1
|
von den Eichen N, Osthege M, Dölle M, Bromig L, Wiechert W, Oldiges M, Weuster-Botz D. Control of parallelized bioreactors II: probabilistic quantification of carboxylic acid reductase activity for bioprocess optimization. Bioprocess Biosyst Eng 2022; 45:1939-1954. [PMID: 36307614 PMCID: PMC9719892 DOI: 10.1007/s00449-022-02797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/03/2022] [Indexed: 11/02/2022]
Abstract
Autonomously operated parallelized mL-scale bioreactors are considered the key to reduce bioprocess development cost and time. However, their application is often limited to products with very simple analytics. In this study, we investigated enhanced protein expression conditions of a carboxyl reductase from Nocardia otitidiscaviarum in E. coli. Cells were produced with exponential feeding in a L-scale bioreactor. After the desired cell density for protein expression was reached, the cells were automatically transferred to 48 mL-scale bioreactors operated by a liquid handling station where protein expression studies were conducted. During protein expression, the feed rate and the inducer concentration was varied. At the end of the protein expression phase, the enzymatic activity was estimated by performing automated whole-cell biotransformations in a deep-well-plate. The results were analyzed with hierarchical Bayesian modelling methods to account for the biomass growth during the biotransformation, biomass interference on the subsequent product assay, and to predict absolute and specific enzyme activities at optimal expression conditions. Lower feed rates seemed to be beneficial for high specific and absolute activities. At the optimal investigated expression conditions an activity of [Formula: see text] was estimated with a [Formula: see text] credible interval of [Formula: see text]. This is about 40-fold higher than the highest published data for the enzyme under investigation. With the proposed setup, 192 protein expression conditions were studied during four experimental runs with minimal manual workload, showing the reliability and potential of automated and digitalized bioreactor systems.
Collapse
Affiliation(s)
| | - Michael Osthege
- Institute of Biotechnology: IBG-1, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Michaela Dölle
- Chair of Biochemical Engineering, Technical University of Munich, Garching, Germany
| | - Lukas Bromig
- Chair of Biochemical Engineering, Technical University of Munich, Garching, Germany
| | - Wolfgang Wiechert
- Institute of Biotechnology: IBG-1, Forschungszentrum Jülich GmbH, Jülich, Germany
- Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, Aachen, Germany
| | - Marco Oldiges
- Institute of Biotechnology: IBG-1, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Dirk Weuster-Botz
- Chair of Biochemical Engineering, Technical University of Munich, Garching, Germany
| |
Collapse
|
2
|
Duarte DR, Barroca-Ferreira J, Gonçalves AM, Santos FM, Rocha SM, Pedro AQ, Maia CJ, Passarinha LA. Impact of glycerol feeding profiles on STEAP1 biosynthesis by Komagataella pastoris using a methanol-inducible promoter. Appl Microbiol Biotechnol 2021; 105:4635-4648. [PMID: 34059939 DOI: 10.1007/s00253-021-11367-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/11/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023]
Abstract
Currently, the lack of reliable strategies for the diagnosis and treatment of cancer makes the identification and characterization of new therapeutic targets a pressing matter. Several studies have proposed the Six Transmembrane Epithelial Antigen of the Prostate 1 (STEAP1) as a promising therapeutic target for prostate cancer. Although structural and functional studies may provide deeper insights on the role of STEAP1 in cancer, such techniques require high amounts of purified protein through biotechnological processes. Based on the results presented, this work proposes the application, for the first time, of a fed-batch profile to improve STEAP1 biosynthesis in mini-bioreactor Komagataella pastoris X-33 Mut+ methanol-induced cultures, by evaluating three glycerol feeding profiles-constant, exponential, and gradient-during the pre-induction phase. Interestingly, different glycerol feeding profiles produced differently processed STEAP1. This platform was optimized using a combination of chemical chaperones for ensuring the structural stabilization and appropriate processing of the target protein. The supplementation of culture medium with 6 % (v/v) DMSO and 1 M proline onto a gradient glycerol/constant methanol feeding promoted increased biosynthesis levels of STEAP1 and minimized aggregation events. Deglycosylation assays with peptide N-glycosidase F showed that glycerol constant feed is associated with an N-glycosylated pattern of STEAP1. The biological activity of recombinant STEAP1 was also validated, once the protein enhanced the proliferation of LNCaP and PC3 cancer cells, in comparison with non-tumoral cell cultures. This methodology could be a crucial starting point for large-scale production of active and stable conformation of recombinant human STEAP1. Thus, it could open up new strategies to unveil the structural rearrangement of STEAP1 and to better understand the biological role of the protein in cancer onset and progression.
