1
|
Tian X, Zhang Z, Zhao Y, Tang A, Zeng Z, Zheng W, Zhang H, Luo Y, Lu W, Fan L, Shen L. Isolation and Characterization of Antioxidant Peptides from Dairy Cow ( Bos taurus) Placenta and Their Antioxidant Activities. Antioxidants (Basel) 2024; 13:913. [PMID: 39199159 PMCID: PMC11352039 DOI: 10.3390/antiox13080913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Our preliminary study identified dairy cow placenta extract (CPE) as a mixture of peptides with potent antioxidant activity both in vivo and in vitro. However, the specific antioxidant peptides (AOPs) responsible for this activity were not yet identified. In the current study, we employed virtual screening and chromatography techniques to isolate two peptides, ANNGKQWAEVF (CP1) and QPGLPGPAG (CP2), from CPE. These peptides were found to be less stable under extreme conditions such as high temperature, strong acid, strong alkali, and simulated digestive conditions. Nevertheless, under normal physiological conditions, both CP1 and CP2 exhibited significant antioxidant properties, including free-radical scavenging, metal chelating, and the inhibition of lipid peroxidation. They also up-regulated the activities of intracellular antioxidant enzymes in response to hydrogen-peroxide-induced oxidative stress, resulting in reduced MDA levels, a decreased expression of the Keap1 gene and protein, and increased levels of the Nrf2 and HO-1 genes and proteins. Furthermore, CP1 demonstrated superior antioxidant activity compared to CP2. These findings suggest that CP1 and CP2 hold potential for mitigating oxidative stress in vitro and highlight the efficacy of virtual screening as a method for isolating AOPs within CPE.
Collapse
Affiliation(s)
- Xinyu Tian
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| | - Zeru Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| | - Yuquan Zhao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| | - Anguo Tang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| | - Zhi Zeng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| | - Weijian Zheng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| | - Hanwen Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| | - Yuxin Luo
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| | - Wei Lu
- College of Veterinary Medicine, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China;
| | - Lei Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Liuhong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| |
Collapse
|
2
|
Yu T, Hu T, Na K, Zhang L, Lu S, Guo X. Glutamine-derived peptides: Current progress and future directions. Compr Rev Food Sci Food Saf 2024; 23:e13386. [PMID: 38847753 DOI: 10.1111/1541-4337.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/25/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Glutamine, the most abundant amino acid in the body, plays a critical role in preserving immune function, nitrogen balance, intestinal integrity, and resistance to infection. However, its limited solubility and instability present challenges for its use a functional nutrient. Consequently, there is a preference for utilizing glutamine-derived peptides as an alternative to achieve enhanced functionality. This article aims to review the applications of glutamine monomers in clinical, sports, and enteral nutrition. It compares the functional effectiveness of monomers and glutamine-derived peptides and provides a comprehensive assessment of glutamine-derived peptides in terms of their classification, preparation, mechanism of absorption, and biological activity. Furthermore, this study explores the potential integration of artificial intelligence (AI)-based peptidomics and synthetic biology in the de novo design and large-scale production of these peptides. The findings reveal that glutamine-derived peptides possess significant structure-related bioactivities, with the smaller molecular weight fraction serving as the primary active ingredient. These peptides possess the ability to promote intestinal homeostasis, exert hypotensive and hypoglycemic effects, and display antioxidant properties. However, our understanding of the structure-function relationships of glutamine-derived peptides remains largely exploratory at current stage. The combination of AI based peptidomics and synthetic biology presents an opportunity to explore the untapped resources of glutamine-derived peptides as functional food ingredients. Additionally, the utilization and bioavailability of these peptides can be enhanced through the use of delivery systems in vivo. This review serves as a valuable reference for future investigations of and developments in the discovery, functional validation, and biomanufacturing of glutamine-derived peptides in food science.
Collapse
Affiliation(s)
- Tianfei Yu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Tianshuo Hu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Kai Na
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Li Zhang
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Shuang Lu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, Wuhan City, China
| |
Collapse
|
3
|
Esfandi R, Willmore WG, Tsopmo A. Structural characterization of peroxyl radical oxidative products of antioxidant peptides from hydrolyzed proteins. Heliyon 2024; 10:e30588. [PMID: 38765145 PMCID: PMC11101819 DOI: 10.1016/j.heliyon.2024.e30588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
This work aimed to characterize oxidative products of five unique antioxidant peptides (P1: YFDEQNEQFR, P2: GQLLIVPQ, P3: SPFWNINAH, P4: NINAHSVVY, P5: RALPIDVL) from hydrolyzed oat proteins. Peptides were reacted with 2,2'-Azobis(2-amidinopropane) dihydrochloride, a common peroxyl radical generator. Chromatographic data showed that peptide P3 was the most oxidized (67 ± 4 %) while also displaying the most ability to scavenge radicals in the oxygen absorbance capacity assay (ORAC) with an activity of 2.16 ± 0.09 μM Trolox equivalents/μM peptide. Structural characterization using mass spectrometry showed the presence of four oxidative products of P3, three of which were mono-oxygenated and the fourth di-oxygenated. The identification of these oxidative products is new and provides an opportunity to investigate their biological function. A good correlation (r = 0.889) between the degree of oxidation and the ORAC data, demonstrates the usefulness of using oxidative peptide data to predict their radical scavenging activities.
Collapse
Affiliation(s)
- Ramak Esfandi
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - William G. Willmore
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
4
|
Zhu Y, Wang K, Jia X, Fu C, Yu H, Wang Y. Antioxidant peptides, the guardian of life from oxidative stress. Med Res Rev 2024; 44:275-364. [PMID: 37621230 DOI: 10.1002/med.21986] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
Reactive oxygen species (ROS) are produced during oxidative metabolism in aerobic organisms. Under normal conditions, ROS production and elimination are in a relatively balanced state. However, under internal or external environmental stress, such as high glucose levels or UV radiation, ROS production can increase significantly, leading to oxidative stress. Excess ROS production not only damages biomolecules but is also closely associated with the pathogenesis of many diseases, such as skin photoaging, diabetes, and cancer. Antioxidant peptides (AOPs) are naturally occurring or artificially designed peptides that can reduce the levels of ROS and other pro-oxidants, thus showing great potential in the treatment of oxidative stress-related diseases. In this review, we discussed ROS production and its role in inducing oxidative stress-related diseases in humans. Additionally, we discussed the sources, mechanism of action, and evaluation methods of AOPs and provided directions for future studies on AOPs.
