1
|
Zhang R, Chen Y, Wang W, Chen J, Liu D, Zhang L, Xiang Q, Zhao K, Ma M, Yu X, Chen Q, Penttinen P, Gu Y. Combined transcriptomic and metabolomic analysis revealed that pH changes affected the expression of carbohydrate and ribosome biogenesis-related genes in Aspergillus niger SICU-33. Front Microbiol 2024; 15:1389268. [PMID: 38962137 PMCID: PMC11220263 DOI: 10.3389/fmicb.2024.1389268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
The process of carbohydrate metabolism and genetic information transfer is an important part of the study on the effects of the external environment on microbial growth and development. As one of the most significant environmental parameters, pH has an important effect on mycelial growth. In this study, the effects of environmental pH on the growth and nutrient composition of Aspergillus niger (A. niger) filaments were determined. The pH values of the medium were 5, 7, and 9, respectively, and the molecular mechanism was further investigated by transcriptomics and metabolomics methods. The results showed that pH 5 and 9 significantly inhibited filament growth and polysaccharide accumulation of A. niger. Further, the mycelium biomass of A. niger and the crude polysaccharide content was higher when the medium's pH was 7. The DEGs related to ribosome biogenesis were the most abundant, and the downregulated expression of genes encoding XRN1, RRM, and RIO1 affected protein translation, modification, and carbohydrate metabolism in fungi. The dynamic changes of pargyline and choline were in response to the oxidative metabolism of A. niger SICU-33. The ribophorin_I enzymes and DL-lactate may be important substances related to pH changes during carbohydrate metabolism of A.niger SICU-33. The results of this study provide useful transcriptomic and metabolomic information for further analyzing the bioinformatic characteristics of A. niger and improving the application in ecological agricultural fermentation.
Collapse
Affiliation(s)
- Runji Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yulan Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Wenxian Wang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Juan Chen
- Liangshan Tobacco Corporation of Sichuan Province, Xichang, China
| | - Dongyang Liu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
- Liangshan Tobacco Corporation of Sichuan Province, Xichang, China
| | - Lingzi Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Menggen Ma
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiumei Yu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Petri Penttinen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yunfu Gu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Kalita B, Roy A, Jayaprakash A, Arunachalam A, P.T.V L. Identification of lncRNA and weighted gene coexpression network analysis of germinating Rhizopus delemar causing mucormycosis. Mycology 2024; 14:344-357. [PMID: 38187880 PMCID: PMC10769135 DOI: 10.1080/21501203.2023.2265414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/27/2023] [Indexed: 01/09/2024] Open
Abstract
Rhizopus delemar, an opportunistic fungal pathogen, causes a highly fatal disease, mucormycosis. Spore germination is a crucial mechanism for disease pathogenesis. Thus, exploring the molecular mechanisms of fungal germination would underpin our knowledge of such transformation and, in turn, help control mucormycosis. To gain insight into the developmental process particularly associated with cell wall modification and synthesis, weighted gene co-expression network analysis (WGCNA) was performed including both coding and non-coding transcripts identified in the current study, to find out the module of interest in the germination stages. The module-trait relationship identified a particular module to have a high correlation only at the resting phase and further analysis revealed the module to be enriched for protein phosphorylation, carbohydrate metabolic process, and cellular response to stimulus. Moreover, co-expression network analysis of highly connected nodes revealed cell wall modifying enzymes, especially those involved in mannosylation, chitin-glucan crosslinking, and polygalacturonase activities co-expressing and interacting with the novel lncRNAs among which some of them predicted to be endogenous target mimic (eTM) lncRNAs. Hence, the present study provides an insight into the onset of spore germination and the information on the novel non-coding transcripts with key cell wall-related enzymes as potential targets against mucormycosis.
Collapse
Affiliation(s)
- Barsha Kalita
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| | - Abhijeet Roy
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| | | | | | - Lakshmi P.T.V
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| |
Collapse
|
3
|
Xisto MIDDS, Rollin-Pinheiro R, Rochetti VP, de Castro-Almeida Y, Borba-Santos LP, dos Santos-Freitas GMP, Cypriano J, Abreu FDÁ, Rozental S, Barreto-Bergter E. Miltefosine: A Repurposing Drug against Mucorales Pathogens. J Fungi (Basel) 2023; 9:1166. [PMID: 38132767 PMCID: PMC10744482 DOI: 10.3390/jof9121166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Mucorales are a group of non-septated filamentous fungi widely distributed in nature, frequently associated with human infections, and are intrinsically resistant to many antifungal drugs. For these reasons, there is an urgent need to improve the clinical management of mucormycosis. Miltefosine, which is a phospholipid analogue of alkylphosphocholine, has been considered a promising repurposing drug to be used to treat fungal infections. In the present study, miltefosine displayed antifungal activity against a variety of Mucorales species, and it was also active against biofilms formed by these fungi. Treatment with miltefosine revealed modifications of cell wall components, neutral lipids, mitochondrial membrane potential, cell morphology, and the induction of oxidative stress. Treated Mucorales cells also presented an increased susceptibility to SDS. Purified ergosterol and glucosylceramide added to the culture medium increased miltefosine MIC, suggesting its interaction with fungal lipids. These data contribute to elucidating the effect of a promising drug repurposed to act against some relevant fungal pathogens that significantly impact public health.
