnedy-Rothwell
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Brian P. Carson
- Health Research Institute, University of Limerick, Limerick, Ireland
- Department of Physical Education and Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland
| | - Richard J. FitzGerald
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
6
|
Akbarmehr A, Peighambardoust SH, Ghanbarzadeh B, Sarabandi K. Physicochemical, antioxidant, antimicrobial, and in vitro cytotoxic activities of corn pollen protein hydrolysates obtained by different peptidases. Food Sci Nutr 2023; 11:2403-2417. [PMID: 37181317 PMCID: PMC10171531 DOI: 10.1002/fsn3.3252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
The applications of protein hydrolysates as food preservatives and nutraceutical ingredients have attracted much attention because of their beneficial effects. The interest in these ingredients has shifted toward their biological activities with benefits to human health. Bioactive peptides are known as antioxidant agents that could promote health-promoting effects and prolong food shelf-life beyond their basic nutritional value. Thus, the aim of this study was to investigate antioxidant, antimicrobial, and in vitro cytotoxic properties of corn pollen protein (CPP) hydrolysates obtained by different enzymes. Proteolytic activity in terms of degree of hydrolysis (DH) and SDS-PAGE analysis was measured in pancreatin (H-Pan), pepsin (H-Pep), and trypsin (H-Tri) hydrolysates. Amino acid composition, antioxidant and antimicrobial activities, and cytotoxicity of hydrolysates were evaluated. DH and SDS-PAGE revealed higher proteolytic activity of pepsin compared to other enzymes. Amino acid analysis showed that the functional amino acids such as antioxidant types were most predominant in H-Pep compared to two other samples. Antioxidant activity of hydrolysates was found to be affected by the type of enzyme and the concentration of hydrolysates. There was a significant difference (p < 0.05) between antioxidant activity of different hydrolysates. The highest antioxidant activity in terms of Trolox equivalent antioxidant capacity (0.23-2.75 mM), DPPH (33.3%-64.8%), and hydroxyl (33.7%-63.2%) radical scavenging activities, chelation of iron (33.2%-62.5%) and copper (30.2%-50.5%) metals, and total antioxidant activity (0.65-0.85) was obtained for H-Pep followed by H-Pan and H-Tri samples. Antibacterial tests showed that pepsin-hydrolyzed protein was not significantly (P > 0.05) effective against E. coli at any concentrations, however, it showed significant (P < 0.05) concentration-dependent effect against S. aureus (with inhibition zones of 15-25 mm). Cytotoxicity results revealed that CPP, as a nonhydrolyzed protein, did not generally show antiproliferative activity, however, a significant (P < 0.05) ability of H-Pep hydrolysate in decreasing HT-29 colon cancer cell line viability was seen in a concentration-dependent manner (the lowest cell viability of 32% at 5 mg/mL). Overall, investigating the application of protein-based hydrolysates is one of the possible strategies that govern their applied intentions as preservatives and nutraceuticals in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Amir Akbarmehr
- Department of Food Science, College of AgricultureUniversity of TabrizTabrizIran
| | | | - Babak Ghanbarzadeh
- Department of Food Science, College of AgricultureUniversity of TabrizTabrizIran
| | - Khashayar Sarabandi
- Department of Food Science & Technology, School of MedicineZahedan University of Medical SciencesZahedanIran
| |
Collapse
|
7
|
Bethi CMS, Prakash GJ, Pedda MS, Kudre TG. Utilization of lactobacillus fermented proteins from meat processing wastewaters as a dietary protein source in poultry feed. 3 Biotech 2023; 13:69. [PMID: 36733382 PMCID: PMC9886724 DOI: 10.1007/s13205-023-03487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
The present study aimed to evaluate the impact of fermented meat processing wastewater protein hydrolysate (FWMPH) prepared by Pediococcus lolii fermentation as an alternative protein source on growth performance, serum biochemistry, and hematological parameters of broiler chicks. FWMPH exhibited antioxidant, anti-angiotensin converting enzyme (ACE), and antimicrobial properties. A total of 60 one-day-old Vencobb broiler chicks were divided into five dietary groups on day 8 and a feeding trial was performed for 48 days. Diets were prepared by replacing soya protein concentrate (SPC) at different levels of FWMPH as the protein source. These diets were denoted as SPSD (100% SPC), FMP-25 (25% FWMPH + 75% SPC), FMP-50 (50% FWMPH + 50% SPC), FMP-75 (75% FWMPH + 25% SPC), and FMP-100 (100% FWMPH). FMP-25 and FMP-100 diet group broiler chicks showed the highest and lowest feed consumption (P < 0.05), respectively. However, the highest body weight gain (1506.08 ± 52.52 g) was observed in FMP-75 diet-fed chicks (P < 0.05). Furthermore, FMP-75 chicks displayed better feed conversion ratio (1.96), feed efficiency ratio (0.51), and protein efficiency ratio (2.32) values than other diet group chicks (P < 0.05), implying that the FMP-75 diet had better effect on the broiler growth. Also, the FMP-75 diet chicks showed better hematological values, serum biochemical parameters revealed no negative effect upon FWMPH consumption, and no pathological signs were observed in the histopathological examination as compared to the SPSD diet group (P < 0.05). Hence, the results could be helpful in the application of FWMPH at 75% level in the poultry feed as a potential protein ingredient in the countries looking for local feed protein products as soya bean meal replacement.
Collapse
Affiliation(s)
- Cathrine Monica Spandana Bethi
- Department of Meat and Marine Sciences, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020 India
| | - Gowthami Jay Prakash
- Department of Meat and Marine Sciences, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020 India
| | - Muthukumar Serva Pedda
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020 India
| | - Tanaji G. Kudre
- Department of Meat and Marine Sciences, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020 India
| |
Collapse
|
8
|
The Influence of Lactic Acid Bacteria Fermentation on the Bioactivity of Crayfish (Faxonius limosus) Meat. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In recent years, new raw materials have been sought for use in processing. This category certainly includes invasive crayfish Faxonius limosus. One of the problems associated with their use is their short microbiological shelf life. Therefore, in the research presented here, an attempt was made to ferment crayfish meat with strains of Lactiplantibacillus plantarum, Lacticaseibacillus rhamnosus, Lactobacillus casei, and yogurt culture. The analyses included an evaluation of changes in the microbial quality of the material, the content of free amino acids, reducing sugars, ascorbic acid, and the antioxidant properties of the fermented meat. Changes in the canthaxanthin content and the number of sulfhydryl groups and disulfide bridges were also evaluated. The study showed that carrying out lactic fermentation resulted in a decrease in meat pH (8.00 to 7.35–6.94, depending on the starter culture). Moreover, the meat was characterized by an increase in FRAP (2.99 to 3.60–4.06 mg AAE/g), ABTS (2.15 to 2.85–3.50 μmol Trolox/g), and reducing power (5.53 to 6.28–14.25 μmol Trolox/g). In addition, the study showed a favorable effect of fermentation on the content of sulfhydryl groups in the meat as well as for ascorbic acid content. The results obtained can serve as a starting point for the further development of fermented products based on crayfish meat.
Collapse
|
9
|
Alahmad K, Noman A, Xia W, Jiang Q, Xu Y. Influence of the Enzymatic Hydrolysis Using Flavourzyme Enzyme on Functional, Secondary Structure, and Antioxidant Characteristics of Protein Hydrolysates Produced from Bighead Carp ( Hypophthalmichthys nobilis). MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020519. [PMID: 36677578 PMCID: PMC9861176 DOI: 10.3390/molecules28020519] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023]
Abstract
In the current study, bighead carp fish were used in conjunction with the flavourzyme enzyme to obtain (FPH) fish protein hydrolysates. The optimum conditions of the hydrolysis process included an enzyme/substrate ratio of 4% and a temperature of 50 °C and pH of 6.5. The hydrolysis time was studied and investigated at 1, 3, and 6 h, and the (DH) degree of hydrolysis was recorded at 16.56%, 22.23%, and 25.48%, respectively. The greatest yield value was 17.83% at DH 25.48%. By increasing the DH up to 25.48%, the crude protein and total amino acid composition of the hydrolysate were 88.19% and 86.03%, respectively. Moreover, more peptides with low molecular weight were formed during hydrolysis, which could enhance the functional properties of FPH, particularly the solubility property ranging from 85% to 97%. FTIR analysis revealed that enzymatic hydrolysis impacted the protein's secondary structure, as indicated by a remarkable wavelength of amide bands. Additionally, antioxidant activities were investigated and showed high activity of DDPH radical scavenging, and hydroxyl radical scavenging demonstrated remarkable activity. The current findings demonstrate that the functional, structural, and antioxidant characteristics of FPH might make it an excellent source of protein and suggest potential applications in the food industry.
