1
|
Mohamad Sukri N, Abdul Manas NH, Jaafar NR, A Rahman R, Abdul Murad AM, Md Illias R. Effects of electrospun nanofiber fabrications on immobilization of recombinant Escherichia coli for production of xylitol from glucose. Enzyme Microb Technol 2024; 172:110350. [PMID: 37948908 DOI: 10.1016/j.enzmictec.2023.110350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
A suitable nanofiber sheet was formulated and developed based on its efficacy in the immobilization of recombinant Escherichia coli (E. coli) to enhance xylitol production. The effects of different types of nanofibers and solvents on cell immobilization and xylitol production were studied. The most applicable nanofiber membrane was selected via preliminary screening of four types of nanofiber membrane, followed by the selection of six different solvents. Polyvinylidene fluoride (PVDF) nanofiber sheet synthesized using dimethylformamide (DMF) solvent was found to be the most suitable carrier for immobilization and xylitol production. The thin, beaded PVDF (DMF) nanofibers were more favourable for microbial adhesion, with the number of immobilized cells as high as 96 × 106 ± 3.0 cfu/ml. The attraction force between positively charged PVDF nanofibers and the negatively charged E. coli indicates that the electrostatic interaction plays a significant role in cell adsorption. The use of DMF has also produced PVDF nanofibers biocatalyst capable of synthesizing the highest xylitol concentration (2.168 g/l) and productivity (0.090 g/l/h) and 55-69% reduction in cell lysis compared with DMSO solvent and free cells. This finding suggests that recombinant E. coli immobilized on nanofibers shows great potential as a whole-cell biocatalyst for xylitol production.
Collapse
Affiliation(s)
- Norhamiza Mohamad Sukri
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Nor Hasmaliana Abdul Manas
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Nardiah Rizwana Jaafar
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Roshanida A Rahman
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Abdul Munir Abdul Murad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Rosli Md Illias
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| |
Collapse
|
2
|
Optimization and characterization of immobilized E. coli for engineered thermostable xylanase excretion and cell viability. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
3
|
Man RC, Illias RM, Ramli ANM, Mudalip SKA. Optimization of Culture Conditions of Immobilized Cells for Enzyme Excretion and Cell Lysis. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202100425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rohaida Che Man
- Universiti Malaysia Pahang Department of Chemical Engineering College of Engineering Lebuhraya Tun Razak 26300 Gambang Pahang Malaysia
| | - Rosli Md Illias
- Universiti Teknologi Malaysia School of Chemical and Energy Engineering Faculty of Engineering 81310 Skudai Johor Malaysia
| | - Aizi Nor Mazila Ramli
- Universiti Malaysia Pahang College of Computing and Applied Sciences Faculty of Industrial Sciences and Technology Lebuhraya Tun Razak 26300 Gambang Pahang Malaysia
| | - Siti Kholijah Abdul Mudalip
- Universiti Malaysia Pahang Department of Chemical Engineering College of Engineering Lebuhraya Tun Razak 26300 Gambang Pahang Malaysia
- Universiti Malaysia Pahang Centre of Excellence for Advanced Research in Fluid Flow (CARIFF) Lebuhraya Tun Razak 26300 Gambang Pahang Malaysia
| |
Collapse
|
4
|
Hydrodynamic Effects on Biofilm Development and Recombinant Protein Expression. Microorganisms 2022; 10:microorganisms10050931. [PMID: 35630375 PMCID: PMC9145004 DOI: 10.3390/microorganisms10050931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrodynamics play an important role in the rate of cell attachment and nutrient and oxygen transfer, which can affect biofilm development and the level of recombinant protein production. In the present study, the effects of different flow conditions on the development of Escherichia coli biofilms and the expression of a model recombinant protein (enhanced green fluorescent protein, eGFP) were examined. Planktonic and biofilm cells were grown at two different flow rates in a recirculating flow cell system for 7 days: 255 and 128 L h−1 (corresponding to a Reynolds number of 4600 and 2300, respectively). The fluorometric analysis showed that the specific eGFP production was higher in biofilms than in planktonic cells under both hydrodynamic conditions (3-fold higher for 255 L h−1 and 2-fold higher for 128 L h−1). In the biofilm cells, the percentage of eGFP-expressing cells was on average 52% higher at a flow rate of 255 L h−1. Furthermore, a higher plasmid copy number (PCN) was obtained for the highest flow rate for both planktonic (244 PCN/cell versus 118 PCN/cell) and biofilm cells (43 PCN/cell versus 29 PCN/cell). The results suggested that higher flow velocities promoted eGFP expression in E. coli biofilms.