Collapse
Affiliation(s)
- Yiyun Zhu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Kang Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyi Jia
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
- Department of Food Science and Technology, Food Science and Technology Center, National University of Singapore, Singapore, Singapore
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Fan L, Liu X, Deng Y, Zheng X. Preparation of Glutamine-Enriched Fermented Feed from Corn Gluten Meal and Its Functionality Evaluation. Foods 2023; 12:4336. [PMID: 38231836 PMCID: PMC10706031 DOI: 10.3390/foods12234336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
China faces a persistent deficiency in feed protein resources. Enhancing the utilization efficiency of indigenous feed protein resources emerges as a viable strategy to alleviate the current deficit in protein feed supply. Corn gluten meal (CGM), characterized by a high proportion of crude protein and glutamine, is predominantly employed in animal feed. Nonetheless, the water-insolubility of CGM protein hampers its protein bioavailability when utilized as feed material. The aim of this study was to augment protein bioavailability, liberate glutamine peptides from CGM, and produce glutamine-enriched CGM fermented feed. We executed a co-fermentation protocol using Bacillus subtilis A5, Lactobacillus 02002, and acid protease to generate the CGM fermented feed. Subsequent in vivo experiments with broilers were conducted to assess the efficacy of the fermented product. The findings revealed that the soluble protein, glutamine, small peptides, and lactic acid contents in the fermented feed increased by 69.1%, 700%, 47.6%, and 125.9%, respectively. Incorporating 15% and 30% CGM fermented feed into the diet markedly enhanced the growth performance and intestinal health of broilers, positively modulated the cecal microbiota structure, and augmented the population of beneficial bacteria, specifically Lactobacillus. These results furnish both experimental and theoretical foundations for deploying CGM fermented feed as an alternative protein feed resource.
Collapse
Affiliation(s)
- Lei Fan
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China;
| | - Xiaolan Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China;
- Key Laboratory of Corn Deep Processing Theory and Technology of Heilongjiang Province, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China;
| | - Yongping Deng
- Key Laboratory of Corn Deep Processing Theory and Technology of Heilongjiang Province, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China;
| | - Xiqun Zheng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
6
|
Yu X, Chen Y, Qi Z, Chen Q, Cao Y, Kong Q. Preparation and identification of a novel peptide with high antioxidant activity from corn gluten meal. Food Chem 2023; 424:136389. [PMID: 37209437 DOI: 10.1016/j.foodchem.2023.136389] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/20/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
The antioxidant activity of corn peptides is related to their molecular weight and structure. Corn gluten meal (CGM) was hydrolyzed using a combination of Alcalase, Flavorzyme and Protamex, and the hydrolysates were subjected to antioxidant activity analysis after further fractionation. Corn peptides with molecular weights less than 1 kDa (CPP1) exhibited excellent antioxidant activity. A novel peptide, Arg-Tyr-Leu-Leu (RYLL), was identified from CPP1. RYLL displayed preferable scavenging capacities for ABTS radicals and DPPH radicals, with IC50 values of 0.122 mg/ml and 0.180 mg/ml, respectively. Based on quantum calculations, RYLL had multiple antioxidant active sites, and tyrosine was the main active site due to the highest energy of the highest occupied molecular orbit (HOMO). Moreover, the simple peptide structure and hydrogen bond network of RYLL contributed to the exposure of the active site. This study elucidated the antioxidant mechanism of corn peptides, which could provide an understanding for CGM hydrolysates as natural antioxidants.
Collapse
Affiliation(s)
- Xiao Yu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Chen
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Zhiguo Qi
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Quan Chen
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Yujin Cao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Qingshan Kong
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
7
|
Mardani M, Badakné K, Farmani J, Aluko RE. Antioxidant peptides: Overview of production, properties, and applications in food systems. Compr Rev Food Sci Food Saf 2023; 22:46-106. [PMID: 36370116 DOI: 10.1111/1541-4337.13061] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/23/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022]
Abstract
In recent years, several studies have reported the beneficial effects of antioxidant peptides in delaying oxidation reactions. Thus, a growing number of food proteins have been investigated as suitable sources for obtaining these antioxidant peptides. In this study, some of the most critical developments in the discovery of peptidic antioxidants are discussed. Initially, the primary methods to release, purify, and identify these antioxidant peptides from various food-derived sources are reviewed. Then, computer-based screening methods of the available peptides are summarized, and methods to interpret their structure-activity relationship are illustrated. Finally, approaches to the large-scale production of these bioactive peptides are described. In addition, the applications of these antioxidants in food systems are discussed, and gaps, future challenges, and opportunities in this field are highlighted. In conclusion, various food items can be considered promising sources to obtain these novel antioxidant peptides, which present various opportunities for food applications in addition to health promotion. The lack of in-depth data on the link between the structure and activity of these antioxidants, which is critical for the prediction of possible bioactive amino acid sequences and their potency in food systems and in vivo conditions (rather than in vitro systems), requires further attention. Consequently, future collaborative research activities between the industry and academia are required to realize the commercialization objectives of these novel antioxidant peptides.
Collapse
Affiliation(s)
- Mohsen Mardani
- Department of Cereal and Industrial Plant Processing, Faculty of Food Science, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Katalin Badakné
- Department of Cereal and Industrial Plant Processing, Faculty of Food Science, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Jamshid Farmani
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
8
|
Liu B, Li N, Chen F, Zhang J, Sun X, Xu L, Fang F. Review on the release mechanism and debittering technology of bitter peptides from protein hydrolysates. Compr Rev Food Sci Food Saf 2022; 21:5153-5170. [PMID: 36287032 DOI: 10.1111/1541-4337.13050] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/14/2022] [Accepted: 09/04/2022] [Indexed: 01/28/2023]
Abstract
Recent scientific evidence indicates that protein hydrolysates contain bioactive peptides that have potential benefits for human health. However, the bitter-tasting hydrophobic peptides in protein hydrolysates negatively affect the sensory quality of resulting products and limit their utilization in food and pharmaceutical industries. The approaches to reduce, mask, and remove bitter taste from protein hydrolysates have been extensively reported. This review paper focuses on the advances in the knowledge regarding the structure-bitterness relationship of peptides, the release mechanism of bitter peptides, and the debittering methods for protein hydrolysates. Bitter tastes generating with enzymatic hydrolysis of protein is influenced by the type, concentration, and bitter taste threshold of bitterness peptides. A "bell-shaped curve" is used to describe the relationship between the bitterness intensity of the hydrolysates and the degree of hydrolysis. The bitter receptor perceives bitter potencies of bitter peptides by the hydrophobicity recognition zone. The intensity of bitterness is influenced by hydrophobic and electronic properties of amino acids and the critical spatial structure of peptides. Compared to physicochemical debittering (i.e., selective separation, masking of bitter taste, encapsulation, Maillard reaction, and encapsulation) and other biological debittering (i.e., enzymatic hydrolysis, enzymatic deamidation, plastein reaction), enzymatic hydrolysis is a promising debittering approach as it combines protein hydrolyzation and debittering into a one-step process, but more work should be done to advance the knowledge on debittering mechanism of enzymatic hydrolysis and screening of suitable proteases. Further study can focus on combining physicochemical and biological approaches to achieve high debittering efficiency and produce high-quality products.