Collapse
Affiliation(s)
- Kamal Alahmad
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- Department of Food Science and Technology, Faculty of Agriculture, University of Alfurat, Deir Ezzor, Syria
| | - Anwar Noman
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- Department of Agricultural Engineering, Faculty of Agriculture, Foods and Environment, Sana’a University, Sana’a 13060, Yemen
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- Correspondence:
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Noman A, Wang Y, Zhang C, Yin L, Abed SM. Fractionation and purification of antioxidant peptides from Chinese sturgeon (Acipenser sinensis) protein hydrolysates prepared using papain and alcalase 2.4L. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
11
|
Hamed F, Elgaoud I, Deracinois B, Flahaut C, Nedjar N, Barkia A. Production of hydrolysates and peptides from a new protein source: Diplodus annularis. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Bioaccessibility and Microencapsulation of Lactobacillus sp. to Enhance Nham Protein Hydrolysates in Thai Fermented Sausage. Foods 2022; 11:foods11233846. [PMID: 36496654 PMCID: PMC9736178 DOI: 10.3390/foods11233846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/31/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The development of functional food products is increasingly gaining lots of interest and popularity among stakeholders. The aim of this study was to evaluate the bioaccessibility of three Lactobacillus sp. starter cultures, including Lacticaseibacillus casei KKU-KK1, Lactiplantibacillus pentosus KKU-KK2, and Lactobacillus acidophilus KKU-KK3, in order to enhance the performance of the probiotic potential of Nham protein hydrolysates in Thai fermented sausage using microencapsulation technology. Probiotic microcapsules were created from a novel wall material made up of a combination of glutinous rice flour and inulin through a freeze-drying process. Accordingly, the results of three formulations of Nham probiotic and spontaneous fermentation (control) characterized by their physicochemical and microbiological characteristics displayed a correlation between an increase in the amount of total acidity, the population of lactic acid bacteria, and the generated TCA-soluble peptides, while the pH and total soluble protein gradually decreased under proteolysis during the fermentation time. The fractionation of Nham protein hydrolysates (NPHs) was prepared using a microwave extraction process: NPH-nham1, NPH-nham2, and NPH-nham3 (10 mg/mL with fermentation time 114 h), exhibited the highest DPPH radical-scavenging activity and FRAP-reducing power capacity as well, compared to NPH-nhamcontrol at p < 0.05. Moreover, those NPHs peptides showed dose-dependent inhibiting of selected pathogenic bacteria (E. coli TISTR 073, S. aureus TISTR 029, and Ent. aerogenes TISTR 1540). Anti-microbial properties of NPHs peptides against gram-negative bacteria were higher than against gram-positive bacteria. In conclusion, the bioaccessibility of NPHs peptides was significantly enhanced by micro-encapsulation and showed a potential bioactive characteristic for developing into a probiotic agent.
Collapse
|
13
|
Rebouças Júnior JSA, Martins VG, Prentice-Hernández C, Monsserrat JM, Tesser MB, Latorres JM. Enzymatic Hydrolysis of Pacific White Shrimp Residue ( Litopenaeus vannamei) with Ultrasound Aid. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2132125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- José Stênio Aragão Rebouças Júnior
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, RS, Brazil
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Vilásia Guimarães Martins
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Carlos Prentice-Hernández
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, RS, Brazil
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - José Maria Monsserrat
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, RS, Brazil
- Institute of Biological Sciences (ICB), Federal University of Rio Grande. Rio Grande, Rio Grande, RS, Brazil
| | - Marcelo Borges Tesser
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Juliana Machado Latorres
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, Brazil
| |
Collapse
|
14
|
Single and Co-Cultures of Proteolytic Lactic Acid Bacteria in the Manufacture of Fermented Milk with High ACE Inhibitory and Antioxidant Activities. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, single and co-cultures of proteolytic Lactobacillus delberueckii subsp. bulgaricus ORT2, Limosilactobacillus reuteri SRM2 and Lactococcus lactis subsp. lactis BRM3 isolated from different raw milk samples were applied as starter cultures to manufacture functional fermented milks. Peptide extracts from fermented milk samples were evaluated after fermentation and 7 days of cold storage for proteolytic, angiotensin-converting enzyme (ACE) inhibitory and antioxidant activity by different methods including 2, 2′-diphenyl-1-picrylhydrazyl (DPPH), ferric-reducing antioxidant power (FRAP), OH-radical scavenging, and total antioxidant (molybdate-reducing activity). The highest proteolysis was found in milk fermented by co-cultures of three strains. Fermentation with the mentioned bacteria increased ACE inhibitory and antioxidant activity of the final products which were dependent on peptide concentration. The crude peptide extract obtained from fermented milk with triple co-culture showed the highest ACE inhibitory activity (IC50 = 0.61 mg/mL) which was reduced after 7 days of cold storage (IC50 = 0.78 mg/mL). Similar concentration-dependent activities were found in antioxidant activity at different antioxidant assays. Overall, high proteolytic activity resulted in increased ACE inhibitory and antioxidant activities, but the highest activity was not necessarily found for the samples with the highest proteolytic activity. The results of this study suggest the potential of using co-cultures of L. delberueckii subsp. bulgaricus, L. reuteri and L. lactis subsp. Lactis to manufacture antihypertensive fermented milk.
Collapse
|
15
|
Zhi T, Li X, Sadiq FA, Mao K, Gao J, Mi S, Liu X, Deng W, Chitrakar B, Sang Y. Novel antioxidant peptides from protein hydrolysates of scallop (Argopecten irradians) mantle using enzymatic and microbial methods: Preparation, purification, identification and characterization. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Physiological and Clinical Aspects of Bioactive Peptides from Marine Animals. Antioxidants (Basel) 2022; 11:antiox11051021. [PMID: 35624884 PMCID: PMC9137753 DOI: 10.3390/antiox11051021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
Biological molecules in nutraceuticals and functional foods have proven physiological properties to treat human chronic diseases. These molecules contribute to applications in the food and pharmaceutical industries by preventing food spoilage and cellular injury. Technological advancement in the screening and characterization of bioactive peptides has enabled scientists to understand the associated molecules. Consistent collaboration among nutritionists, pharmacists, food scientists, and bioengineers to find new bioactive compounds with higher therapeutic potential against nutrition-related diseases highlights the potential of the bioactive peptides for food and pharmaceutic industries. Among the popular dietary supplements, marine animals have always been considered imperative due to their rich nutritional values and byproduct use in the food and pharmaceutical industries. The bioactive peptides isolated from marine animals are well-known for their higher bioactivities against human diseases. The physiological properties of fish-based hydrolyzed proteins and peptides have been claimed through in vitro, in vivo, and clinical trials. However, systematic study on the physiological and clinical significance of these bioactive peptides is scarce. In this review, we not only discuss the physiological and clinical significance of antioxidant and anticancer peptides derived from marine animals, but we also compare their biological activities through existing in vitro and in vivo studies.