Collapse
Affiliation(s)
- D R Duarte
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - J Barroca-Ferreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - A M Gonçalves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - F M Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,Laboratório de Fármaco-Toxicologia, UBI Medical, Universidade da Beira Interior, Covilhã, Portugal.,Unidad de Proteomica, Centro Nacional de Biotecnologia, CSIC, Campus de Cantoblanco, Calle Darwin 3, 28049, Madrid, Spain
| | - S M Rocha
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal
| | - A Q Pedro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal.,CICECO - Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - C J Maia
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal
| | - L A Passarinha
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal. .,UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal. .,Laboratório de Fármaco-Toxicologia, UBI Medical, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
3
|
Von den Eichen N, Bromig L, Sidarava V, Marienberg H, Weuster-Botz D. Automated multi-scale cascade of parallel stirred-tank bioreactors for fast protein expression studies. J Biotechnol 2021; 332:103-113. [PMID: 33845064 DOI: 10.1016/j.jbiotec.2021.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 11/18/2022]
Abstract
Automation, parallelization and autonomous operation of standard lab equipment, usually applied for manual bioprocess development, is considered as the key for reduction of bioprocess development time and costs. An automated bioreactor system with 4 stirred-tank bioreactors on a L-scale was combined with a custom-made biomass transfer system to distribute the cell suspensions produced on the L-scale into 48 parallel stirred-tank bioreactors on a mL-scale. Afterwards parallel protein expression studies automated by a liquid handling system with integrated fluorescence reader were performed. Isopropyl β-D-1-thiogalactopyranoside-induced (IPTG) expression of the red fluorescence protein mCherry was studied as an example of using fed-batch processes with recombinant Escherichia coli. In a first automated study, IPTG concentrations were varied in 48 parallel fed-batch processes with E. coli cells produced at a growth rate of 0.1 h-1 on an L-scale and transferred automatically to the mL-scale. The mCherry expression rate increased with increasing inducer concentration until the highest protein expression rate was observed at > 9 μM IPTG. In a second automated study, the growth rate of E. coli was varied between 0.1-0.2 h-1 in parallelly-operated stirred-tank bioreactors on a L-scale. The cells were automatically transferred and distributed into the stirred-tank bioreactors on a mL-scale and the concentration of the inducer IPTG was varied as before in parallel fed-batch processes. An increased growth rate during the production of the recombinant E. coli cells and/or higher cell densities during protein expression resulted in the increased IPTG concentrations necessary to achieve identical expression rates compared to a growth rate of 0.1 h-1 with the exception of very low inducer concentrations and inducer concentrations in excess. The new automated multi-scale cascade of parallel stirred-tank bioreactors should easily be applicable for performing fast optimisation studies with other microbial production systems and will have the potential to reduce bioprocess development time and staff assignment considerably.
Collapse
Affiliation(s)
- Nikolas Von den Eichen
- Technical University of Munich, Institute of Biochemical Engineering, Boltzmannstr. 15, 85748, Garching, Germany
| | - Lukas Bromig
- Technical University of Munich, Institute of Biochemical Engineering, Boltzmannstr. 15, 85748, Garching, Germany
| | - Valeryia Sidarava
- Technical University of Munich, Institute of Biochemical Engineering, Boltzmannstr. 15, 85748, Garching, Germany
| | - Hannah Marienberg
- Technical University of Munich, Institute of Biochemical Engineering, Boltzmannstr. 15, 85748, Garching, Germany
| | - Dirk Weuster-Botz
- Technical University of Munich, Institute of Biochemical Engineering, Boltzmannstr. 15, 85748, Garching, Germany.