Collapse
Affiliation(s)
- Boye Liu
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Nana Li
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Jingsi Zhang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210014, People's Republic of China
| | - Xiaorui Sun
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Lei Xu
- Nestlé Product Technology Center, Nestlé Health Science, Bridgewater, NJ, 08807, USA
| | - Fang Fang
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
9
|
Improving interface properties of zein hydrolysis and its application in salad dressing through dispersion improvement assisted by potassium oleate aqueous solution. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Díaz-Gómez JL, López-Castillo LM, Garcia-Lara S, Castorena-Torres F, Winkler R, Wielsch N, Aguilar O. Novel α-zein peptide fractions with in vitro cytotoxic activity against hepatocarcinoma. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Purification and identification of novel antioxidant peptides from silkworm pupae (Bombyx mori) protein hydrolysate and molecular docking study. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Mazloum-Ravasan S, Mohammadi M, Hiagh EM, Ebrahimi A, Hong JH, Hamishehkar H, Kim KH. Nano-liposomal zein hydrolysate for improved apoptotic activity and therapeutic index in lung cancer treatment. Drug Deliv 2022; 29:1049-1059. [PMID: 35363101 PMCID: PMC8979517 DOI: 10.1080/10717544.2022.2057618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Lung cancer is one of the most common cancers in the world with a high mortality rate. Zein is a protein compound whose protein isolate is not useful and whose protein hydrolysis produces biological activity. By encapsulating this bioactive compound inside the nanoparticles (NPs), it causes itself to reach the tumor site and destroy it rapidly. In this study, the effects of zein hydrolysate (ZH) and nano-liposomal ZH (N-ZH) were investigated on the human A549 cell line. Western blotting and cell cycle analyses showed that ZH and N-ZH caused cytotoxicity. They induced apoptosis via cell cycle arrest at the G0 phase, as well as significant increases in pro-apoptotic genes, such as Bax, caspase-3, -8, -9, and p53, accompanied with significant decreases in the anti-apoptotic marker Bcl-2. Based on the results, the cytotoxic and anticancer effects of N-ZH were higher than those of free ZH. In conclusion, liposomes improved the performance of ZH and dramatically reduced the IC50 value of ZH. These findings provided the experimental evidence that N-ZH with favorable anticancer activity can be used as a therapeutic agent and strategy for lung cancer treatment in future clinical trials.
Collapse
Affiliation(s)
| | - Maryam Mohammadi
- Department of Food Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Madadi Hiagh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,Pediatrics III, University Hospital Essen, Essen, Germany
| | - Alireza Ebrahimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Joo-Hyun Hong
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
13
|
Liu Y, Xie YP, Ma XY, Liu LN, Ke YJ. Preparation and properties of antioxidant peptides from wampee seed protein. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01164-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Imani S, Alizadeh A, Tabibiazar M, Hamishehkar H, Roufegarinejad L. Nanoliposomal co-encapsulation of cinnamon extract and zein hydrolysates with synergistic antioxidant activity for nutraceutical applications. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Kopparapu NK, Duan Y, Huang L, Katrolia P. Review on utilisation of corn gluten meal, a by‐product from corn starch industry for production of value‐added products. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Yajie Duan
- College of Food Science Southwest University Beibei Chongqing 400715 China
| | - Linhua Huang
- Citrus Research Institute Southwest University Xiema Beibei Chongqing 400712 China
| | - Priti Katrolia
- College of Food Science Southwest University Beibei Chongqing 400715 China
| |
Collapse
|
16
|
Purification, Identification and Characterization of Antioxidant Peptides from Corn Silk Tryptic Hydrolysate: An Integrated In Vitro-In Silico Approach. Antioxidants (Basel) 2021; 10:antiox10111822. [PMID: 34829693 PMCID: PMC8615004 DOI: 10.3390/antiox10111822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 11/23/2022] Open
Abstract
Corn silk (CS) is an agro-by-product from corn cultivation. It is used in folk medicines in some countries, besides being commercialized as health-promoting supplements and beverages. Unlike CS-derived natural products, their bioactive peptides, particularly antioxidant peptides, are understudied. This study aimed to purify, identify and characterize antioxidant peptides from trypsin-hydrolyzed CS proteins. Purification was accomplished by membrane ultrafiltration, gel filtration chromatography, and strong-cation-exchange solid-phase extraction, guided by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation (ABTS•+) scavenging, hydrogen peroxide scavenging, and lipid peroxidation inhibition assays. De novo sequencing identified 29 peptides (6–14 residues; 633–1518 Da). The peptides consisted of 33–86% hydrophobic and 10–67% basic residues. Molecular docking found MCFHHHFHK, VHFNKGKKR, and PVVWAAKR having the strongest affinity (−4.7 to −4.8 kcal/mol) to ABTS•+, via hydrogen bonds and hydrophobic interactions. Potential cellular mechanisms of the peptides were supported by their interactions with modulators of intracellular oxidant status: Kelch-like ECH-associated protein 1, myeloperoxidase, and xanthine oxidase. NDGPSR (Asn-Asp-Gly-Pro-Ser-Arg), the most promising peptide, showed stable binding to all three cellular targets, besides exhibiting low toxicity, low allergenicity, and cell-penetrating potential. Overall, CS peptides have potential application as natural antioxidant additives and functional food ingredients.
Collapse
|
17
|
A novel nonapeptide SSDAFFPFR from Antarctic krill exerts a protective effect on PC12 cells through the BCL-XL/Bax/Caspase-3/p53 signaling pathway. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
18
|
Zhang X, Li H, Wang L, Zhang S, Wang F, Lin H, Gao S, Li X, Liu K. Anti-inflammatory peptides and metabolomics-driven biomarkers discovery from sea cucumber protein hydrolysates. J Food Sci 2021; 86:3540-3549. [PMID: 34268766 DOI: 10.1111/1750-3841.15834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022]
Abstract
The hydrolysates from Apostichopus japonicus sea cucumber are an important source of nitrogen that may be added to foods. We evaluated the effect of A. japonicus hydrolysates on inflammation-associated leukocyte recruitment. The results revealed that leukocyte migration to the site of injury was significantly blocked by AJH-1 (<10 kDa), suggesting a protective effect against CuSO4 -induced neuromast damage in a zebrafish model. Based on liquid chromatography/time-of-flight/mass spectrometry, and metabolomic analysis, the nine biomarker candidates in AJH-1 were Val, Ala-Pro-Arg, Gly-Lys, Asp propyl ester, Glu methyl ester, His butyl ester, Ile-Ala-Ala-Lys, Tyr-Lys, and Asn-Pro-Gly-Lys. We used molecular docking to predict the binding affinity and docked position of the peptides onto the angiotensin converting enzyme (ACE). All the identified peptides had adequate binding affinity toward ACE, especially peptides Ala-Pro-Arg and Gly-Lys. These peptides may be used in the development of therapeutic foods. PRACTICAL APPLICATION: The study revealed the anti-inflammatory properties of the fractionated sea cucumber protein hydrolysate (<10 kDa). The characteristic peptides may be used as functional ingredients in nutraceutical foods and beverages.
