1
|
Ito K, Matsuda Y, Mine A, Miyairi K, Kikuchi Y, Konishi A. Bacterially Secretable Single-Chain Tandem Macrocyclic Peptides for High Affinity and Inhibitory Activity. Chembiochem 2023; 24:e202200599. [PMID: 36409290 DOI: 10.1002/cbic.202200599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/21/2022] [Indexed: 11/23/2022]
Abstract
The inhibition of protein-protein interactions (PPIs) is an effective approach for therapy. Owing to their large binding surface areas to target proteins, macrocyclic peptides are suitable molecules for PPI inhibition. In this study, we developed single-chain tandem macrocyclic peptides (STaMPtides) that inhibits the vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2). They were artificially designed to comprise two different VEGFR2-binding macrocyclic peptides linked in tandem by peptide linkers and secreted by Corynebacterium glutamicum. Most potent VEGFR2-inhibitory STaMPtides with length-optimized linkers exhibited >1000 times stronger inhibitory activity than their parental monomeric peptides, possibly due to the avidity effect of heterodimerization. Our approach of using STaMPtides for PPI inhibition may be used to inhibit other extracellular factors, such as growth factors and cytokines.
Collapse
Affiliation(s)
- Kenichiro Ito
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki, 210-8681, Kanagawa, Japan
| | - Yoshihiko Matsuda
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki, 210-8681, Kanagawa, Japan
| | - Ayako Mine
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki, 210-8681, Kanagawa, Japan
| | - Kyohei Miyairi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki, 210-8681, Kanagawa, Japan
| | - Yoshimi Kikuchi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki, 210-8681, Kanagawa, Japan
| | - Atsushi Konishi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki, 210-8681, Kanagawa, Japan
| |
Collapse
|
2
|
Ito K, Matsuda Y, Mine A, Shikida N, Takahashi K, Miyairi K, Shimbo K, Kikuchi Y, Konishi A. Single-chain tandem macrocyclic peptides as a scaffold for growth factor and cytokine mimetics. Commun Biol 2022; 5:56. [PMID: 35031676 PMCID: PMC8760323 DOI: 10.1038/s42003-022-03015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/28/2021] [Indexed: 11/28/2022] Open
Abstract
Mimetics of growth factors and cytokines are promising tools for culturing large numbers of cells and manufacturing regenerative medicine products. In this study, we report single-chain tandem macrocyclic peptides (STaMPtides) as mimetics in a new multivalent peptide format. STaMPtides, which contain two or more macrocyclic peptides with a disulfide-closed backbone and peptide linkers, are successfully secreted into the supernatant by Corynebacterium glutamicum-based secretion technology. Without post-secretion modification steps, such as macrocyclization or enzymatic treatment, bacterially secreted STaMPtides form disulfide bonds, as designed; are biologically active; and show agonistic activities against respective target receptors. We also demonstrate, by cell-based assays, the potential of STaMPtides, which mimic growth factors and cytokines, in cell culture. The STaMPtide technology can be applied to the design, screening, and production of growth factor and cytokine mimetics.
Collapse
Affiliation(s)
- Kenichiro Ito
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan.
| | - Yoshihiko Matsuda
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Ayako Mine
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Natsuki Shikida
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Kazutoshi Takahashi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Kyohei Miyairi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Kazutaka Shimbo
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Yoshimi Kikuchi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Atsushi Konishi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| |
Collapse
|