Collapse
|
17
|
Singh A, Hong H, Benjakul S. Threadfin bream surimi gel containing squid fin protein hydrolysate: Textural properties, acceptability, and volatile profile. J Food Sci 2022; 87:2337-2349. [PMID: 35593270 DOI: 10.1111/1750-3841.16187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 01/23/2023]
Abstract
Gel properties of threadfin bream surimi gels with squid fin protein hydrolysate (SFPH) at various concentrations (0, 1, 2, 3, and 4%; w/w) were determined. The gel without SFPH (CON) had the highest breaking force (BrF) and deformation (DeF) as compared to those with SFPH (p < 0.05). Among the gel with SFPH, gel containing 1 and 2% SFPH (SFPH-1 and SFPH-2, respectively) had the highest BrF, whereas the lowest value was obtained when 4% SFPH was used (SFPH-4) (p < 0.05). The whiteness of all samples was slightly decreased with an upsurging amount of SFPH. However, water holding capacity was increased with augmenting levels of SFPH (p < 0.05). Sensory analysis revealed that SFPH-2 had a higher squid odor and flavor likeness score than CON (p < 0.05). Textural properties, especially hardness, were decreased with increasing SFPH, except for SFPH-1 and SFPH-2 (p > 0.05). In addition, the rheological properties, microstructure, and volatile profile of the selected surimi gel were also studied. The storage modulus (G') of SFPH added samples was decreased as compared to the CON sample. The CON gel had a finer and more compact network as compared to SFPH-2 and SFPH-4 samples. Volatile profiles indicated that alcohols, carboxylic acids, ketones, and ether were the major volatile compounds present in both gel samples. Furthermore, thiophene, 3-methyl-, contributing to squid flavor, was found in the SFPH-2 sample. Overall, SFPH at 2% could act as a flavorant in the threadfin bream surimi gel without markedly negative impact on gelling and textural properties, while providing squid odor and flavor to the resulting gel. PRACTICAL APPLICATION: The various low-valued byproducts generated from the squid processing industry could result in various environmental problems. Those byproducts are rich in various biomolecules such as proteins, fats, enzymes, and so forth, which could be utilized to produce value-added products. Among them, protein hydrolysate (PH) rich in amino acids with excellent antioxidant properties could serve as an alternative flavorant. Therefore, PH from squid byproducts, especially fins, could be applied in foods such as fish balls, surimi gels, and so forth to enhance the nutritional and flavoring profile of a finished product. Moreover, bioactive peptides in PH with antioxidant potential could retard the oxidation of proteins and lipids.
Collapse
Affiliation(s)
- Avtar Singh
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
18
|
Jabeur F, Mechri S, Mensi F, Gharbi I, Naser YB, Kriaa M, Bejaoui N, Bachouche S, Badis A, Annane R, Djellali M, Sadok S, Jaouadi B. Extraction and characterization of chitin, chitosan, and protein hydrolysate from the invasive Pacific blue crab, Portunus segnis (Forskål, 1775) having potential biological activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:36023-36039. [PMID: 35061182 DOI: 10.1007/s11356-021-18398-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
The diversity of marine biomasses is a set of exploitable and renewable resources with application in several sectors. In this context, a co-culture based on three protease-producing bacterial isolates, namely Aeribacillus pallidus VP3, Lysinibacillus fusiformis C250R, and Anoxybacillus kamchatkensis M1V strains, was carried out in a medium based on the blue swimming crab Portunus segnis bio-waste. Proteases production was optimized using a central composite design (CCD). The highest level of proteases production obtained was 8,809 U/mL in a medium comprising 75 g/L of Portunus segnis by-product powder (Pspp). The biological value of Pspp and its obtained derivatives were evidenced via accredited protocols. The recovered protein hydrolysate (PHyd) was found to be active towards radical scavenging power and against angiotensin I-converting enzyme (ACE). The blue crab chitin (BC) extraction efficiency was achieved with a yield of 32%. Afterwards, chitosan was prepared through chitin N-deacetylation with a yield of 52%, leading to an acetylation degree (AD) of 19% and solubility of 90%. In addition, chitosan is found to be active against the growth of all pathogenic bacteria tested.
Collapse
Affiliation(s)
- Fadoua Jabeur
- Laboratoire des Biotechnologies Microbiennes et Enzymatiques et Biomolécules (LBMEB), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Route Sidi Mansour Km 6, BP 1177, 3018, Sfax, Tunisia
| | - Sondes Mechri
- Laboratoire des Biotechnologies Microbiennes et Enzymatiques et Biomolécules (LBMEB), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Route Sidi Mansour Km 6, BP 1177, 3018, Sfax, Tunisia
| | - Fethi Mensi
- Laboratoire de Biotechnologies Bleues et de Bioproduits Aquatiques (B3Aqua), Institut National des Sciences et Technologies de la Mer (INSTM), Annexe La Goulette Port de Pêche, 2060, La Goulette, Tunisia
| | - Ines Gharbi
- Laboratoire des Biotechnologies Microbiennes et Enzymatiques et Biomolécules (LBMEB), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Route Sidi Mansour Km 6, BP 1177, 3018, Sfax, Tunisia
| | - Yosri Ben Naser
- Laboratoire des Biotechnologies Microbiennes et Enzymatiques et Biomolécules (LBMEB), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Route Sidi Mansour Km 6, BP 1177, 3018, Sfax, Tunisia
| | - Mouna Kriaa
- Laboratoire des Biotechnologies Microbiennes et Enzymatiques et Biomolécules (LBMEB), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Route Sidi Mansour Km 6, BP 1177, 3018, Sfax, Tunisia
| | - Nejla Bejaoui
- Laboratoire de Biotechnologies Bleues et de Bioproduits Aquatiques (B3Aqua), Institut National des Sciences et Technologies de la Mer (INSTM), Annexe La Goulette Port de Pêche, 2060, La Goulette, Tunisia
- Institut National Agronomique de Tunisie (INAT), Université de Carthage, 43 Avenue Charles Nicolle, 1082, Tunis Maharajène, Tunisia
| | - Samir Bachouche
- Centre National de Recherche et de Développement de la Pêche et de l'Aquaculture (CNRPDA), 11 Boulevard Colonel Amirouche, BP 67, 42415, Bou Ismaïl, Tipaza, Algeria
| | - Abdelmalek Badis
- Centre National de Recherche et de Développement de la Pêche et de l'Aquaculture (CNRPDA), 11 Boulevard Colonel Amirouche, BP 67, 42415, Bou Ismaïl, Tipaza, Algeria
- Laboratoire de Chimie des Substances Naturelles et de BioMolécules (LCSN-BioM), Faculté des Sciences, Département de Chimie, Université de Blida 1, Université de Blida 1, Route de Soumâa, BP 270, 09000, Blida, Algeria
| | - Rachid Annane
- Laboratoire de Chimie des Substances Naturelles et de BioMolécules (LCSN-BioM), Faculté des Sciences, Département de Chimie, Université de Blida 1, Université de Blida 1, Route de Soumâa, BP 270, 09000, Blida, Algeria
| | - Mostapha Djellali
- Centre National de Recherche et de Développement de la Pêche et de l'Aquaculture (CNRPDA), 11 Boulevard Colonel Amirouche, BP 67, 42415, Bou Ismaïl, Tipaza, Algeria
| | - Saloua Sadok
- Laboratoire de Biotechnologies Bleues et de Bioproduits Aquatiques (B3Aqua), Institut National des Sciences et Technologies de la Mer (INSTM), Annexe La Goulette Port de Pêche, 2060, La Goulette, Tunisia
| | - Bassem Jaouadi
- Laboratoire des Biotechnologies Microbiennes et Enzymatiques et Biomolécules (LBMEB), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Route Sidi Mansour Km 6, BP 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
19
|
Dayakar B, Xavier KM, Ngasotter S, Layana P, Balange AK, Priyadarshini B, Nayak BB. Characterization of spray-dried carotenoprotein powder from Pacific white shrimp (Litopenaeus vannamei) shells and head waste extracted using papain: Antioxidant, spectroscopic, and microstructural properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Xing L, Wang Z, Hao Y, Zhang W. Marine Products As a Promising Resource of Bioactive Peptides: Update of Extraction Strategies and Their Physiological Regulatory Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3081-3095. [PMID: 35235313 DOI: 10.1021/acs.jafc.1c07868] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Marine products are a rich source of nutritional components and play important roles in promoting human health. Fish, mollusks, shellfish, as well as seaweeds are the major components of marine products with high-quality proteins. During the last several decades, bioactive peptides from marine products have gained much attention due to their diverse biological properties including antioxidant, antihypertensive, antimicrobial, antidiabetic, immunoregulation, and antifatigue. The structural characteristics of marine bioactive peptides largely determine the differences in signaling pathways that can be involved, which is also an internal mechanism to exert various physiological regulatory activities. In addition, the marine bioactive peptides may be used as ingredients in food or nutritional supplements with the function of treating or alleviating chronic diseases. This review presents an update of marine bioactive peptides with the highlights on the novel producing technologies, the physiological effects, as well as their regulation mechanisms. Challenges and problems are also discussed in this review to provide some potential directions for future research.