Collapse
Affiliation(s)
- Xuanming Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Haonan Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lizhen Wang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shanshan Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Fengxia Wang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Houwen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Gao
- Weihai Kanghao Biology Technological Co., Ltd., Weihai, China
| | - Xiaobin Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kechun Liu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
19
|
Trinidad-Calderón PA, Acosta-Cruz E, Rivero-Masante MN, Díaz-Gómez JL, García-Lara S, López-Castillo LM. Maize bioactive peptides: From structure to human health. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Trinidad-Calderón PA, Acosta-Cruz E, Rivero-Masante MN, Díaz-Gómez JL, García-Lara S, López-Castillo LM. Maize bioactive peptides: From structure to human health. J Cereal Sci 2021. [DOI: https://doi.org/10.1016/j.jcs.2021.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Durand E, Beaubier S, Ilic I, fine F, Kapel R, Villeneuve P. Production and antioxidant capacity of bioactive peptides from plant biomass to counteract lipid oxidation. Curr Res Food Sci 2021; 4:365-397. [PMID: 34142097 PMCID: PMC8187438 DOI: 10.1016/j.crfs.2021.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Preventing lipid oxidation, especially with the polyunsaturated fat-based products, is a major concern in sectors as agri-food and cosmetic. Even though the efficiency of synthetic antioxidants has been recognized, both consumers and manufacturers are looking for more innovative, healthy and quality products while rejecting synthetic additives due to their concern about safety, along with their environmental impact issues. In this context, plant biomass, which have shown to be rich in compounds, have raised interest for the isolation of novel naturally occurring antioxidants. Among their myriad of molecules, bioactive peptides, which are biologically active sequence of amino acid residues of proteins, seem to be of a great interest. Therefore, the number of identified amino acids sequences of bioactive peptides from plant biomass with potential antioxidant action is progressively increasing. Thus, this review provides a description of 129 works that have been made to produce bioactive peptides (hydrolysate, fraction and/or isolate peptide) from 55 plant biomass, along with the procedure to examine their antioxidant capacity (until 2019 included). The protein name, the process, and the method to concentrate or isolate antioxidant bioactive peptides, along with their identification and/or specificity were described. Considering the complex, dynamic and multifactorial physico-chemical mechanisms of the lipid oxidation, an appropriate in-vitro methodology should be better performed to efficiently probe the antioxidant potential of bioactive peptides. Therefore, the results were discussed, and perspective for antioxidant applications of bioactive peptides from plant biomass was argued.
Collapse
Affiliation(s)
- Erwann Durand
- CIRAD, UMR QualiSud, Montpellier, F-34398, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Sophie Beaubier
- Laboratoire Réactions et Génie des Procédés, UMR CNRS-7274, plateforme SVS, 13 rue du bois de la Champelle, Vandœuvre-lès-Nancy, F-54500, France
| | - Isidora Ilic
- CIRAD, UMR QualiSud, Montpellier, F-34398, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Frederic fine
- TERRES INOVIA, Parc Industriel – 11 Rue Monge, 33600 Pessac, France
| | - Romain Kapel
- Laboratoire Réactions et Génie des Procédés, UMR CNRS-7274, plateforme SVS, 13 rue du bois de la Champelle, Vandœuvre-lès-Nancy, F-54500, France
| | - Pierre Villeneuve
- CIRAD, UMR QualiSud, Montpellier, F-34398, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| |
Collapse
|
22
|
Abdel-Aal ESM. Nutritional and functional attributes of hairless canary seed groats and components and their potential as functional ingredients. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Ofosu FK, Mensah DJF, Daliri EBM, Oh DH. Exploring Molecular Insights of Cereal Peptidic Antioxidants in Metabolic Syndrome Prevention. Antioxidants (Basel) 2021; 10:518. [PMID: 33810450 PMCID: PMC8066008 DOI: 10.3390/antiox10040518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 11/23/2022] Open
Abstract
The prevalence of metabolic syndrome (MetS) is presently an alarming public health problem globally. Oxidative stress has been postulated to be strongly correlated with MetS, such as type 2 diabetes, obesity, hypertension, cardiovascular diseases, and certain cancers. Cereals are important staple foods which account for a huge proportion of the human diet. However, owing to recent growing demand and the search for natural antioxidants for the prevention and management of MetS, cereal peptides have gained increasing attention for developing functional ingredients or foods with substantial antioxidant properties. This review explores the current production techniques for cereal peptidic antioxidants and their potential mechanism of action in the prevention and management of MetS.
Collapse
Affiliation(s)
- Fred Kwame Ofosu
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (F.K.O.); (E.B.-M.D.)
| | - Dylis-Judith Fafa Mensah
- Department of Family and Consumer Sciences, College of Applied Science and Technology, Illinois State University, Normal, IL 61761, USA;
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (F.K.O.); (E.B.-M.D.)
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (F.K.O.); (E.B.-M.D.)
| |
Collapse
|
24
|
Gong X, An Q, Le L, Geng F, Jiang L, Yan J, Xiang D, Peng L, Zou L, Zhao G, Wan Y. Prospects of cereal protein-derived bioactive peptides: Sources, bioactivities diversity, and production. Crit Rev Food Sci Nutr 2020; 62:2855-2871. [PMID: 33325758 DOI: 10.1080/10408398.2020.1860897] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cereals account for a large proportion of the human diet and are an important source of protein. The preparation of cereal protein peptides is a good way to utilize these proteins. Cereal protein peptides have good application potential as antioxidant, antibacterial, anti-inflammatory and anticancer compounds, in lowering blood pressure, controlling blood sugar, and inhibiting thrombosis. This article reviews the literature on the functional properties, mechanisms of action, and applications of cereal protein peptides in the food industry with two perspectives, and summarizes the methods for their preparation and identification. The biologically active peptides derived from different grain proteins have varied main functional properties, which may be related to the differences in the amino acid composition and protein types of different grains. On this basis, the structure-activity relationship of cereal protein peptides was discussed. The advancement of identification technology makes the integration of bioinformatics and bioactive peptide research closer. Bioinformatics by combination of online database, computer simulation and experimental verification is helpful to in-deep study the structure-activity relationship of biologically active peptides, and improve efficiency in the process of obtaining target peptides with less cost. In addition, the application of cereal protein peptides in the food industry is also discussed.