Collapse
Affiliation(s)
- Mariana Ingrid Dutra da Silva Xisto
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.R.-P.); (V.P.R.); (Y.d.C.-A.); (G.M.P.d.S.-F.)
| | - Rodrigo Rollin-Pinheiro
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.R.-P.); (V.P.R.); (Y.d.C.-A.); (G.M.P.d.S.-F.)
| | - Victor Pereira Rochetti
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.R.-P.); (V.P.R.); (Y.d.C.-A.); (G.M.P.d.S.-F.)
| | - Yuri de Castro-Almeida
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.R.-P.); (V.P.R.); (Y.d.C.-A.); (G.M.P.d.S.-F.)
| | - Luana Pereira Borba-Santos
- Laboratório de Biologia Celular de Fungos, Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.P.B.-S.); (S.R.)
| | - Giulia Maria Pires dos Santos-Freitas
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.R.-P.); (V.P.R.); (Y.d.C.-A.); (G.M.P.d.S.-F.)
| | - Jefferson Cypriano
- Laboratório de Biologia Celular e Magnetotaxia & Unidade de Microscopia Multiusuário, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.C.); (F.d.Á.A.)
| | - Fernanda de Ávila Abreu
- Laboratório de Biologia Celular e Magnetotaxia & Unidade de Microscopia Multiusuário, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.C.); (F.d.Á.A.)
| | - Sonia Rozental
- Laboratório de Biologia Celular de Fungos, Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.P.B.-S.); (S.R.)
| | - Eliana Barreto-Bergter
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.R.-P.); (V.P.R.); (Y.d.C.-A.); (G.M.P.d.S.-F.)
| |
Collapse
|
4
|
Groff MC, Scaglia G, Ortiz OA, Noriega SE. Modification of the Luedeking and Piret model with a delay time parameter for biotechnological lactic acid production. Biotechnol Lett 2022; 44:415-427. [DOI: 10.1007/s10529-022-03227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/18/2022] [Indexed: 11/02/2022]
|
5
|
Wu N, Zhang J, Ou W, Chen Y, Wang R, Li K, Sun XM, Li Y, Xu Q, Huang H. Transcriptome analysis of Rhizopus oryzae seed pellet formation using triethanolamine. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:230. [PMID: 34863259 PMCID: PMC8645130 DOI: 10.1186/s13068-021-02081-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Rhizopus oryzae (R. oryzae) can effectively produce organic acids, and its pellet formation in seed cultures has been shown to significantly enhance subsequent fermentation processes. Despite advances in strain development, simple and effective methods for inducing pellet morphology and a basic understanding of the mechanisms controlling this process could facilitate substantial increases in efficiency and product output. Here, we report that 1.5% triethanolamine (TEOA) in seed culture medium can activate the growth of R. oryzae spores in compact and uniform pellets which is optimal for fermentation conditions. Analysis of fermentation kinetics showed that the production of fumaric and L-malic acid increases 293% and 177%, respectively. Transcriptomic analysis revealed that exposure of R. oryzae to 1.5% TEOA during the seed culture activated the phosphatidylinositol and mitogen-activated protein kinase signaling pathways. Theses pathways subsequently stimulated the downstream carbohydrate-active synthases and hydrolases that required for cell wall component synthesis and reconstruction. Our results thus provide insight into the regulatory pathways controlling pellet morphology germane to the viability of seed cultures, and provide valuable reference data for subsequent optimization of organic acid fermentation by R. oryzae.