Collapse
Affiliation(s)
- Lujuan Xing
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Zixu Wang
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yuejing Hao
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
21
|
LIU C, HUANG J, HU Y, WU X. Functional properties, structural characteristics and biological activities of deer blood hydrolysates obtained by using different protease. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.84722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chang LIU
- Changchun University, People’s Republic of China
| | | | - Yanbo HU
- Changchun University, People’s Republic of China
| | - Xiuli WU
- Changchun University, People’s Republic of China
| |
Collapse
|
22
|
Bethi CMS, Jayprakash G, Muthukumar SP, Kudre TG. Application of proteins from different meat processing wastewater streams as a dietary protein source in animal feed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113662. [PMID: 34492438 DOI: 10.1016/j.jenvman.2021.113662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
The present study aimed to investigate the protein quality indices of meat processing wastewaters protein hydrolysate (FWPH) obtained by Pediococcus lolii fermentation using a rat bioassay. Different diets namely, SD (100% casein), F50 (50% FWPH+50% casein), F75 (75% FWPH+25% casein), and F100 (100% FWPH) were formulated and fed to 28 days old albino male Wistar rats (6 rats each group). SD and F50 group rats showed higher feed and protein intake among all diet group rats (P < 0.05). However, the highest body weight gain (142.16 ± 2.84 g) was noticed in the rats fed with the F50 diet (P < 0.05). F50 group rats presented better feed conversion ratio (FCR), feed efficiency ratio (FER), and protein efficiency ratio (PER) values as compared to other diet group counterparts (P < 0.05). Furthermore, no differences in values of urine, haematological, and serum biochemical parameters were observed in SD and F50 group rats (P > 0.05). However, haematological and serum biochemical parameters were slightly elevated in F100 group rats. F50 group rats presented the higher superoxide dismutase (SOD) and catalase (CAT) activities among all the diet groups (P < 0.05). Relative organ weights, serum glutamic pyruvic transaminase (SGPT), serum glutamic oxaloacetic transaminase (SGOT), and alkaline phosphatase (ALP) activities of F50 group rats were found similar to SD rats. Histopathological examination revealed that no incidence of organ toxicity is attributed to the F50 diet. Overall, F50 group rats exhibited good growth and development with no adverse effects in biochemical, haematological, and histopathology parameters. Therefore, FWPH at the 50% level could be used as a potential dietary protein source in feed for better growth performance of the animal.
Collapse
Affiliation(s)
- Cathrine M S Bethi
- Department of Meat and Marine Sciences, CSIR-Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India
| | - Gowthami Jayprakash
- Department of Meat and Marine Sciences, CSIR-Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India
| | - S Peddha Muthukumar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India
| | - Tanaji G Kudre
- Department of Meat and Marine Sciences, CSIR-Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India.
| |
Collapse
|
23
|
Korczek KR, Tkaczewska J, Duda I, Migdał W. Effect of Heat Treatment on the Antioxidant Activity as Well as In vitro Digestion Stability of Herring ( Clupea harengus) Protein Hydrolysates. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1946630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Klaudia Róża Korczek
- Department of Animal Product Technology, Food Technology, University of Agriculture in Kraków, Kraków, Poland
| | - Joanna Tkaczewska
- Department of Animal Product Technology, Food Technology, University of Agriculture in Kraków, Kraków, Poland
| | - Iwona Duda
- Department of Animal Product Technology, Food Technology, University of Agriculture in Kraków, Kraków, Poland
| | - Władysław Migdał
- Department of Animal Product Technology, Food Technology, University of Agriculture in Kraków, Kraków, Poland
| |
Collapse
|
24
|
Conception of active food packaging films based on crab chitosan and gelatin enriched with crustacean protein hydrolysates with improved functional and biological properties. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106639] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Ryu B, Shin KH, Kim SK. Muscle Protein Hydrolysates and Amino Acid Composition in Fish. Mar Drugs 2021; 19:md19070377. [PMID: 34210079 PMCID: PMC8304736 DOI: 10.3390/md19070377] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023] Open
Abstract
Fish muscle, which accounts for 15%-25% of the total protein in fish, is a desirable protein source. Their hydrolysate is in high demand nutritionally as a functional food and thus has high potential added value. The hydrolysate contains physiologically active amino acids and various essential nutrients, the contents of which depend on the source of protein, protease, hydrolysis method, hydrolysis conditions, and degree of hydrolysis. Therefore, it can be utilized for various industrial applications including use in nutraceuticals and pharmaceuticals to help improve the health of humans. This review discusses muscle protein hydrolysates generated from the muscles of various fish species, as well as their amino acid composition, and highlights their functional properties and bioactivity. In addition, the role of the amino acid profile in regulating the biological and physiological activities, nutrition, and bitter taste of hydrolysates is discussed.
Collapse
Affiliation(s)
- Bomi Ryu
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea
- Correspondence: (B.R.); (S.-K.K.); Tel.: +82-64-754-3475 (B.R. & S.-K.K.)
| | - Kyung-Hoon Shin
- Department of Marine Science and Convergence Engineering, Hanyang University, Erica, 55 Hanyangdae-ro, Ansan-si 11558, Gyeonggi-do, Korea;
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, Hanyang University, Erica, 55 Hanyangdae-ro, Ansan-si 11558, Gyeonggi-do, Korea;
- Correspondence: (B.R.); (S.-K.K.); Tel.: +82-64-754-3475 (B.R. & S.-K.K.)
| |
Collapse
|
26
|
Joshi I, Nazeer RA. Angiotensin I-Converting Enzyme (ACE-I) Inhibition and Antioxidant Peptide from a Squilla Species. Protein Pept Lett 2021; 28:1238-1245. [PMID: 34137357 DOI: 10.2174/0929866528666210616122835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/01/2021] [Accepted: 04/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oratosquilla woodmasoni is one of the marine squilla species which is found in the entire Asia-Pacific region. This current study assesses the species as the main basis of both ACEi and antioxidant peptide. OBJECTIVE To isolate the ACEi peptide derived from O. woodmasoni and examine its ACE inhibition along with antioxidant potential. METHODS The squilla muscle protein was hydrolysed using alcalase and trypsin enzymes for 12 hours and tested for DH. The hydrolysates were examined for their ACEi activity, and then the best hydrolysate was sequentially purified in various chromatographical methods. The purified peptide was studied for anti-oxidant and functional properties, followed by amino acid sequencing. The purified peptide was also evaluated for its toxicity by in vitro cell viability assay. RESULTS The DH% was found to be 47.13 ± 0.72 % and 89.43 ± 2.06 % for alcalase and trypsin, respectively. The alcalase 5th-hour hydrolysate was detected with potent activity (65.97 ± 0.56 %) using ACEi assay and was primarily fractionated using ultrafiltration; the maximum inhibitory activity was found with 77.04 ± 0.52 % in 3-10kDa fraction. Subsequently, the fraction was purified using IEC and GFC, in which the AC1-A2 fraction had higher antihypertensive activity (70.85 ± 0.78 %). The non-toxic fraction showed hexapeptide HVGGCG with molecular weight 529 Da with a great potential of antioxidant activity along with functional property. CONCLUSION This peptide could be an alternative as a nutraceutical for both ACE inhibition and antioxidant.
Collapse
Affiliation(s)
- Ila Joshi
- Biopharmaceutical Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
| | - Rasool Abdul Nazeer
- Biopharmaceutical Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
| |
Collapse
|
27
|
Yuan L, Chu Q, Wu X, Yang B, Zhang W, Jin W, Gao R. Anti-inflammatory and Antioxidant Activity of Peptides From Ethanol-Soluble Hydrolysates of Sturgeon ( Acipenser schrenckii) Cartilage. Front Nutr 2021; 8:689648. [PMID: 34179062 PMCID: PMC8225940 DOI: 10.3389/fnut.2021.689648] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/07/2021] [Indexed: 01/10/2023] Open
Abstract
Research has shown that cartilage containing chondroitin sulfate and protein presents versatile bioactivities. Chondroitin sulfate in cartilage is beneficial to activate the immune system while the protein/peptide has not been fully understood. The current study investigated the antioxidant and anti-inflammatory properties of ethanol-soluble hydrolysates of sturgeon cartilage (ESCH) prepared through hot-pressure, enzymatic hydrolysis and ethanol extraction. UV spectrum, IR and agarose gel electrophoresis results suggested the successful exclusion of chondroitin sulfate from peptides. Nitric oxide (NO) floods in cells activated by inflammation. It was inhibited when administrated with ESCH. To further explain the observed anti-inflammatory activity, ESCH was separated with Sephadex G-15 into 3 components, among which F3 showed a higher NO inhibition rate and significantly reduced the production of the proinflammatory cytokine IL-6. In addition, the yield of IL-10 increased. Western blotting suggested that F3 downregulated the NO content and IL-6 level by suppressing Mitogen-activated protein kinases (MAPK) channels. Moreover, both ESCH and F3 showed DPPH and ABTS free radical scavenging abilities which was possibly related to the anti-inflammatory property. These results indicated that ESCH behaved anti-inflammatory and antioxidant activities. Cartilage may be a good source to produce anti-inflammatory peptides.