Collapse
Affiliation(s)
- Xuxiao Gong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Qi An
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Liqing Le
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Liangzhen Jiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| |
Collapse
|
25
|
Tacias-Pascacio VG, Morellon-Sterling R, Siar EH, Tavano O, Berenguer-Murcia Á, Fernandez-Lafuente R. Use of Alcalase in the production of bioactive peptides: A review. Int J Biol Macromol 2020; 165:2143-2196. [PMID: 33091472 DOI: 10.1016/j.ijbiomac.2020.10.060] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
This review aims to cover the uses of the commercially available protease Alcalase in the production of biologically active peptides since 2010. Immobilization of Alcalase has also been reviewed, as immobilization of the enzyme may improve the final reaction design enabling the use of more drastic conditions and the reuse of the biocatalyst. That way, this review presents the production, via Alcalase hydrolysis of different proteins, of peptides with antioxidant, angiotensin I-converting enzyme inhibitory, metal binding, antidiabetic, anti-inflammatory and antimicrobial activities (among other bioactivities) and peptides that improve the functional, sensory and nutritional properties of foods. Alcalase has proved to be among the most efficient proteases for this goal, using different protein sources, being especially interesting the use of the protein residues from food industry as feedstock, as this also solves nature pollution problems. Very interestingly, the bioactivities of the protein hydrolysates further improved when Alcalase is used in a combined way with other proteases both in a sequential way or in a simultaneous hydrolysis (something that could be related to the concept of combi-enzymes), as the combination of proteases with different selectivities and specificities enable the production of a larger amount of peptides and of a smaller size.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico.
| | | | - El-Hocine Siar
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Equipe TEPA, Laboratoire LNTA, INATAA, Université des Frères Mentouri Constantine 1, Constantine 25000, Algeria
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
26
|
Hu R, Chen G, Li Y. Production and Characterization of Antioxidative Hydrolysates and Peptides from Corn Gluten Meal Using Papain, Ficin, and Bromelain. Molecules 2020; 25:E4091. [PMID: 32906778 PMCID: PMC7571122 DOI: 10.3390/molecules25184091] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 12/03/2022] Open
Abstract
There has been a growing interest in developing natural antioxidants with high efficiency and low cost. Bioactive protein hydrolysates could be a potential source of natural and safer antioxidants. The objectives of this study were to hydrolyze corn gluten meal using three plant-derived proteases, namely papain, ficin, and bromelain, to produce antioxidative hydrolysates and peptides and to characterize the antioxidant performances using both chemical assays and a ground meat model. The optimum hydrolysis time for papain was 3 h, and for ficin and bromelain was 4 h. The hydrolysates were further separated by sequential ultrafiltration to 5 hydrolysate fractions named F1 to F5 from low molecular weight (MW) (<1 kDa) to high MW range (>10 kDa), which were further characterized for TPC, free radical scavenging capacity against DPPH and ABTS, and metal chelating activity. The fraction F4 produced by papain (CH-P4), F1 produced by ficin (CH-F1), and F3 produced by bromelain (CH-B3) showed the strongest antioxidant activity and yield, respectively. These three fractions were incorporated into ground pork to determine their inhibition effects on lipid oxidation during a 16-day storage period. The inhibition effect was enhanced with the addition of higher amount of hydrolysate (e.g., 1000 vs. 500 mg/kg). The CH-P4 reduced lipid oxidation in ground meat by as much as 30.45%, and CH-B3 reduced oxidation by 27.2% at the same level, but the inhibition was only 13.83% with 1000 mg/kg of CH-F1. The study demonstrated that CGM protein hydrolysates and peptides could be used as naturally derived antioxidant in retarding lipid oxidation and improving product storage stability.
Collapse
Affiliation(s)
| | | | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA; (R.H.); (G.C.)
| |
Collapse
|
27
|
Peñaranda-López A, Brito-de la Fuente E, Torrestiana-Sánchez B. Fractionation of hydrolysates from concentrated lecithin free egg yolk protein dispersions by ultrafiltration. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Ji X, Li R, Jia W, Liu G, Luo Y, Cheng Z. Co-Axial Fibers with Janus-Structured Sheaths by Electrospinning Release Corn Peptides for Wound Healing. ACS APPLIED BIO MATERIALS 2020; 3:6430-6438. [PMID: 35021774 DOI: 10.1021/acsabm.0c00860] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xuan Ji
- Department of Stomatology, the Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Rui Li
- College of Resources and Environment, Jilin Agriculture University, Changchun 130118, P. R. China
| | - Wenyuan Jia
- Department of Orthopedics, the Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Guomin Liu
- Department of Orthopedics, the Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yungang Luo
- Department of Stomatology, the Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agriculture University, Changchun 130118, P. R. China
| |
Collapse
|
29
|
Liu WY, Fang L, Feng XW, Li GM, Gu RZ. In vitro antioxidant and angiotensin I-converting enzyme inhibitory properties of peptides derived from corn gluten meal. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03552-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Structure-activity relationship and pathway of antioxidant shrimp peptides in a PC12 cell model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103978] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
31
|
YANG S, ZHENG M, LI S, XIAO Y, ZHOU Q, LIU J. Preparation of glycosylated hydrolysate by liquid fermentation with Cordyceps militaris and characterization of its functional properties. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.37518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shuang YANG
- College of Food Science and Engineering, China
| | | | - Sheng LI
- College of Food Science and Engineering, China
| | - Yu XIAO
- College of Food Science and Engineering, China
| | - Qi ZHOU
- College of Food Science and Engineering, China
| | - Jingsheng LIU
- College of Food Science and Engineering, China; National Engineering Laboratory for Wheat and Corn Deep Processing, China
| |
Collapse
|
32
|
Preparation of corn glycopeptides and evaluation of their antagonistic effects on alcohol-induced liver injury in rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
33
|
El-Fakharany EM, Abu-Elreesh GM, Kamoun EA, Zaki S, Abd-EL-Haleem DA. In vitro assessment of the bioactivities of sericin protein extracted from a bacterial silk-like biopolymer. RSC Adv 2020; 10:5098-5107. [PMID: 35498316 PMCID: PMC9049123 DOI: 10.1039/c9ra09419a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/09/2020] [Indexed: 11/21/2022] Open
Abstract