Collapse
|
5
|
Abdul Manaf SA, Mohamad Fuzi SFZ, Low KO, Hegde G, Abdul Manas NH, Md Illias R, Chia KS. Carbon nanomaterial properties help to enhance xylanase production from recombinant Kluyveromyces lactis through a cell immobilization method. Appl Microbiol Biotechnol 2021; 105:8531-8544. [PMID: 34611725 DOI: 10.1007/s00253-021-11616-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/25/2022]
Abstract
Carbon nanomaterials, due to their catalytic activity and high surface area, have potential as cell immobilization supports to increase the production of xylanase. Recombinant Kluyveromyces lactis used for xylanase production was integrated into a polymeric gel network with carbon nanomaterials. Carbon nanomaterials were pretreated before cell immobilization with hydrochloric acid (HCl) treatment and glutaraldehyde (GA) crosslinking, which contributes to cell immobilization performance. Carbon nanotubes (CNTs) and graphene oxide (GO) were further screened using a Plackett-Burman experimental design. Cell loading and agar concentration were the most important factors in xylanase production with low cell leakage. Under optimized conditions, xylanase production was increased by more than 400% compared to free cells. Immobilized cell material containing such high cell densities may exhibit new and unexplored beneficial properties because the cells comprise a large fraction of the component. The use of carbon nanomaterials as a cell immobilization support along with the entrapment method successfully enhances the production of xylanase, providing a new route to improved bioprocessing, particularly for the production of enzymes. KEY POINTS: • Carbon nanomaterials (CNTs, GO) have potential as cell immobilization supports. • Entrapment in a polymeric gel network provides space for xylanase production. • Plackett-Burman design screen for the most important factor for cell immobilization.
Collapse
Affiliation(s)
- Shoriya Aruni Abdul Manaf
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, 84600, Pagoh, Muar, Johor, Malaysia
| | - Siti Fatimah Zaharah Mohamad Fuzi
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, 84600, Pagoh, Muar, Johor, Malaysia. .,Oasis Integrated Group, Institute for Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Johor, Malaysia.
| | - Kheng Oon Low
- Malaysia Genome Institute, National Institute of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| | - Gurumurthy Hegde
- Centre for Nano-Materials and Displays, B.M.S. College of Engineering, Bull Temple Road, Basavanagudi, 560019, Bangalore, India
| | - Nor Hasmaliana Abdul Manas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Rosli Md Illias
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Kim Seng Chia
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Batu Pahat, Johor, Malaysia
| |
Collapse
|
6
|
Su L, Li Y, Wu J. Efficient secretory expression of Bacillus stearothermophilus α/β-cyclodextrin glycosyltransferase in Bacillus subtilis. J Biotechnol 2021; 331:74-82. [PMID: 33741407 DOI: 10.1016/j.jbiotec.2021.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022]
Abstract
Bacillus stearothermophilus α/β-cyclodextrin glycosyltransferase (α/β-CGTase) is an excellent transglycosylase with broad potential for food application, but its expression level is low in Bacillus subtilis. In this study, the optimal signal peptide for α/β-CGTase expression was screened from 173 signal peptides in B. subtilis WS11. The α/β-CGTase activity in a 3-L fermentor reached 151.93 U⋅ mL-1, but substantial amounts of inclusion bodies were produced. The N-terminal 12 amino acids of α/β-CGTase were then replaced with the N-terminal 15 amino acids of a β-CGTase from the same family that has a high percentage of disorder-promoting amino acids. As a result, the inclusion bodies were significantly reduced, and the enzyme activity increased to 249.35 U mL-1, 2.3 times that of the strain constructed previously. Finally, the ppsE and sfp genes of B. subtilis WS11, which are related to lipopeptide biosurfactant synthesis, were knocked out to produce B. subtilis WS13. When B. subtilis WS13 was used to produce α/β-CGTase in a 3-L fermentor, 70 % less defoaming agent was required than with B. subtilis WS11. Furthermore, enzyme production and growth of WS13 were equivalent to those of WS11. This study is of great significance for future research to efficiently scale-up production of α/β-CGTase.