Collapse
Affiliation(s)
- Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qian Chu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiaoyun Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Bei Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Wei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Wengang Jin
- Bio-Resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Bio-Resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|
28
|
Assessment of the biological activity of fish muscle protein hydrolysates using in vitro model systems. Food Chem 2021; 359:129852. [PMID: 33940471 DOI: 10.1016/j.foodchem.2021.129852] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022]
Abstract
The generation of biologically active fish protein hydrolysates (FPH) is a useful technique to produce value-added products with potential application in the functional food and nutraceutical industries. Fish muscle is an attractive substrate for the production of protein hydrolysates due to its rich protein content, containing 15-25% of total fish protein. This paper reviews the production of protein hydrolysates from fish muscle, most commonly via enzymatic hydrolysis, and their subsequent bioactivities including anti-obesity, immunomodulatory, antioxidant, angiotensin I-converting enzyme (ACE)-inhibitory, anti-microbial, and anti-cancer activities as measured by in vitro testing methods. Disease prevention with FPH potentially offers a safe and natural alternative to synthetic drugs. Small molecular weight (MW) FPHs generally exhibit favourable bioactivity than large MW fractions via enhanced absorption through the gastrointestinal tract. This review also discusses the relationship between amino acid (AA) composition and AA sequence of FPH and peptides and their exhibited in vitro bioactivity.
Collapse
|
29
|
Calderón-Chiu C, Calderón-Santoyo M, Herman-Lara E, Ragazzo-Sánchez JA. Jackfruit (Artocarpus heterophyllus Lam) leaf as a new source to obtain protein hydrolysates: Physicochemical characterization, techno-functional properties and antioxidant capacity. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Ucak I, Afreen M, Montesano D, Carrillo C, Tomasevic I, Simal-Gandara J, Barba FJ. Functional and Bioactive Properties of Peptides Derived from Marine Side Streams. Mar Drugs 2021; 19:71. [PMID: 33572713 PMCID: PMC7912481 DOI: 10.3390/md19020071] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/23/2021] [Indexed: 12/11/2022] Open
Abstract
In fish processing, a great amount of side streams, including skin, bones, heads and viscera, is wasted or downgraded as feed on a daily basis. These side streams are rich sources of bioactive nitrogenous compounds and protein, which can be converted into peptides through enzymatic hydrolysis as well as bacterial fermentation. Peptides are short or long chains of amino acids differing in structure and molecular weight. They can be considered as biologically active as they can contribute to physiological functions in organisms with applications in the food and pharmaceutical industries. In the food industry, such bioactive peptides can be used as preservatives or antioxidants to prevent food spoilage. Furthermore, peptides contain several functional qualities that can be exploited as tools in modifying food ingredient solubility, water-holding and fat-binding capacity and gel formation. In the pharmaceutical industry, peptides can be used as antioxidants, but also as antihypertensive, anticoagulant and immunomodulatory compounds, amongst other functions. On the basis of their properties, peptides can thus be used in the development of functional foods and nutraceuticals. This review focuses on the bioactive peptides derived from seafood side streams and discusses their technological properties, biological activities and applications.
Collapse
Affiliation(s)
- Ilknur Ucak
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51000 Nigde, Turkey;
| | - Maliha Afreen
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51000 Nigde, Turkey;
| | - Domenico Montesano
- Department of Pharmaceutical Sciences, Section of Food Sciences and Nutrition, University of Perugia, Via S. Costanzo 1, 06126 Perugia, Italy;
| | - Celia Carrillo
- Nutrition and Food Science, Faculty of Science, Universidad de Burgos, 09001 Burgos, Spain;
| | - Igor Tomasevic
- Department of Animal Source Food Technology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain;
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 Burjassot, Spain
| |
Collapse
|
31
|
Badoei-dalfard A, Khankari S, Karami Z. One-pot synthesis and biochemical characterization of protease metal organic framework (protease@MOF) and its application on the hydrolysis of fish protein-waste. Colloids Surf B Biointerfaces 2020; 196:111318. [DOI: 10.1016/j.colsurfb.2020.111318] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/19/2020] [Accepted: 08/09/2020] [Indexed: 11/26/2022]
|
32
|
Khan S, Rehman A, Shah H, Aadil RM, Ali A, Shehzad Q, Ashraf W, Yang F, Karim A, Khaliq A, Xia W. Fish Protein and Its Derivatives: The Novel Applications, Bioactivities, and Their Functional Significance in Food Products. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1828452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sohail Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Haroon Shah
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Fangshan, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Ahmad Ali
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qayyum Shehzad
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Waqas Ashraf
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Aiman Karim
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Adnan Khaliq
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahem Yar Khan, Pakistan
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
33
|
Chai KF, Voo AYH, Chen WN. Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Compr Rev Food Sci Food Saf 2020; 19:3825-3885. [PMID: 33337042 DOI: 10.1111/1541-4337.12651] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/03/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
Abstract
Bioactive peptides (BPs) are specific protein fragments that exert various beneficial effects on human bodies and ultimately influence health, depending on their structural properties and amino acid composition and sequences. By offering promising solutions to solve diverse health issues, the production, characterization, and applications of food-derived BPs have drawn great interest in the current literature and are of particular interest to the food and pharmaceutical industries. The microbial fermentation of protein from various sources is indubitably a novel way to produce BPs with numerous beneficial health effects. Apart from its lower cost as compared to enzymes, the BPs produced from microbial fermentation can be purified without further hydrolysis. Despite these features, current literature shows dearth of information on the BPs produced from food via microbial fermentation. Hence, there is a strong necessity to explore the BPs obtained from food fermentation for the development of commercial nutraceuticals and functional foods. As such, this review focuses on the production of BPs from different food sources, including the extensively studied milk and milk products, with emphasis on microbial fermentation. The structure-activity (antihypertensive, antioxidant, antimicrobial, opiate-like, anti-inflammatory, anticancer/antiproliferative, antithrombotic, hypolipidemic, hypocholesterolemic, and mineral binding) relationship, potential applications, future development, and challenges of BPs obtained from food fermentation are also discussed.
Collapse
Affiliation(s)
- Kong Fei Chai
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Amanda Ying Hui Voo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
34
|
Mahdavi Yekta M, Nouri L, Azizi MH, Karimi Dehkordi M, Mohammadi M, Jabbari M, Rezaei M, Mousavi Khaneghah A. Peptide extracted from quinoa by pepsin and alcalase enzymes hydrolysis: Evaluation of the antioxidant activity. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Mina Mahdavi Yekta
- Young Researchers and Elite Club Shahr‐e‐Qods Branch Islamic Azad University Tehran Iran
| | - Leila Nouri
- Department of Food Science and Technology Faculty of Agriculture Damghan Islamic Azad University Damghan Iran
| | - Mohammad Hossein Azizi
- Department of Food Science and Technology Faculty of Agriculture Tarbiat Modares University Tehran Iran
| | - Maryam Karimi Dehkordi
- Department of Clinical Sciences Faculty of Veterinary Medicine Shahrekord Branch Islamic Azad University Shahrekord Iran
| | - Milad Mohammadi
- Department of Food Hygiene and Quality Control School of Para Veterinary Science Bu‐Ali Sina University Hamedan Iran
| | - Maryam Jabbari
- Department of Public Health School of Paramedical and Health Zanjan University of Medical Sciences Zanjan Iran
| | - Mohammad Rezaei
- Department of Food Hygiene Faculty of Veterinary Medicine University of Tehran Tehran Iran
- Department of Food Safety and Hygiene School of Public Health Tehran University of Medical Sciences Tehran Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science Faculty of Food Engineering University of Campinas (UNICAMP) Campinas Brazil
| |
Collapse
|
35
|
Mhina CF, Jung HY, Kim JK. Recovery of antioxidant and antimicrobial peptides through the reutilization of Nile perch wastewater by biodegradation using two Bacillus species. CHEMOSPHERE 2020; 253:126728. [PMID: 32298913 DOI: 10.1016/j.chemosphere.2020.126728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/31/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Nile perch wastewater was biodegraded using two Bacillus species to recover bioactive substances to enhance its reutilization value. The two Bacillus species successfully produced low-molecular-weight substances with a 47.8% degree of hydrolysis. The antioxidant activities of the Nile perch wastewater increased as the biodegradation proceeded, and the culture supernatant exhibited the highest DPPH (80.1%), ABTS (93.1%) and Fe2+ chelating (88.5%) antioxidant activities at 60 h. The antioxidant potential of the biodegraded Nile perch wastewater was found to be higher than those of other fish hydrolysates. Moreover, the biodegraded Nile perch wastewater exhibited effective antimicrobial activity against Vibrio vulnificus, exhibiting a minimal inhibitory concentration of 585 μg mL-1. Two-dimensional thin layer chromatography analysis revealed the specific amino acids responsible for the antioxidant activity, and molecular-weight cut-off ultrafiltration revealed that the <2-kDa fraction exhibited the highest antioxidant activity with the lowest IC50 values (0.43 and 0.22 mg mL-1 for DPPH and ABTS antioxidant activities, respectively). This is the first report of the reutilization of Nile perch wastewater as a natural antioxidant and antimicrobial ingredient for nutraceuticals.