Sericin is one of the main components of silk proteins, which has numerous biomedical applications because of its antioxidant, anticancer and antimicrobial properties. We recently isolated and characterized a novel silk-like protein named BNES. It is of non-animal origin and is like a bacterial polymeric silk. Sericin is a very popular protein compound that is effective in treating cancerous tumors. The process of extracting it from natural silk produced by silkworms or spiders is both complex and expensive. From the published scientific literature, it has been shown that sericin has not been previously extracted from a bacterial source. In the present study, sericin was extracted from bacteria capable of producing a biopolymer named BNES whose chemical composition is like that of natural silk and its bio-therapeutic effects were evaluated for the first time. The antioxidant activity of BNES measured by DPPH and ABTS assays showed IC50 values of 0.38 and 0.41 mg mL−1, respectively. BNES displayed satisfactory cytotoxic effect against four cancer cell lines, including Huh-7, Caco-2, MCF-7 and A549 cells, with IC50 values in the ranges of ca. 0.62 ± 0.17, 0.72 ± 0.27, 0.76 ± 0.36 and 0.83 ± 0.31 mg mL−1, respectively, after 24 h of treatment and 0.51 ± 0.22, 0.49 ± 0.19, 0.41 ± 0.25 and 0.55 ± 0.38, respectively, after 48 h of treatment, without affecting normal cells (WI38 cells). The antitumor activity of BNES was established to be an apoptosis-dependent mechanism determined via cellular morphology alterations, cell cycle arrest in the sub-G1 phase and nuclear staining with highly fluorescent fragments. The antimicrobial effects of BNES were examined with yeast and Gram-negative and Gram-positive bacteria. The results confirmed its antimicrobial activity against all tested organisms at concentrations of up to 1.33 mg mL−1. The competitive advantage of the bacterial sericin BNES over sericin extracted from spider or silkworm sources is that it can be produced in very large quantities through large-scale bio-fermenters, which reduces the expected cost of production, in addition to having sustainable bacterial production source. Sericin is one of the main components of silk proteins, which has numerous biomedical applications because of its antioxidant, anticancer and antimicrobial properties.![]()
Collapse
Affiliation(s)
- Esamil M. El-Fakharany
- Proteins Research Dep
- Genetic Engineering and Biotechnology Research Institute (GEBRI)
- City of Scientific Research and Technological Applications (SRTA-City)
- New Borg Al-Arab City 21934
- Egypt
| | - Gadallah M. Abu-Elreesh
- Environmental Biotechnology Dep
- Genetic Engineering and Biotechnology Research Institute (GEBRI)
- City of Scientific Research and Technological Applications (SRTA-City)
- New Borg Al-Arab City 21934
- Egypt
| | - Elbadawy A. Kamoun
- Polymeric Materials Research Dep
- Advanced Technology and New Materials Research Institute (ATNMRI)
- City of Scientific Research and Technological Applications
- New Borg Al-Arab City 21934
- Egypt
| | - Sahar Zaki
- Environmental Biotechnology Dep
- Genetic Engineering and Biotechnology Research Institute (GEBRI)
- City of Scientific Research and Technological Applications (SRTA-City)
- New Borg Al-Arab City 21934
- Egypt
| | - Desouky A. Abd-EL-Haleem
- Environmental Biotechnology Dep
- Genetic Engineering and Biotechnology Research Institute (GEBRI)
- City of Scientific Research and Technological Applications (SRTA-City)
- New Borg Al-Arab City 21934
- Egypt
| |
Collapse
|
34
|
Musa A, Ma H, Gasmalla MA, Sarpong F, Awad FN, Duan Y. Effect of multi-frequency counter-current S type ultrasound pretreatment on the enzymatic hydrolysis of defatted corn germ protein: Kinetics and thermodynamics. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
35
|
Changes in peptidomes and Fischer ratios of corn-derived oligopeptides depending on enzyme hydrolysis approaches. Food Chem 2019; 297:124931. [DOI: 10.1016/j.foodchem.2019.05.205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 11/15/2022]
|
36
|
Shen Y, Hu R, Li Y. Antioxidant and Emulsifying Activities of Corn Gluten Meal Hydrolysates in Oil‐in‐Water Emulsions. J AM OIL CHEM SOC 2019. [DOI: 10.1002/aocs.12286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yanting Shen
- Department of Grain Science and IndustryKansas State University Manhattan KS 66506 USA
| | - Ruijia Hu
- Department of Grain Science and IndustryKansas State University Manhattan KS 66506 USA
| | - Yonghui Li
- Department of Grain Science and IndustryKansas State University Manhattan KS 66506 USA
| |
Collapse
|
37
|
Xu S, Shen Y, Chen G, Bean S, Li Y. Antioxidant Characteristics and Identification of Peptides from Sorghum Kafirin Hydrolysates. J Food Sci 2019; 84:2065-2076. [PMID: 31313288 DOI: 10.1111/1750-3841.14704] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 12/17/2022]
Abstract
Grain sorghum is gaining interest for various uses as a highly sustainable crop. Kafirin is the main storage protein in grain sorghum. However, the antioxidant activities of kafirin hydrolysates have not been systematically investigated. The objectives of this study were to characterize the antioxidative hydrolysates and their ultrafiltrated fractions from sorghum kafirin using chemical assays and model systems and to identify the representative peptides. Kafirin Neutrase hydrolysates displayed promising yield and antioxidant capacity among those prepared with several different proteases. The effects of critical variables including protein substrate content, enzyme-to-substrate ratio, and reaction time on antioxidant production were studied. Selected hydrolysates were further fractionated through ultrafiltration and gel filtration chromatography (GFC). Medium-sized fraction (3 to 10 kDa) revealed relatively higher total phenolic content and stronger antioxidative activities with regard to free radical scavenging activity, metal ion chelating activity, reducing power, and oxygen radical absorbance capacity. In an oil-in-water emulsion system, incorporation of selected fraction of hydrolysates inhibited the formation of primary and secondary oxidation products by 83.03% and 65.59%, respectively, by the end of a 14-day incubation period. Similar oxidation inhibition effect was also observed in a ground meat system. Peptide compositions of the most promising fraction from GFC and reversed-phase high-performance liquid chromatography were identified using matrix-assisted laser desorption ionization-time of flight/time of flight mass spectrometry. PRACTICAL APPLICATION: This study provided a feasible approach to produce peptide antioxidants from sorghum kafirin. The novel naturally derived antioxidants could be potentially used as alternatives or synergetic components to synthetic antioxidants in improving the oxidative stability of various food products.
Collapse
Affiliation(s)
- Shiwei Xu
- Dept. of Grain Science and Industry, Kansas State Univ., Manhattan, KS, 66506, U.S.A
| | - Yanting Shen
- Dept. of Grain Science and Industry, Kansas State Univ., Manhattan, KS, 66506, U.S.A
| | - Gengjun Chen
- Dept. of Grain Science and Industry, Kansas State Univ., Manhattan, KS, 66506, U.S.A
| | - Scott Bean
- Center for Grain and Animal Health Research, USDA-ARS, Manhattan, KS, 66502, U.S.A
| | - Yonghui Li
- Dept. of Grain Science and Industry, Kansas State Univ., Manhattan, KS, 66506, U.S.A
| |
Collapse
|
38
|
Zhang S, Peng B, Xue P, Kong X, Tang Y, Wu L, Lin S. Polyoxometalate-antioxidant peptide assembly materials with NIR-triggered photothermal behaviour and enhanced antibacterial activity. SOFT MATTER 2019; 15:5375-5379. [PMID: 31259985 DOI: 10.1039/c9sm01059a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Herein, a novel photothermal agent based on polyoxometalate clusters and food-borne antioxidant peptides was exploited to overcome the inherent problems of poor photothermal stability of polyoxometalate photothermal materials, which commonly appear in the current stage of development, and the inevitable simultaneous inflammatory responses during the therapeutic process.
