1
|
Barla RJ, Gupta S, Raghuvanshi S. Sustainable synergistic approach to chemolithotrophs-supported bioremediation of wastewater and flue gas. Sci Rep 2024; 14:16529. [PMID: 39019921 PMCID: PMC11254919 DOI: 10.1038/s41598-024-67053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Flue gas emissions are the waste gases produced during the combustion of fuel in industrial processes, which are released into the atmosphere. These identical processes also produce a significant amount of wastewater that is released into the environment. The current investigation aims to assess the viability of simultaneously mitigating flue gas emissions and remediating wastewater in a bubble column bioreactor utilizing bacterial consortia. A comparative study was done on different growth media prepared using wastewater. The highest biomass yield of 3.66 g L-1 was achieved with the highest removal efficiencies of 89.80, 77.30, and 80.77% for CO2, SO2, and NO, respectively. The study investigated pH, salinity, dissolved oxygen, and biochemical and chemical oxygen demand to assess their influence on the process. The nutrient balance validated the ability of bacteria to utilize compounds in flue gas and wastewater for biomass production. The Fourier Transform-Infrared Spectrometry (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS) analyses detected commercial-use long-chain hydrocarbons, fatty alcohols, carboxylic acids, and esters in the biomass samples. The nuclear magnetic resonance (NMR) metabolomics detected the potential mechanism pathways followed by the bacteria for mitigation. The techno-economic assessment determined a feasible total capital investment of 245.74$ to operate the reactor for 288 h. The bioreactor's practicability was determined by mass transfer and thermodynamics assessment. Therefore, this study introduces a novel approach that utilizes bacteria and a bioreactor to mitigate flue gas and remediate wastewater.
Collapse
Affiliation(s)
- Rachael J Barla
- Faculty Division-1, Department of Chemical Engineering, Birla Institute of Technology and Science (BITS PILANI), Pilani, 333031, Rajasthan, India
| | - Suresh Gupta
- Faculty Division-1, Department of Chemical Engineering, Birla Institute of Technology and Science (BITS PILANI), Pilani, 333031, Rajasthan, India
| | - Smita Raghuvanshi
- Faculty Division-1, Department of Chemical Engineering, Birla Institute of Technology and Science (BITS PILANI), Pilani, 333031, Rajasthan, India.
| |
Collapse
|
2
|
Barla RJ, Raghuvanshi S, Gupta S. A comprehensive review of flue gas bio-mitigation: chemolithotrophic interactions with flue gas in bio-reactors as a sustainable possibility for technological advancements. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33165-33189. [PMID: 38668951 DOI: 10.1007/s11356-024-33407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/16/2024] [Indexed: 05/31/2024]
Abstract
Flue gas mitigation technologies aim to reduce the environmental impact of flue gas emissions, particularly from industrial processes and power plants. One approach to mitigate flue gas emissions involves bio-mitigation, which utilizes microorganisms to convert harmful gases into less harmful or inert substances. The review thus explores the bio-mitigation efficiency of chemolithotrophic interactions with flue gas and their potential application in bio-reactors. Chemolithotrophs are microorganisms that can derive energy from inorganic compounds, such as carbon dioxide (CO2), nitrogen oxides (NOx), and sulfur dioxide (SO2), present in the flue gas. These microorganisms utilize specialized enzymatic pathways to oxidize these compounds and produce energy. By harnessing the metabolic capabilities of chemolithotrophs, flue gas emissions can be transformed into value-added products. Bio-reactors provide controlled environments for the growth and activity of chemolithotrophic microorganisms. Depending on the specific application, these can be designed as suspended or immobilized reactor systems. The choice of bio-reactor configuration depends on process efficiency, scalability, and ease of operation. Factors influencing the bio-mitigation efficiency of chemolithotrophic interactions include the concentration and composition of the flue gas, operating conditions (such as temperature, pH, and nutrient availability), and reactor design. Chemolithotrophic interactions with flue gas in bio-reactors offer a potentially efficient approach to mitigating flue gas emissions. Continued research and development in this field are necessary to optimize reactor design, microbial consortia, and operating conditions. Advances in understanding the metabolism and physiology of chemolithotrophic microorganisms will contribute to developing robust and scalable bio-mitigation technologies for flue gas emissions.