| |
Collapse
|
4
|
Barrero JJ, Pagazartaundua A, Glick BS, Valero F, Ferrer P. Bioreactor-scale cell performance and protein production can be substantially increased by using a secretion signal that drives co-translational translocation in Pichia pastoris. N Biotechnol 2021; 60:85-95. [PMID: 33045421 PMCID: PMC7680431 DOI: 10.1016/j.nbt.2020.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 11/25/2022]
Abstract
Pichia pastoris (Komagataella spp.) has become one of the most important host organisms for production of heterologous proteins of biotechnological interest, many of them extracellular. The protein secretion pathway has been recognized as a limiting process in which many roadblocks have been pinpointed. Recently, we have identified a bottleneck at the ER translocation level. In earlier exploratory studies, this limitation could be largely overcome by using an improved chimeric secretion signal to drive proteins through the co-translational translocation pathway. Here, we have further tested at bioreactor scale the improved secretion signal consisting of the pre-Ost1 signal sequence, which drives proteins through co-translational translocation, followed by the pro region from the secretion signal of the Saccharomyces cerevisiae α-factor mating pheromone. For comparison, the commonly used full-length α-factor secretion signal, which drives proteins through post-translational translocation, was tested. These two secretion signals were fused to three different model proteins: the tetrameric red fluorescent protein E2-Crimson, which can be used to visualize roadblocks in the secretory pathway; the lipase 2 from Bacillus thermocatenulatus (BTL2); and the Rhizopus oryzae lipase (ROL). All strains were tested in batch cultivation to study the different growth parameters obtained. The strains carrying the improved secretion signal showed increased final production of the proteins of interest. Interestingly, they were able to grow at significantly higher maximum specific growth rates than their counterparts carrying the conventional secretion signal. These results were corroborated in a 5 L fed-batch cultivation, where the final product concentration and volumetric productivity were also shown to be improved.
Collapse
Affiliation(s)
- Juan J Barrero
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193, Catalonia, Spain; Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| | - Alejandro Pagazartaundua
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193, Catalonia, Spain; Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| | - Benjamin S Glick
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193, Catalonia, Spain; Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| | - Francisco Valero
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193, Catalonia, Spain; Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| | - Pau Ferrer
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193, Catalonia, Spain; Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
5
|
Contact-free infrared OD measurement for online monitoring of parallel stirred-tank bioreactors up to high cell densities. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Newton J, Oeggl R, Janzen NH, Abad S, Reinisch D. Process adapted calibration improves fluorometric pH sensor precision in sophisticated fermentation processes. Eng Life Sci 2020; 20:331-337. [PMID: 32774205 PMCID: PMC7401234 DOI: 10.1002/elsc.201900156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/11/2020] [Accepted: 04/17/2020] [Indexed: 12/26/2022] Open
Abstract
Miniaturization and automation have become increasingly popular in bioprocess development in recent years, enabling rapid high-throughput screening and optimization of process conditions. In addition, advances in the bioprocessing industry have led to increasingly complex process designs, such as pH and temperature shifts, in microbial fed-batch fermentations for optimal soluble protein expression in a range of hosts. However, in order to develop an accurate scale-down model for bioprocess screening and optimization, small-scale bioreactors must be able to accurately reproduce these complex process designs. Monitoring methods, such as fluorometric-based pH sensors, provide elegant solutions for the miniaturization of bioreactors, however, previous research suggests that the intrinsic fluorescence of biomass alters the sigmoidal calibration curve of fluorometric pH sensors, leading to inaccurate pH control. In this article, we present results investigating the impact of biomass on the accuracy of a commercially available fluorometric pH sensor. Subsequently, we present our calibration methodology for more precise online measurement and provide recommendations for improved pH control in sophisticated fermentation processes.