Collapse
Affiliation(s)
- Simin Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Bo Peng
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Peiyu Xue
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Xueping Kong
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China
| | - Yue Tang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| |
Collapse
|
39
|
Antioxidant Activities of Sorghum Kafirin Alcalase Hydrolysates and Membrane/Gel Filtrated Fractions. Antioxidants (Basel) 2019; 8:antiox8050131. [PMID: 31096591 PMCID: PMC6562729 DOI: 10.3390/antiox8050131] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 12/04/2022] Open
Abstract
Sorghum has a significant amount of proteins, especially kafirin; however, limited information is available on evaluating its potential for peptide antioxidants. The objectives of this study were to: (1) investigate the effects of two key variables, enzyme-to-substrate ratio and reaction time on kafirin hydrolysis using Alcalase; (2) evaluate the antioxidant performances of the hydrolysates and fractions from membrane ultrafiltration and gel filtration; and (3) identify peptide sequences in the antioxidant fraction using MALDI-TOF/TOF MS. Kafirin hydrolysates prepared at enzyme-to-substrate ratio of 0.4 Au/g and 4 h had a good balance of antioxidant activity, yield, and economic efficiency. Medium-sized fraction of hydrolysates (5–10 kDa) from membrane filtration possessed the highest antioxidant activities among various fractions. The fraction also unveiled a good inhibition effect against lipid oxidation in emulsion and ground meat systems. Smaller-sized fraction (F3) collected through gel-filtration chromatography had significantly stronger antioxidant activities than other fractions, and 26 representative peptide sequences were identified in the fraction.
Collapse
|
40
|
Esfandi R, Walters ME, Tsopmo A. Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon 2019; 5:e01538. [PMID: 31183417 PMCID: PMC6495149 DOI: 10.1016/j.heliyon.2019.e01538] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/05/2019] [Accepted: 04/16/2019] [Indexed: 01/13/2023] Open
Abstract
Cereals like wheat, rice, corn, barley, rye, oat, and millet are staple foods in many regions around the world and contribute to more than half of human energy requirements. Scientific publications contain evidence showing that apart from energy, the regular consumption of whole grains is useful for the prevention of many chronic diseases associated with oxidative stress. Biological activities have mostly been attributed to the presence of glucans and polyphenols. In recent years however, food proteins have been investigated as sources of peptides that can exert biological functions, promote health and prevent oxidative stress. This review focuses on the role of hydrolyzed proteins and peptides with antioxidant properties in various models and their mechanisms which include hydrogen or electron transfer, metal chelating, and regulation of enzymes involved in the oxidation-reduction process.
Collapse
Affiliation(s)
- Ramak Esfandi
- Food Science and Nutrition Program, Department of Chemistry, Carleton Uinversity, 1125 Colonel By Drive, K1S 5B6, Ottawa, ON, Canada
| | - Mallory E. Walters
- Food Science and Nutrition Program, Department of Chemistry, Carleton Uinversity, 1125 Colonel By Drive, K1S 5B6, Ottawa, ON, Canada
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton Uinversity, 1125 Colonel By Drive, K1S 5B6, Ottawa, ON, Canada
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, K1S 5B6, Ottawa, ON, Canada
| |
Collapse
|
41
|
Intracellular antioxidant activity and apoptosis inhibition capacity of PEF-treated KDHCH in HepG2 cells. Food Res Int 2019; 121:336-347. [PMID: 31108756 DOI: 10.1016/j.foodres.2019.03.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/20/2022]
Abstract
The effect of pulsed electric field (PEF) treatment on the intracellular antioxidant and apoptotic activity of the peptide Lys-Asp-His-Cys-His (KDHCH) was examined using model HepG2 cells. First, PEF treatment conditions specific for the antioxidant peptide were optimized, and it was found that PEF treatment could enhance DPPH, ABTS and hydroxyl radical scavenging capacity of KDHCH. Second, KDHCH subjected to PEF treatment at 1800 Hz and 15 kV/cm was investigated using various intracellular antioxidant assays. PEF treatment decreased the EC50 value and increased the protective ability of oxidative stress inhibition and reactive oxygen species (ROS) scavenging activity of KDHCH. Furthermore, catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) and glutathione reductase (GR) activities of KDHCH-pre-treated HepG2 cells increased significantly compared with those of the H2O2 damaged group, whereas lactate dehydrogenase (LDH) and malonaldehyde (MDA) content were decreased. PEF-treated KDHCH exhibited an increased capacity to maintain the stability of mitochondrial membrane potential (MMP) and reduced the level of caspase-3. These results indicate that PEF treatment can enhance the intracellular antioxidant activity of KDHCH, which can inhibit the effect of H2O2 oxidation on HepG2 cells by inhibiting the accumulation of intracellular ROS, regulating antioxidant related enzymes, and blocking the apoptotic mitochondrial pathways activated by ROS.
Collapse
|
42
|
Musa A, Gasmalla MAA, Ma H, Sarpong F, Wali A, Awad FN, Duan Y. Effect of a multi-frequency counter-current S-type ultrasound pretreatment on the defatted corn germ protein: enzymatic hydrolysis, ACE inhibitory activity and structural characterization. Food Funct 2019; 10:6020-6029. [DOI: 10.1039/c9fo01531k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of low-frequency ultrasound pretreatments on the properties and structure of the defatted corn germ protein (DCGP) are investigated.