Collapse
Affiliation(s)
- Changoma Fransis Mhina
- KOICA-PKNU International Graduate Program of Fisheries Science, Graduate School of Global Fisheries, Pukyong National University, Busan, 48513, Republic of Korea; Department of Livestock and Fisheries Development, Mtwara District Council, P.O. Box 528, Mtwara, Tanzania
| | - Hyun Yi Jung
- Department of Biotechnology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Joong Kyun Kim
- KOICA-PKNU International Graduate Program of Fisheries Science, Graduate School of Global Fisheries, Pukyong National University, Busan, 48513, Republic of Korea; Department of Biotechnology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
36
|
Liu C, Xia Y, Hua M, Li Z, Zhang L, Li S, Gong R, Liu S, Wang Z, Sun Y. Functional properties and antioxidant activity of gelatine and hydrolysate from deer antler base. Food Sci Nutr 2020; 8:3402-3412. [PMID: 32724604 PMCID: PMC7382106 DOI: 10.1002/fsn3.1621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 11/17/2022] Open
Abstract
Gelatine was extracted from deer antler base by the hot water method and hydrolyzed with trypsin. A comparison of the properties of gelatine before and after enzymatic hydrolysis showed a decline in the surface hydrophobicity, enhanced thermal stability, broadening of the particle size distribution, a zeta potential shift to a lower pH, reduced foaming and emulsifying properties, and enhanced antioxidant activity. Hydrolysis increased the gelatine antioxidant activity in DPPH and FRAP assays. These results indicate that the functional properties of deer antler base gelatine may be affected by trypsin modification.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Special Animal and Plant Sciences CAAS Changchun, Jilin People's Republic of China
| | - Yunshi Xia
- Jilin Agricultural University Changchun, Jilin People's Republic of China
| | - Mei Hua
- Institute of Special Animal and Plant Sciences CAAS Changchun, Jilin People's Republic of China
| | - Zhiman Li
- Institute of Special Animal and Plant Sciences CAAS Changchun, Jilin People's Republic of China
| | - Lei Zhang
- Institute of Special Animal and Plant Sciences CAAS Changchun, Jilin People's Republic of China
| | - Shanshan Li
- Institute of Special Animal and Plant Sciences CAAS Changchun, Jilin People's Republic of China
| | - Ruize Gong
- Institute of Special Animal and Plant Sciences CAAS Changchun, Jilin People's Republic of China
| | - Songxin Liu
- Institute of Special Animal and Plant Sciences CAAS Changchun, Jilin People's Republic of China
| | - Zeshuai Wang
- Institute of Special Animal and Plant Sciences CAAS Changchun, Jilin People's Republic of China
| | - Yinshi Sun
- Institute of Special Animal and Plant Sciences CAAS Changchun, Jilin People's Republic of China
| |
Collapse
|
37
|
Noman A, Qixing J, Xu Y, Abed SM, Obadi M, Ali AH, Al-Bukhaiti WQ, Xia W. Effects of ultrasonic, microwave, and combined ultrasonic-microwave pretreatments on the enzymatic hydrolysis process and protein hydrolysate properties obtained from Chinese sturgeon (Acipenser sinensis). J Food Biochem 2020; 44:e13292. [PMID: 32557735 DOI: 10.1111/jfbc.13292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 11/29/2022]
Abstract
Degree of hydrolysis (DH), yield, amino acid profile, protein solubility, and antioxidant activity of Chinese sturgeon protein hydrolysates, as influenced by thermal pretreatment, ultrasonic (US), microwave (MW), and combined US-microwave pretreatments were investigated. Initially, the samples were subjected to thermal pretreatments in order to measure their effect on DH, which increased at 55°C. The DH recorded 7.63, 5.55, and 6.02% for US, MW, and combined US-MW pretreatment (US + MW), respectively, at the optimal time (8 min). The enzymatic hydrolysis (EN) of pretreated samples increased the DH to 19.41, 14.18, and 16.91% for US + EN, MW + EN, and US + MW + EN, respectively. The US + EN treatment was most effective for obtaining higher DH and yield, which were 19.41% and 18.62%, respectively. The use of US + EN also resulted in an increase in the percentage of molecular weights (≤1,000 Da), amino acid content and protein solubility, which reached 89.24, 80.08, and 98.58%, respectively. While, US + MW + EN pretreatment has achieved the highest antioxidant activities by IC50 of 1,1-diphenyl-2-picrylhydrazyl and 2,2-Azinobis (3-ehtylbenzothiazoli- 6-sulfnic acid), which were 3.01 and 1.85 mg/ml, respectively, in addition to the reducing power assay, which was 0.528 at a protein concentration of 5 mg/ml. Therefore, US and combined US-MW techniques can play a promising role in the production of protein hydrolysates and the improvement of their antioxidant properties. PRACTICAL APPLICATIONS: Nowadays, interest in Chinese sturgeon production has increased as a promising source of protein and antioxidant peptides. The optimal thermal pretreatment can be used to enhance the degree of hydrolysis. The results indicated that the use of ultrasound as a pretreatment enhanced the degree of hydrolysis, which could be useful in the preparation of protein hydrolysate with higher yields. The use of combined US-MW significantly improved the antioxidant properties of the protein hydrolysate. The combined US-MW technique is a novel method for obtaining valuable peptides and protein hydrolysates that can be applied as antioxidant constituents in the food products.
Collapse
Affiliation(s)
- Anwar Noman
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China.,Department of Agricultural Engineering, Faculty of Agriculture, Sana'a University, Sana'a, Yemen
| | - Jiang Qixing
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Sherif M Abed
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China.,Food and Dairy Science and Technology Department, Faculty of Environmental Agricultural Science, El-Arish University, El-Arish, Egypt
| | - Mohammed Obadi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Abdelmoneim H Ali
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Wedad Q Al-Bukhaiti
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
38
|
Wang Z, Xu Z, Sun L, Dong L, Wang Z, Du M. Dynamics of microbial communities, texture and flavor in Suan zuo yu during fermentation. Food Chem 2020; 332:127364. [PMID: 32645672 DOI: 10.1016/j.foodchem.2020.127364] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/30/2020] [Accepted: 06/14/2020] [Indexed: 11/12/2022]
Abstract
Suan zuo yu is a traditional Chinese fermented product. We explored the microbial diversity, the dynamic changes of texture and flavor compounds at different fermentation times (up to 24 d). Results showed that Weissella and Lactobacillus may play a vital role in fermentation especially for the flavor. At the end of fermentation, the taste activity value of Asp, Glu, and His were 21.61, 17.29 and 7.73, respectively. The bound water increased gradually indicated by low-field nuclear magnetic resonance, and the hardness was also increased. During the whole fermentation process, the myosin heavy chain protein and actin decreased obviously. Gas chromatography-mass spectrometry showed that a total of 80 volatile compounds were detected, and 6 alcohols, 6 aldehydes and 6 esters increased significantly, which mainly contributed to the flavor of Suan zuo yu. This study provides a theoretical basis for the industrial production of fermented fish.