Collapse
Affiliation(s)
- Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Yunfei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| |
Collapse
|
7
|
Abdul Manaf SA, Mohamad Fuzi SFZ, Abdul Manas NH, Md Illias R, Low KO, Hegde G, Che Man R, Wan Azelee NI, Matias-Peralta HM. Emergence of nanomaterials as potential immobilization supports for whole cell biocatalysts and cell toxicity effects. Biotechnol Appl Biochem 2020; 68:1128-1138. [PMID: 32969042 DOI: 10.1002/bab.2034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/12/2020] [Indexed: 12/21/2022]
Abstract
The traditional approach of fermentation by a free cell system has limitations of low productivity and product separation that need to be addressed for production enhancement and cost effectiveness. One of potential methods to solve the problems is cell immobilization. Microbial cell immobilization allows more efficient up-scaling by reducing the nonproductive growth phase, improving product yield and simplifying product separation. Furthermore, the emergence of nanomaterials such as carbon nanotubes, graphene, and metal-based nanomaterials with excellent functional properties provides novel supports for cell immobilization. Nanomaterials have catalytic properties that can provide specific binding site with targeted cells. However, the toxicity of nanomaterials towards cells has hampered its application as it affects the biological system of the cells, which cannot be neglected in any way. This gray area in immobilization is an important concern that needs to be addressed and understood by researchers. This review paper discusses an overview of nanomaterials used for cell immobilization with special focus on its toxicological challenges and how by understanding physicochemical properties of nanomaterials could influence the toxicity and biocompatibility of the cells.
Collapse
Affiliation(s)
- Shoriya Aruni Abdul Manaf
- Department of Technology and Natural Resources, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
| | - Siti Fatimah Zaharah Mohamad Fuzi
- Department of Technology and Natural Resources, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
| | - Nor Hasmaliana Abdul Manas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malasiya.,Institute of Bioproduct Development, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Rosli Md Illias
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malasiya
| | | | - Gurumurthy Hegde
- Centre for Nanomaterials and Displays, BMS College of Engineering, Bangalore, India
| | - Rohaida Che Man
- Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Pahang, Malaysia
| | - Nur Izyan Wan Azelee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malasiya.,Institute of Bioproduct Development, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Hazel Monica Matias-Peralta
- Freshwater Aquaculture Center-College of Fisheries, Central Luzon State University, Nueva Ecija, Philippines
| |
Collapse
|
8
|
Specific Immobilization of Escherichia coli Expressing Recombinant Glycerol Dehydrogenase on Mannose-Functionalized Magnetic Nanoparticles. Catalysts 2018. [DOI: 10.3390/catal9010007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mannose-functionalized magnetic nanoparticles were prepared for the immobilization of Escherichia coli cells harboring the recombinant glycerol dehydrogenase gene. Immobilization of whole E. coli cells on the carrier was carried out through specific binding between mannose on the nanoparticles and the FimH lectin on the E. coli cell surface via hydrogen bonds and hydrophobic interactions. The effects of various factors including cell concentration, pH, temperature, and buffer concentration were investigated. High degrees of immobilization (84%) and recovery of activity (82%) were obtained under the following conditions: cell/support 1.3 mg/mL, immobilization time 2 h, pH 8.0, temperature 4°C, and buffer concentration 50 mM. Compared with the free cells, the thermostability of the immobilized cells was improved 2.56-fold at 37 °C. More than 50% of the initial activity of the immobilized cells remained after 10 cycles. The immobilized cells were evaluated functionally by monitoring the catalytic conversion of glycerol to 1,3-dihydroxyacetone (DHA). After a 12 h reaction, the DHA produced by the immobilized cells was two-fold higher than that produced by the free cells. These results indicate that mannose-functionalized magnetic nanoparticles can be used for the specific recognition of gram-negative bacteria, which gives them great potential in applications such as the preparation of biocatalysts and biosensors and clinical diagnosis.
Collapse
|
9
|
Zhuang MY, Wang C, Xu MQ, Ling XM, Shen JJ, Zhang YW. Using concanavalinA as a spacer for immobilization of E. coli onto magnetic nanoparticles. Int J Biol Macromol 2017; 104:63-69. [DOI: 10.1016/j.ijbiomac.2017.05.150] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 01/07/2023]
|