Collapse
Affiliation(s)
| | | | | | - Sandra Abad
- Boehringer Ingelheim RCV GmbH & Co. KGViennaAustria
| | | |
Collapse
|
7
|
Fessner ND, Srdič M, Weber H, Schmid C, Schönauer D, Schwaneberg U, Glieder A. Preparative‐Scale Production of Testosterone Metabolites by Human Liver Cytochrome P450 Enzyme 3A4. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000251] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nico D. Fessner
- Institute of Molecular BiotechnologyGraz University of Technology, NAWI Graz Petersgasse 14/3 Austria
| | - Matic Srdič
- SeSaM-Biotech GmbH Aachen Germany
- Bisy GmbH Hofstaetten Austria
| | - Hansjörg Weber
- Institute of Organic ChemistryGraz University of Technology, NAWI Graz Austria
| | - Christian Schmid
- Institute of Molecular BiotechnologyGraz University of Technology, NAWI Graz Petersgasse 14/3 Austria
- Austrian Centre of Industrial Biotechnology (ACIB) Graz Austria
| | | | | | - Anton Glieder
- Institute of Molecular BiotechnologyGraz University of Technology, NAWI Graz Petersgasse 14/3 Austria
| |
Collapse
|
8
|
Optimization of medium composition for production of chitin-glucan complex and mannose-containing polysaccharides by the yeast Komagataella pastoris. J Biotechnol 2019; 303:30-36. [DOI: 10.1016/j.jbiotec.2019.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 07/07/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022]
|
9
|
Janzen NH, Striedner G, Jarmer J, Voigtmann M, Abad S, Reinisch D. Implementation of a Fully Automated Microbial Cultivation Platform for Strain and Process Screening. Biotechnol J 2019; 14:e1800625. [PMID: 30793511 DOI: 10.1002/biot.201800625] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/22/2018] [Indexed: 12/29/2022]
Abstract
Advances in molecular biotechnology have resulted in the generation of numerous potential production strains. Because every strain can be screened under various process conditions, the number of potential cultivations is multiplied. Exploiting this potential without increasing the associated timelines requires a cultivation platform that offers increased throughput and flexibility to perform various bioprocess screening protocols. Currently, there is no commercially available fully automated cultivation platform that can operate multiple microbial fed-batch processes, including at-line sampling, deep freezer off-line sample storage, and complete data handling. To enable scalable high-throughput early-stage microbial bioprocess development, a commercially available microbioreactor system and a laboratory robot are combined to develop a fully automated cultivation platform. By making numerous modifications, as well as supplementation with custom-built hardware and software, fully automated milliliter-scale microbial fed-batch cultivation, sample handling, and data storage are realized. The initial results of cultivations with two different expression systems and three different process conditions are compared using 5 L scale benchmark cultivations, which provide identical rankings of expression systems and process conditions. Thus, fully automated high-throughput cultivation, including automated centralized data storage to significantly accelerate the identification of the optimal expression systems and process conditions, offers the potential for automated early-stage bioprocess development.
Collapse
Affiliation(s)
- Nils H Janzen
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Gerald Striedner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Johanna Jarmer
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Martin Voigtmann
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Sandra Abad
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Daniela Reinisch
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| |
Collapse
|
10
|
Muñoz MAM, Jáuregui Rincón J, Carreón LS, Chávez Vela NA. Dextranase production by recombinant Pichia pastoris under operational volumetric mass transfer coefficient (kLa) and volumetric gassed power input (Pg/V) attainable at commercial large scale. Prep Biochem Biotechnol 2019; 49:606-615. [DOI: 10.1080/10826068.2019.1591992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Miguel Angel Marín Muñoz
- Departamento de Ingeniería Bioquímica, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Juan Jáuregui Rincón
- Departamento de Ingeniería Bioquímica, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Leobardo Serrano Carreón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Norma Angélica Chávez Vela
- Departamento de Ingeniería Bioquímica, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| |
Collapse
|
11
|
Tajsoleiman T, Mears L, Krühne U, Gernaey KV, Cornelissen S. An Industrial Perspective on Scale-Down Challenges Using Miniaturized Bioreactors. Trends Biotechnol 2019; 37:697-706. [PMID: 30737008 DOI: 10.1016/j.tibtech.2019.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/25/2022]
Abstract
Miniaturized stirred bioreactors (MSBRs) are gaining popularity as a cost-effective approach to scale-down experimentation. However, realizing conditions that reflect the large-scale process accurately can be challenging. This article highlights common challenges of using MSBRs for scale-down. The fundamental difference between oxygen mass transfer coefficient (kLa) and oxygen transfer rate scaling is addressed and the difficulty of achieving turbulent flow and industrially relevant tip speeds is described. More practical challenges of using MSBR systems for scale-down are also discussed, including the risk of vortex formation, changed volume dynamics, and wall growth. By highlighting these challenges, the article aims to create more awareness of these difficulties and to contribute to improved design of scale-down experiments.