Collapse
Affiliation(s)
- Abubakr Musa
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang
- China
- Sugar Institute
| | - Mohammed A. A. Gasmalla
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang
- China
- Nutrition & Food Technology
| | - Haile Ma
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Frederick Sarpong
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Asif Wali
- Department of Agriculture and Food Technology
- Karakoram International University
- Gilgit
- Pakistan
| | - Faisal N. Awad
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Yuqing Duan
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang
- China
| |
Collapse
|
43
|
Zhu B, He H, Hou T. A Comprehensive Review of Corn Protein-derived Bioactive Peptides: Production, Characterization, Bioactivities, and Transport Pathways. Compr Rev Food Sci Food Saf 2018; 18:329-345. [DOI: 10.1111/1541-4337.12411] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Biyang Zhu
- College of Food Science and Technology; Huazhong Agricultural Univ.; Wuhan 430070 China
- Key Lab of Environment Correlative Dietology (Huazhong Agricultural Univ.); Ministry of Education; Wuhan 43000 China
| | - Hui He
- College of Food Science and Technology; Huazhong Agricultural Univ.; Wuhan 430070 China
- Key Lab of Environment Correlative Dietology (Huazhong Agricultural Univ.); Ministry of Education; Wuhan 43000 China
| | - Tao Hou
- College of Food Science and Technology; Huazhong Agricultural Univ.; Wuhan 430070 China
- Key Lab of Environment Correlative Dietology (Huazhong Agricultural Univ.); Ministry of Education; Wuhan 43000 China
| |
Collapse
|
44
|
Functions and Applications of Bioactive Peptides From Corn Gluten Meal. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 87:1-41. [PMID: 30678813 DOI: 10.1016/bs.afnr.2018.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Corn protein has been identified as an important source of bioactive peptides. Such peptides can be released during hydrolysis induced by proteolytic enzymes or microbial fermentation. Corn peptides have been found to exhibit different functions in vitro and in vivo such as antihypertensive, hepatoprotective, anti-obesity, antimicrobial, antioxidative, mineral-binding and accelerating alcohol metabolism. To date, 22 sequences of bioactive corn peptides have already been identified. There is an increasing commercial interest in the production of corn peptides with the purpose of using them as active ingredients, which may find use in the treatment of liver injury, hypertension, dental carries, oxidative stress, mineral malabsorption and obesity. These bioactive peptides may be used in formulation of functional foods, nutraceuticals, and natural drugs because of their health benefit effects.
Collapse
|
45
|
Wang XJ, Zheng XQ, Liu XL, Kopparapu NK, Cong WS, Deng YP. Preparation of glycosylated zein and retarding effect on lipid oxidation of ground pork. Food Chem 2017; 227:335-341. [DOI: 10.1016/j.foodchem.2017.01.069] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 01/08/2017] [Accepted: 01/13/2017] [Indexed: 11/16/2022]
|
46
|
Ortiz-Martinez M, Gonzalez de Mejia E, García-Lara S, Aguilar O, Lopez-Castillo LM, Otero-Pappatheodorou JT. Antiproliferative effect of peptide fractions isolated from a quality protein maize, a white hybrid maize, and their derived peptides on hepatocarcinoma human HepG2 cells. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
47
|
“Antioxidant activity and characterization of protein fractions and hydrolysates from normal and quality protein maize kernels”. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Díaz-Gómez JL, Castorena-Torres F, Preciado-Ortiz RE, García-Lara S. Anti-Cancer Activity of Maize Bioactive Peptides. Front Chem 2017; 5:44. [PMID: 28680876 PMCID: PMC5478815 DOI: 10.3389/fchem.2017.00044] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/12/2017] [Indexed: 12/13/2022] Open
Abstract
Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derivative food products has been associated with a reduced risk of various types of cancer. The main biomolecules in cereals include proteins, peptides, and amino acids, all of which are present in different quantities within the grain. Some of these peptides possess nutraceutical properties and exert biological effects that promote health and prevent cancer. In this review, we report the current status and advances in knowledge regarding the bioactive properties of maize peptides, such as antioxidant, antihypertensive, hepatoprotective, and anti-tumor activities. We also highlight the potential biological mechanisms through which maize bioactive peptides exert anti-cancer activity. Finally, we analyze and emphasize the potential applications of maize peptides.
Collapse
|
49
|
Liang R, Zhang Z, Lin S. Effects of pulsed electric field on intracellular antioxidant activity and antioxidant enzyme regulating capacities of pine nut (Pinus koraiensis) peptide QDHCH in HepG2 cells. Food Chem 2017; 237:793-802. [PMID: 28764069 DOI: 10.1016/j.foodchem.2017.05.144] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 12/31/2022]
Abstract
Effects of pulse electric field (PEF) on antioxidant activity of pine nut (Pinus koraiensis) peptide were discussed using H2O2-induced HepG2 cells and changes of peptide structures were measured by MIR, NMR and CD spectra. Using HPLC-MS/MS, a novel peptide was identified as QDHCH. After PEF treatment the DPPH and ABTS radical inhibition, and CAA values of QDHCH were increased to 85.13%±0.17%, 95.45%±0.12%, and 4670.10μmol of quercetin equivalents/100g. The PEF-treated QDHCH has better protective oxidative stress inhibitory of 74.22±3.70%, and the T-SOD, CAT, GSH-Px and GSH-Rx activities in cells were significantly increased by 91.92, 7.98, 18.5 and 18.79U/mg prot, while the MDA content was decreased to 8.45±0.71U/mg prot compared with H2O2 damaged group. In addition, the hydroxyl radical scavenging activity of QDHCH was increased by 10.53%; the basic structure was not changed by PEF, while the influenced secondary structures may induce the antioxidant activity improvement in HepG2 cells.
Collapse
Affiliation(s)
- Rong Liang
- College of Food Science and Technology, Jilin University, Changchun 130062, PR China
| | - Zuoming Zhang
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, PR China.
| | - Songyi Lin
- College of Food Science and Technology, Jilin University, Changchun 130062, PR China; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
50
|
Gong K, Deng L, Shi A, Liu H, Liu L, Hu H, Adhikari B, Wang Q. High-pressure microfluidisation pretreatment disaggregate peanut protein isolates to prepare antihypertensive peptide fractions. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Kuijie Gong
- Institute of Agro-products Processing and Technology; Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing; Ministry of Agriculture; P.O. Box 5109 Beijing 100193 China
- Crop Research Institute; Shandong Academy of Agricultural Sciences; Jinan 250100 China
| | - Lei Deng
- Institute of Agro-products Processing and Technology; Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing; Ministry of Agriculture; P.O. Box 5109 Beijing 100193 China
| | - Aimin Shi
- Institute of Agro-products Processing and Technology; Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing; Ministry of Agriculture; P.O. Box 5109 Beijing 100193 China
| | - Hongzhi Liu
- Institute of Agro-products Processing and Technology; Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing; Ministry of Agriculture; P.O. Box 5109 Beijing 100193 China
| | - Li Liu
- Institute of Agro-products Processing and Technology; Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing; Ministry of Agriculture; P.O. Box 5109 Beijing 100193 China
| | - Hui Hu
- Institute of Agro-products Processing and Technology; Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing; Ministry of Agriculture; P.O. Box 5109 Beijing 100193 China
| | - Benu Adhikari
- School of Applied Sciences; RMIT University; City Campus Melbourne VIC 3001 Australia
| | - Qiang Wang
- Institute of Agro-products Processing and Technology; Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing; Ministry of Agriculture; P.O. Box 5109 Beijing 100193 China
| |
Collapse
|