Collapse
Affiliation(s)
- Rachael Jovita Barla
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India
| | - Smita Raghuvanshi
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India.
| | - Suresh Gupta
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India
| |
Collapse
|
3
|
Barla RJ, Raghuvanshi S, Gupta S. Reforming CO 2 bio-mitigation utilizing Bacillus cereus from hypersaline realms in pilot-scale bubble column bioreactor. Sci Rep 2024; 14:6354. [PMID: 38491100 PMCID: PMC10943127 DOI: 10.1038/s41598-024-56965-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
The bubble column reactor of 10 and 20 L capacity was designed to bio-mitigate 10% CO2 (g) with 90% air utilizing thermophilic bacteria (Bacillus cereus SSLMC2). The maximum biomass yield during the growth phase was obtained as 9.14 and 10.78 g L-1 for 10 and 20 L capacity, respectively. The maximum removal efficiency for CO2 (g) was obtained as 56% and 85% for the 10 and 20 L reactors, respectively. The FT-IR and GC-MS examination of the extracellular and intracellular samples identified value-added products such as carboxylic acid, fatty alcohols, and hydrocarbons produced during the process. The total carbon balance for CO2 utilization in different forms confirmed that B. cereus SSLMC2 utilized 1646.54 g C in 10 L and 1587 g of C in 20 L reactor out of 1696.13 g of total carbon feed. The techno-economic assessment established that the capital investment required was $286.21 and $289.08 per reactor run of 11 days and $0.167 and $0.187 per gram of carbon treated for 10 and 20 L reactors, respectively. The possible mechanism pathways for bio-mitigating CO2 (g) by B. cereus SSLMC2 were also presented utilizing the energy reactions. Hence, the work presents the novelty of utilizing thermophilic bacteria and a bubble column bioreactor for CO2 (g) bio-mitigation.
Collapse
Affiliation(s)
- Rachael J Barla
- Faculty Division-1, Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), BITS PILANI, Pilani, 333031, Rajasthan, India
| | - Smita Raghuvanshi
- Faculty Division-1, Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), BITS PILANI, Pilani, 333031, Rajasthan, India.
| | - Suresh Gupta
- Faculty Division-1, Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), BITS PILANI, Pilani, 333031, Rajasthan, India
| |
Collapse
|
4
|
Faulkner M, Hoeven R, Kelly PP, Sun Y, Park H, Liu LN, Toogood HS, Scrutton NS. Chemoautotrophic production of gaseous hydrocarbons, bioplastics and osmolytes by a novel Halomonas species. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:152. [PMID: 37821908 PMCID: PMC10568851 DOI: 10.1186/s13068-023-02404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Production of relatively low value, bulk commodity chemicals and fuels by microbial species requires a step-change in approach to decrease the capital and operational costs associated with scaled fermentation. The utilisation of the robust and halophilic industrial host organisms of the genus Halomonas could dramatically decrease biomanufacturing costs owing to their ability to grow in seawater, using waste biogenic feedstocks, under non-sterile conditions. RESULTS We describe the isolation of Halomonas rowanensis, a novel facultative chemoautotrophic species of Halomonas from a natural brine spring. We investigated the ability of this species to produce ectoine, a compound of considerable industrial interest, under heterotrophic conditions. Fixation of radiolabelled NaH14CO3 by H. rowanensis was confirmed in mineral medium supplied with thiosulfate as an energy source. Genome sequencing suggested carbon fixation proceeds via a reductive tricarboxylic acid cycle, and not the Calvin-Bensen-Bassham cycle. The mechanism of energy generation to support chemoautotrophy is unknown owing to the absence of an annotated SOX-based thiosulfate-mediated energy conversion system. We investigated further the biotechnological potential of the isolated H. rowanensis by demonstrating production of the gaseous hydrocarbon (bio-propane), bioplastics (poly-3-hydroxybutyrate) and osmolytes (ectoine) under heterotrophic and autotrophic CO2 fixation growth conditions. CONCLUSIONS This proof-of-concept study illustrates the value of recruiting environmental isolates as industrial hosts for chemicals biomanufacturing, where CO2 utilisation could replace, or augment, the use of biogenic feedstocks in non-sterile, industrialised bioreactors.
Collapse
Affiliation(s)
- Matthew Faulkner
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Robin Hoeven
- C3 Biotechnologies Ltd, 20 Mannin Way, Caton Road, Lancaster, LA1 35W, Lancashire, UK
- Engineering Building A, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Paul P Kelly
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Yaqi Sun
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7BE, UK
| | - Helen Park
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7BE, UK
| | - Helen S Toogood
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
- C3 Biotechnologies Ltd, 20 Mannin Way, Caton Road, Lancaster, LA1 35W, Lancashire, UK.
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
- C3 Biotechnologies Ltd, 20 Mannin Way, Caton Road, Lancaster, LA1 35W, Lancashire, UK.
| |
Collapse
|
5
|
Cantera S, Sousa DZ, Sánchez-Andrea I. Enhanced ectoines production by carbon dioxide capture: A step further towards circular economy. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|