Collapse
Affiliation(s)
- Tannaz Tajsoleiman
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark
| | - Lisa Mears
- Novozymes A/S, Krogshoejvej 36, 2880 Bagsvaerd, Denmark
| | - Ulrich Krühne
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark
| | - Krist V Gernaey
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark. https://twitter.com/@KristGernaey
| | | |
Collapse
|
12
|
Hemmerich J, Noack S, Wiechert W, Oldiges M. Microbioreactor Systems for Accelerated Bioprocess Development. Biotechnol J 2018; 13:e1700141. [PMID: 29283217 DOI: 10.1002/biot.201700141] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/15/2017] [Indexed: 12/14/2022]
Abstract
In recent years, microbioreactor (MBR) systems have evolved towards versatile bioprocess engineering tools. They provide a unique solution to combine higher experimental throughput with extensive bioprocess monitoring and control, which is indispensable to develop economically and ecologically competitive bioproduction processes. MBR systems are based either on down-scaled stirred tank reactors or on advanced shaken microtiter plate cultivation devices. Importantly, MBR systems make use of optical measurements for non-invasive, online monitoring of important process variables like biomass concentration, dissolved oxygen, pH, and fluorescence. The application range of MBR systems can be further increased by integration into liquid handling robots, enabling automatization and, thus standardization, of various handling and operation procedures. Finally, the tight integration of quantitative strain phenotyping with bioprocess development under industrially relevant conditions greatly increases the probability of finding the right combination of producer strain and bioprocess control strategy. This review will discuss the current state of the art in the field of MBR systems and we can readily conclude that their importance for industrial biotechnology will further increase in the near future.
Collapse
Affiliation(s)
- Johannes Hemmerich
- Forschungszentrum Jülich, Institute of Bio- and Geosciences - Biotechnology (IBG-1), Wilhelm-Johnen Straße 1, 52425, Jülich, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Stephan Noack
- Forschungszentrum Jülich, Institute of Bio- and Geosciences - Biotechnology (IBG-1), Wilhelm-Johnen Straße 1, 52425, Jülich, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Wolfgang Wiechert
- RWTH Aachen University, Computational Systems Biotechnology (AVT.CSB), Forckenbeckstraße 51, 52074 Aachen, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Marco Oldiges
- Forschungszentrum Jülich, Institute of Bio- and Geosciences - Biotechnology (IBG-1), Wilhelm-Johnen Straße 1, 52425, Jülich, Germany.,RWTH Aachen University, Institute of Biotechnology, Worringer Weg 3, 52074 Aachen, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
13
|
Abstract
Pichia pastoris has been one of the most successful heterologous overexpression systems in generating proteins for large-scale production through high-cell-density fermentation. However, optimizing conditions of the large-scale high-cell-density fermentation for biochemistry and industrialization is usually a laborious and time-consuming process. Furthermore, it is often difficult to produce authentic proteins in large quantities, which is a major obstacle for functional and structural features analysis and industrial application. For these reasons, we have developed a protocol for efficient demonstration-scale high-cell-density fermentation of P. pastoris, which employs a new methanol-feeding strategy-biomass-stat strategy and a strategy of increased air pressure instead of pure oxygen supplement. The protocol included three typical stages of glycerol batch fermentation (initial culture phase), glycerol fed-batch fermentation (biomass accumulation phase), and methanol fed-batch fermentation (induction phase), which allows direct online-monitoring of fermentation conditions, including broth pH, temperature, DO, anti-foam generation, and feeding of glycerol and methanol. Using this protocol, production of the recombinant β-xylosidase of Lentinula edodes origin in 1000-L scale fermentation can be up to ~900 mg/L or 9.4 mg/g cells (dry cell weight, intracellular expression), with the specific production rate and average specific production of 0.1 mg/g/h and 0.081 mg/g/h, respectively. The methodology described in this protocol can be easily transferred to other systems, and eligible to scale up for a large number of proteins used in either the scientific studies or commercial purposes.
Collapse
Affiliation(s)
- Wan-Cang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Tian Tan Xi Li, Beijing, 100050, People's Republic of China
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China.
| |
Collapse
|
14
|
Schmideder A, Weuster-Botz D. High-performance recombinant protein production with Escherichia coli in continuously operated cascades of stirred-tank reactors. ACTA ACUST UNITED AC 2017; 44:1021-1029. [DOI: 10.1007/s10295-017-1927-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/22/2017] [Indexed: 12/29/2022]
Abstract
Abstract
The microbial expression of intracellular, recombinant proteins in continuous bioprocesses suffers from low product concentrations. Hence, a process for the intracellular production of photoactivatable mCherry with Escherichia coli in a continuously operated cascade of two stirred-tank reactors was established to separate biomass formation (first reactor) and protein expression (second reactor) spatially. Cascades of miniaturized stirred-tank reactors were implemented, which enable the 24-fold parallel characterization of cascade processes and the direct scale-up of results to the liter scale. With PAmCherry concentrations of 1.15 g L−1 cascades of stirred-tank reactors improved the process performance significantly compared to production processes in chemostats. In addition, an optimized fed-batch process was outperformed regarding space–time yield (149 mg L−1 h−1). This study implicates continuous cascade processes to be a promising alternative to fed-batch processes for microbial protein production and demonstrates that miniaturized stirred-tank reactors can reduce the timeline and costs for cascade process characterization.