Collapse
Affiliation(s)
- Na Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jiahui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wen Ou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yaru Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ke Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yingfeng Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
6
|
Soare AY, Watkins TN, Bruno VM. Understanding Mucormycoses in the Age of "omics". Front Genet 2020; 11:699. [PMID: 32695145 PMCID: PMC7339291 DOI: 10.3389/fgene.2020.00699] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Mucormycoses are deadly invasive infections caused by several fungal species belonging to the subphylum Mucoromycotina, order Mucorales. Hallmarks of disease progression include angioinvasion and tissue necrosis that aid in fungal dissemination through the blood stream, causing deeper infections and resulting in poor penetration of antifungal agents to the site of infection. In the absence of surgical removal of the infected focus, antifungal therapy alone is rarely curative. Even when surgical debridement is combined with high-dose antifungal therapy, the mortality associated with mucormycoses is >50%. The unacceptably high mortality rate, limited options for therapy and the extreme morbidity of highly disfiguring surgical therapy provide a clear mandate to understand the molecular mechanisms that govern pathogenesis with the hopes of developing alternative strategies to treat and prevent mucormycoses. In the absence of robust forward and reverse genetic systems available for this taxonomic group of fungi, unbiased next generation sequence (NGS)-based approaches have provided much needed insights into our understanding of many aspects of Mucormycoses, including genome structure, drug resistance, diagnostic development, and fungus-host interactions. Here, we will discuss the specific contributions that NGS-based approaches have made to the field and discuss open questions that can be addressed using similar approaches.
Collapse
Affiliation(s)
- Alexandra Y. Soare
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Tonya N. Watkins
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Vincent M. Bruno
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Shahri SZ, Vahabzadeh F, Mogharei A. Lactic acid production by loofah-immobilized Rhizopus oryzae through one-step fermentation process using starch substrate. Bioprocess Biosyst Eng 2019; 43:333-345. [DOI: 10.1007/s00449-019-02231-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/10/2019] [Indexed: 11/28/2022]
|
8
|
Achimón F, Dambolena JS, Zygadlo JA, Pizzolitto RP. Carbon sources as factors affecting the secondary metabolism of the maize pathogen Fusarium verticillioides. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Fountain JC, Yang L, Pandey MK, Bajaj P, Alexander D, Chen S, Kemerait RC, Varshney RK, Guo B. Carbohydrate, glutathione, and polyamine metabolism are central to Aspergillus flavus oxidative stress responses over time. BMC Microbiol 2019; 19:209. [PMID: 31488075 PMCID: PMC6727485 DOI: 10.1186/s12866-019-1580-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/25/2019] [Indexed: 01/08/2023] Open
Abstract
Background The primary and secondary metabolites of fungi are critical for adaptation to environmental stresses, host pathogenicity, competition with other microbes, and reproductive fitness. Drought-derived reactive oxygen species (ROS) have been shown to stimulate aflatoxin production and regulate in Aspergillus flavus, and may function in signaling with host plants. Here, we have performed global, untargeted metabolomics to better understand the role of aflatoxin production in oxidative stress responses, and also explore isolate-specific oxidative stress responses over time. Results Two field isolates of A. flavus, AF13 and NRRL3357, possessing high and moderate aflatoxin production, respectively, were cultured in medium with and without supplementation with 15 mM H2O2, and mycelia were collected following 4 and 7 days in culture for global metabolomics. Overall, 389 compounds were described in the analysis which encompassed 9 biological super-pathways and 47 sub-pathways. These metabolites were examined for differential accumulation. Significant differences were observed in both isolates in response to oxidative stress and when comparing sampling time points. Conclusions The moderately high aflatoxin-producing isolate, NRRL3357, showed extensive stimulation of antioxidant mechanisms and pathways including polyamines metabolism, glutathione metabolism, TCA cycle, and lipid metabolism while the highly aflatoxigenic isolate, AF13, showed a less vigorous response to stress. Carbohydrate pathway levels also imply that carbohydrate repression and starvation may influence metabolite accumulation at the later timepoint. Higher conidial oxidative stress tolerance and antioxidant capacity in AF13 compared to NRRL3357, inferred from their metabolomic profiles and growth curves over time, may be connected to aflatoxin production capability and aflatoxin-related antioxidant accumulation. The coincidence of several of the detected metabolites in H2O2-stressed A. flavus and drought-stressed hosts also suggests their potential role in the interaction between these organisms and their use as markers/targets to enhance host resistance through biomarker selection or genetic engineering. Electronic supplementary material The online version of this article (10.1186/s12866-019-1580-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jake C Fountain
- USDA-ARS, Crop Protection and Management Research Unit, Tifton, GA, 31793, USA.,Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA
| | - Liming Yang
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA.,College of Biology and Environmental Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Manish K Pandey
- International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, 502324, India
| | - Prasad Bajaj
- International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, 502324, India
| | | | - Sixue Chen
- Department of Biology, Genetics Institute, and Plant Molecular & Cellular Biology Program, University of Florida, Gainesville, FL, 32611, USA
| | - Robert C Kemerait
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA
| | - Rajeev K Varshney
- International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, 502324, India
| | - Baozhu Guo
- USDA-ARS, Crop Protection and Management Research Unit, Tifton, GA, 31793, USA.
| |
Collapse
|