Collapse
Affiliation(s)
- Zehan Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zhe Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Liming Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Liang Dong
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
39
|
Hamdi M, Feki A, Bardaa S, Li S, Nagarajan S, Mellouli M, Boudawara T, Sahnoun Z, Nasri M, Nasri R. A novel blue crab chitosan/protein composite hydrogel enriched with carotenoids endowed with distinguished wound healing capability: In vitro characterization and in vivo assessment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110978. [PMID: 32487393 DOI: 10.1016/j.msec.2020.110978] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/28/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022]
Abstract
This work aimed to the development of chitosan and protein isolate composite hydrogels, for carotenoids-controlled delivery and wound healing. By increasing the concentration of the protein isolate, chitosan hydrogels were more elastic at a protein isolate concentration not exceeding 15% (w/w). Chitosan-protein isolate composite hydrogels revealed low cytotoxicity towards MG-63 osteosarcoma cells. Thanks to its appropriate structural, swelling and mechanical resistance properties, chitosan hydrogel (3%; w/v), reinforced with 15% (w/w) of protein isolate, was selected for the carotenoids in vitro release study. Release profiles, show delivery patterns, where carotenoids were more barely released at a pH 7.4 medium (p < .05), compared to more acidic microenvironments (pH 4.0 and pH 2.0). Thus, developed hydrogels could be applied as pH-sensitive intelligent carriers, for drugs-controlled release, with interesting antioxidant abilities. The in vivo healing potential of hydrogels in rats' models was further studied. Topical application of hydrogel-based patches allowed the acceleration of wound healing and the complete healing, for composite hydrogel enriched with carotenoids.
Collapse
Affiliation(s)
- Marwa Hamdi
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, Sfax, Tunisia.
| | - Amal Feki
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, Sfax, Tunisia
| | - Sana Bardaa
- Laboratory of Pharmacology, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Suming Li
- European Institute of Membranes, UMR CNRS 5635, University of Montpellier, Montpellier Cedex 5, France
| | - Sakthivel Nagarajan
- European Institute of Membranes, UMR CNRS 5635, University of Montpellier, Montpellier Cedex 5, France
| | - Manel Mellouli
- Laboratory of Anatomopathology, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - Tahia Boudawara
- Laboratory of Anatomopathology, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - Zouheir Sahnoun
- Laboratory of Pharmacology, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, Sfax, Tunisia
| | - Rim Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, Sfax, Tunisia; Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
40
|
Antioxidant and antimicrobial applications of biopolymers: A review. Food Res Int 2020; 136:109327. [PMID: 32846526 DOI: 10.1016/j.foodres.2020.109327] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 05/09/2020] [Accepted: 05/16/2020] [Indexed: 12/26/2022]
Abstract
Biopolymers have generated mounting interest among researchers and industrialists over the recent past. Rising consciousness on the use of eco-friendly materials as green alternatives for fossil-based biopolymers has shifted the research focus towards biopolymers. Advances in technologies have opened up new windows of opportunities to explore the potential of biopolymers. In this context, this review presents a critique on applications of biopolymers in relation to antioxidant and antimicrobial activities. Some biopolymers are reported to contain inherent antioxidant and antimicrobial properties, whereas, some biopolymers, which do not possess such inherent properties, are used as carriers for other biopolymers or additives having these properties. Modifications are often performed in order to improve the properties of biopolymers to suit them for different applications. This review aims at presenting an overview on recent advances in the use of biopolymers with special reference to their antioxidant and antimicrobial applications in various fields.
Collapse
|
41
|
Mechri S, Sellem I, Bouacem K, Jabeur F, Laribi-Habchi H, Mellouli L, Hacène H, Bouanane-Darenfed A, Jaouadi B. A biological clean processing approach for the valorization of speckled shrimp Metapenaeus monoceros by-product as a source of bioactive compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15842-15855. [PMID: 32095964 DOI: 10.1007/s11356-020-08076-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
The efficiency of the proteolytic strain Anoxybacillus kamchatkensis M1V in the fermentation of speckled shrimp by-product was investigated for the recovery of a deproteinized bioactive hydrolysate. The biological activities of the resulting hydrolysate were also examined by applying several antioxidant and enzyme inhibitory assays. The strain M1V was found to produce high level of protease activity (2000 U/mL) when grown in media containing only shrimp powder at 25 g/L. The crude protease displayed a significant deproteinization capabiliy, with the best efficiency (48%) being recorded for an enzyme to substrate (E/S) ratio of 30 U/mg. Following the deproteinization, chitin was recovered and the authenticity was confirmed by Fourier-transform infrared spectroscopy (FTIR) analysis. On the other hand, the obtained hydrolysate showed a significant enzymatic inhibitory potential against acetylcholinesterase, tyrosinase, amylase, and angiotensin I convertase, and a strong antioxidant activity. Graphical Abstract.
Collapse
Affiliation(s)
- Sondes Mechri
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Imen Sellem
- Laboratory of Microorganisms and Biomolecules (LMB), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Khelifa Bouacem
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences (FSB), University of Sciences and Technology of Houari Boumediene (USTHB), P.O. Box 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Fadoua Jabeur
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Hassiba Laribi-Habchi
- Laboratory of Functional Analysis of Chemical Processes (LFACP), Process Engineering Department, Faculty of Technology, University of Blida 1, Road of Soumaâ, P.O. Box 270, 09000, Blida, Algeria
| | - Lotfi Mellouli
- Laboratory of Microorganisms and Biomolecules (LMB), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Hocine Hacène
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences (FSB), University of Sciences and Technology of Houari Boumediene (USTHB), P.O. Box 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Amel Bouanane-Darenfed
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences (FSB), University of Sciences and Technology of Houari Boumediene (USTHB), P.O. Box 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Bassem Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
42
|
Xu Y, Zang J, Regenstein JM, Xia W. Technological roles of microorganisms in fish fermentation: a review. Crit Rev Food Sci Nutr 2020; 61:1000-1012. [PMID: 32292041 DOI: 10.1080/10408398.2020.1750342] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fermentation is an important way to process and preserve fish. It not only gives the product a unique flavor and texture, but it also contributes to increased nutritional value and better functional properties. The production of fermented fish relies on naturally occurring enzymes (in the muscle or the intestinal tract) as well as microbial metabolic activity. This review focuses on the role of microorganisms on texture change, flavor formation, and biogenic amines accumulation in fermented fish. In addition, the production conditions and the major biochemical changes in fermented fish products are also introduced to help understand the factors influencing the quality of fermented fish. Moreover, prospects for further research of fermented fish are discussed.
Collapse
Affiliation(s)
- Yanshun Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jinhong Zang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
43
|
Fractionation of Protein Hydrolysates of Fish Waste Using Membrane Ultrafiltration: Investigation of Antibacterial and Antioxidant Activities. Probiotics Antimicrob Proteins 2020; 11:1015-1022. [PMID: 30415461 DOI: 10.1007/s12602-018-9483-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this study, yellowfin tuna (Thunnus albacores) viscera were hydrolyzed with protamex to obtain hydrolysate that is separated by a membrane ultrafiltration into four molecular size fractions (< 3, 3-10, 10-30, and 30 kDa <). Antibacterial and antioxidant properties of the resulting hydrolysates and membrane fractions were characterized, and results showed that the lowermost molecular weight fraction (< 3 kDa) had significantly the highest (P < 0.05) percentage of bacteria inhibition against Gram-positive (Listeria and Staphylococcus) and Gram-negative (E. coli and Pseudomonas) pathogenic and fish spoilage-associated microorganisms and scavenging activity against DPPH and ABTS radical and ferric reducing antioxidant power among the fractionated enzymatic hydrolysates. These results suggest that the protein hydrolysate derived from yellowfin tuna by-products and its peptide fractions could be used as an antimicrobial and antioxidant ingredient in both nutraceutical applications and functional food.
Collapse
|
44
|
Hajfathalian M, Jorjani S, Ghelichi S. Characterization of fish sausage manufactured with combination of sunflower oil and fish oil stabilized with fish roe protein hydrolysates. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:1439-1448. [PMID: 32180640 PMCID: PMC7054488 DOI: 10.1007/s13197-019-04179-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
The present study aimed to determine the effect of adding protein hydrolysates obtained after 30, 60, and 90 min enzymatic hydrolysis of fish roe on properties of silver carp sausages enriched with fish oil during storage at 4 °C for 30 days. Properties of the fortified sausages were determined by assessment of primary and secondary oxidation, fatty acid composition, microbial spoilage, texture, and organoleptic properties. The results indicated that the hydrolysates could retard oil oxidation and microbial spoilage and preserve n - 3 fatty acids in fish sausages during the refrigerated storage. Also, they rendered firmer microstructure with smaller oil droplets to the sausages. Fish sausages fortified with the hydrolysates were lighter and exhibited better textural and sensory properties. It can be concluded that enzymatic hydrolysates from discarded fish roe can be added to fish sausages containing fish oil to retard oil oxidation and microbial spoilage and improve sausage properties.