Collapse
Affiliation(s)
- Andreas Schmideder
- 0000000123222966 grid.6936.a Institute of Biochemical Engineering Technical University of Munich Boltzmannstr. 15 85748 Garching Germany
| | - Dirk Weuster-Botz
- 0000000123222966 grid.6936.a Institute of Biochemical Engineering Technical University of Munich Boltzmannstr. 15 85748 Garching Germany
| |
Collapse
|
15
|
Schmideder A, Schottroff F, Klermund L, Castiglione K, Weuster-Botz D. Studies on the enzymatic synthesis of N-acetylneuraminic acid with continuously operated enzyme membrane reactors on a milliliter scale. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Schmideder A, Cremer JH, Weuster-Botz D. Parallel steady state studies on a milliliter scale accelerate fed-batch bioprocess design for recombinant protein production with Escherichia coli. Biotechnol Prog 2016; 32:1426-1435. [PMID: 27604066 DOI: 10.1002/btpr.2360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/11/2016] [Indexed: 12/12/2022]
Abstract
In general, fed-batch processes are applied for recombinant protein production with Escherichia coli (E. coli). However, state of the art methods for identifying suitable reaction conditions suffer from severe drawbacks, i.e. direct transfer of process information from parallel batch studies is often defective and sequential fed-batch studies are time-consuming and cost-intensive. In this study, continuously operated stirred-tank reactors on a milliliter scale were applied to identify suitable reaction conditions for fed-batch processes. Isopropyl β-d-1-thiogalactopyranoside (IPTG) induction strategies were varied in parallel-operated stirred-tank bioreactors to study the effects on the continuous production of the recombinant protein photoactivatable mCherry (PAmCherry) with E. coli. Best-performing induction strategies were transferred from the continuous processes on a milliliter scale to liter scale fed-batch processes. Inducing recombinant protein expression by dynamically increasing the IPTG concentration to 100 µM led to an increase in the product concentration of 21% (8.4 g L-1 ) compared to an implemented high-performance production process with the most frequently applied induction strategy by a single addition of 1000 µM IPGT. Thus, identifying feasible reaction conditions for fed-batch processes in parallel continuous studies on a milliliter scale was shown to be a powerful, novel method to accelerate bioprocess design in a cost-reducing manner. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1426-1435, 2016.
Collapse
Affiliation(s)
- Andreas Schmideder
- Inst. of Biochemical Engineering, Technical University of Munich, Garching, Germany
| | - Johannes H Cremer
- Inst. of Biochemical Engineering, Technical University of Munich, Garching, Germany
| | - Dirk Weuster-Botz
- Inst. of Biochemical Engineering, Technical University of Munich, Garching, Germany
| |
Collapse
|
17
|
Baumann P, Hubbuch J. Downstream process development strategies for effective bioprocesses: Trends, progress, and combinatorial approaches. Eng Life Sci 2016; 17:1142-1158. [PMID: 32624742 DOI: 10.1002/elsc.201600033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/09/2016] [Accepted: 04/07/2016] [Indexed: 12/26/2022] Open
Abstract
The biopharmaceutical industry is at a turning point moving toward a more customized and patient-oriented medicine (precision medicine). Straightforward routines such as the antibody platform process are extended to production processes for a new portfolio of molecules. As a consequence, individual and tailored productions require generic approaches for a fast and dedicated purification process development. In this article, different effective strategies in biopharmaceutical purification process development are reviewed that can analogously be used for the new generation of antibodies. Conventional approaches based on heuristics and high-throughput process development are discussed and compared to modern technologies such as multivariate calibration and mechanistic modeling tools. Such approaches constitute a good foundation for fast and effective process development for new products and processes, but their full potential becomes obvious in a correlated combination. Thus, different combinatorial approaches are presented, which might become future directions in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Pascal Baumann
- Biomolecular Separation Engineering Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Jürgen Hubbuch
- Biomolecular Separation Engineering Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| |
Collapse
|