Collapse
Affiliation(s)
- Mona Hajfathalian
- Young Researchers and Elite Club, Gorgan Branch, Islamic Azad University, Gorgān, Iran
| | - Sarah Jorjani
- Department of Fisheries, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran
| | - Sakhi Ghelichi
- Department of Seafood Science and Technology, Faculty of Fisheries and Environmental Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgān, 49138-15739 Iran
| |
Collapse
|
45
|
Trabelsi I, Slima SB, Ktari N, Bardaa S, Elkaroui K, Abdeslam A, Ben Salah R. Purification, composition and biological activities of a novel heteropolysaccharide extracted from Linum usitatissimum L. seeds on laser burn wound. Int J Biol Macromol 2020; 144:781-790. [PMID: 31678100 DOI: 10.1016/j.ijbiomac.2019.10.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/04/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022]
Abstract
The present study investigates the purification, structure and in vitro antioxidant activities of a novel water soluble polysaccharide (LWSP) extracted from Linum usitatissimum L. seeds and evaluates the in vivo wound healing performance on CO2 laser fractional burn in a rat model. LWSP is a heteropolysaccharide that consists of glucose, mannose, xylose and arabinose. Three different tests were used to evaluate the antioxidant activity of this carbohydrate. The scavenging activity against 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical at a concentration of 5 mg/ml was 99.77%. The total antioxidant capacity of LWSP at 12 mg/ml was equivalent to 166.61 µg acsorbic acid. LWSP displayed a high protection effect against DNA damage induced byhydroxyl radical. No hemolytic activity was observed towards human erythrocytes. LWSP was tested in functional properties. The results showed good emulsion properties and high water (WHC) and oil holding (OHC) capacities (11.23 and 1.05%, respectively). In addition, the application of LWSP on the burn wound site in rat model increased significantly the percentage of burn contraction (98.6%) after 8 days of injury. According to the histological assessment, the LWSP-treated group had a higher content of hydroxyproline (846. 67 ± 92.28 mg/g tissue) than the other groups. Overall, the findings demonstrate that the application of this novel LWSP may open promising opportunities for burn wound healing in modern medicine.
Collapse
Affiliation(s)
- Imen Trabelsi
- Laboratory of Microorganisms and Biomolecules (LMB), Centre of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Sirine Ben Slima
- Laboratory of Microorganisms and Biomolecules (LMB), Centre of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Naourez Ktari
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax, University of Sfax, P.O. 1173-3038, Sfax, Tunisia
| | - Sana Bardaa
- Laboratory of Pharmacology, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Karim Elkaroui
- Laboratory of Microorganisms and Biomolecules (LMB), Centre of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Asehraou Abdeslam
- Laboratory of Biochemistry and Biotechnology, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Riadh Ben Salah
- Laboratory of Microorganisms and Biomolecules (LMB), Centre of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia.
| |
Collapse
|
46
|
Thamamsena R, Liu DC. Antioxidant and antimicrobial activities of different enzymatic hydrolysates from desalted duck egg white. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:1487-1496. [PMID: 32054192 PMCID: PMC7468171 DOI: 10.5713/ajas.19.0361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
Objective The objective of this study was to look for optimal preparation of hydrolysates of desalted duck egg white powder (DDEWP) by the three different proteases and to investigate their antioxidant and antimicrobial properties. Methods DDEWP was hydrolyzed by three proteases, including pepsin (PEP), Bacillus spp. (BA) and natokinase (NAT) with three different enzyme concentrations (0.1%, 0.3%, and 0.5%), individually. The important key hydrolysis parameters such as hydrolysis degree, yield, antioxidant and antimicrobial activity were evaluated in this experiment. Results The results showed that the degree of hydrolysis (DH) of all treatments increased with increasing hydrolysis time and protease concentrations. The antioxidant and antimicrobial activities of the hydrolysates were affected by type and concentration of protease as well as hydrolysis time. Hydrolysis of PEP significantly (p<0.05) obtained the highest yield of hydrolysates, however, both of BA and NAT showed substantially lower DH values and still did not exceed 5% by the end of hydrolysis. Among the different hydrolysates, PEP exhibited significantly higher 2, 2–diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity than BA and NAT. All DDEWP hydrolysates from PEP had low ferrous ion chelating activity (<37%) that was significantly lower than that of NAT (>37% to 92%) and BA (30% to 79%). Besides, DDEWP hydrolysates of PEP presented significantly higher reducing power than BA and NAT. In antimicrobial activities, Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa were not effectively inhibited by any DDEWP hydrolysates of PEP except for Staphylococcus aureus. Especially, the excellent antibacterial activity against S. aureus only was displayed in DDEWP hydrolysates of PEP 0.1%. Conclusion DDEWP hydrolysates from PEP demonstrated significantly better DH, yield, DPPH radical scavenging activity and reducing power, furthermore, had excellent inhibitory on S. aureus due to large clear zone and moderated inhibitory in bactericidal inhibition.
Collapse
Affiliation(s)
- Rommanee Thamamsena
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan
| | - Deng Cheng Liu
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
47
|
Tejano LA, Peralta JP, Yap EES, Chang Y. Bioactivities of enzymatic protein hydrolysates derived from Chlorella sorokiniana. Food Sci Nutr 2019; 7:2381-2390. [PMID: 31367367 PMCID: PMC6657813 DOI: 10.1002/fsn3.1097] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/09/2019] [Indexed: 12/20/2022] Open
Abstract
Chlorella sorokiniana protein isolates were enzymatically hydrolyzed using pepsin, bromelain, and thermolysin, with their molecular characteristics and bioactivities determined. Thermolysin hydrolysates exhibited the highest degree of hydrolysis (18.08% ± 1.13%). The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results showed that peptides with molecular weights <10 kDa were found in the hydrolysates compared to the protein isolates. Bioactivity assays revealed that pepsin peptide fraction <5 kDa showed the highest angiotensin-converting enzyme (ACE)-inhibitory (34.29% ± 3.45%) and DPPH radical scavenging activities (48.86% ± 1.95%), while pepsin peptide fraction <10 kDa demonstrated the highest reducing power with 0.2101% ± 0.02% absorbance. Moreover, antibacterial assessment revealed that pepsin hydrolysate and peptide fractions displayed inhibition to the test microorganisms. Overall, the present findings suggest that C. sorokiniana protein hydrolysates can be valuable bio-ingredients with pharmaceutical and nutraceutical application potentials.
Collapse
Affiliation(s)
- Lhumen A. Tejano
- College of Fisheries and Ocean Sciences, Institute of Fish Processing TechnologyUniversity of the PhilippinesVisayasMiagaoIloiloPhilippines
| | - Jose P. Peralta
- College of Fisheries and Ocean Sciences, Institute of Fish Processing TechnologyUniversity of the PhilippinesVisayasMiagaoIloiloPhilippines
| | - Encarnacion Emilia S. Yap
- College of Fisheries and Ocean Sciences, Institute of Fish Processing TechnologyUniversity of the PhilippinesVisayasMiagaoIloiloPhilippines
| | - Yu‐Wei Chang
- Department of Food ScienceNational Taiwan Ocean UniversityKeelungTaiwan
| |
Collapse
|
48
|
Noman A, Qixing J, Xu Y, Ali AH, Al-Bukhaiti WQ, Abed SM, Xia W. Influence of Degree of Hydrolysis on Chemical Composition, Functional Properties, and Antioxidant Activities of Chinese Sturgeon (Acipenser sinensis) Hydrolysates Obtained by Using Alcalase 2.4L. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2019. [DOI: 10.1080/10498850.2019.1626523] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Anwar Noman
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Department of Agricultural Engineering, Faculty of Agriculture, Sana’a University, Sana’a, Yemen
| | - Jiang Qixing
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Abdelmoneim H. Ali
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wedad Q. Al-Bukhaiti
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Sherif M. Abed
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
49
|
Basic and recent advances in marine antihypertensive peptides: Production, structure-activity relationship and bioavailability. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.04.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Yaghoubzadeh Z, Peyravii Ghadikolaii F, Kaboosi H, Safari R, Fattahi E. Antioxidant Activity and Anticancer Effect of Bioactive Peptides from Rainbow Trout (Oncorhynchus mykiss) Skin Hydrolysate. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09869-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|