1
|
Kandasamy GD, Kathirvel P. Production, characterization and in vitro biological activities of crude pigment from endophytic Micrococcus luteus associated with Avicennia marina. Arch Microbiol 2023; 206:26. [PMID: 38108901 DOI: 10.1007/s00203-023-03751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
Due to their non-toxic and non-carcinogenic nature, biopigments have a phenomenal benefit over synthetic pigments, making them a desirable source for human utilization and a potential alternative to traditional synthetic pigments that are hazardous to the environment and public health. Endosymbiotic interactions between mangrove plants and bacteria could provide an alternate source for the synthesis of unique compounds with potent biomedical applications. Pigmented endophytic bacteria were screened from the explants of Avicennia marina, a mangrove plant, and identified as Micrococcus luteus by molecular characterization. The intracellular pigment was successfully extracted using the sonication-assisted solvent extraction method, and screening factors impacting the pigmentation bioprocess were determined using a one-factor-at-a-time approach. The endophyte produced yellow pigment in the liquid medium, with the maximum growth and pigment production recorded in nutrient broth at 37 ℃ and pH 7 after 96 h of incubation, while the maximum accumulation of pigment was observed in the media supplemented with glucose and tryptone as carbon and nitrogen sources, respectively. The extracted crude pigment was further characterized by ultraviolet, followed by Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry. The obtained crude pigment has been evaluated for its antioxidant and anticancer activity by various assays, such as DPPH radical scavenging activity, FRAP assay, superoxide anion and nitric oxide radical scavenging, metal chelating activity, phosphomolybdenum assay, and MTT assay, respectively, at varying concentrations. The results of our study revealed that the yellow pigment produced by the endophyte showed significant dose-dependent antioxidant and anticancer activity.
Collapse
Affiliation(s)
| | - Preethi Kathirvel
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
2
|
Numan M, Shah M, Asaf S, Ur Rehman N, Al-Harrasi A. Bioactive Compounds from Endophytic Bacteria Bacillus subtilis Strain EP1 with Their Antibacterial Activities. Metabolites 2022; 12:1228. [PMID: 36557265 PMCID: PMC9788538 DOI: 10.3390/metabo12121228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Endophytic bacteria boost host plant defense and growth by producing vital compounds. In the current study, a bacterial strain was isolated from the Boswellia sacra plant and identified as Bacillus subtilis strain EP1 (accession number: MT256301) through 16S RNA gene sequencing. From the identified bacteria, four compounds-1 (4-(4-cinnamoyloxy)phenyl)butanoic acid), 2 (cyclo-(L-Pro-D-Tyr)), 3 (cyclo-(L-Val-L-Phe)), and 4 (cyclo-(L-Pro-L-Val))-were isolated and characterized by 1D and 2D NMR and mass spectroscopy. Moreover, antibacterial activity and beta-lactam-producing gene inhibition (δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase (ACVS) and aminoadipate aminotransferase (AADAT)) assays were performed. Significant antibacterial activity was observed against the human pathogenic bacterial strains (E. coli) by compound 4 with a 13 ± 0.7 mm zone of inhibition (ZOI), followed by compound 1 having an 11 ± 0.7 mm ZOI. In contrast, the least antibacterial activity among the tested samples was offered by compound 2 with a 10 ± 0.9 mm ZOI compared to the standard (26 ± 1.2 mm). Similarly, the molecular analysis of beta-lactam inhibition determined that compounds 3 and 4 inhibited the two genes (2- to 4-fold) in the beta-lactam biosynthesis (ACVS and AADAT) pathway. From these results, it can be concluded that future research on these compounds could lead to the inhibition of antibiotic-resistant pathogenic bacterial strains.
Collapse
Affiliation(s)
- Muhammad Numan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Muddaser Shah
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Najeeb Ur Rehman
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
3
|
Padhan B, Poddar K, Sarkar D, Sarkar A. Production, purification, and process optimization of intracellular pigment from novel psychrotolerant Paenibacillus sp. BPW19. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 29:e00592. [PMID: 33537212 PMCID: PMC7840853 DOI: 10.1016/j.btre.2021.e00592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 12/16/2020] [Accepted: 01/10/2021] [Indexed: 01/01/2023]
Abstract
A pink pigment-producing bacterial strain was isolated from wastewater and identified as Paenibacillus sp. BPW19. The motile bacterial strain was Gram-positive, acid fermenting, glucose, sucrose utilizing and rod-shaped with an average cell length of 1.55 μm as studied under the Environmental Scanning Electron Microscope. Even though being psychrotolerant, the cell growth condition of BPW19 was optimized as 25 ºC along with pH 8, and 2.25% inoculum concentration considering the operational ease of the production. Sonication assisted solvent extraction produced 5.41% crude pigment which showed zones of exclusion against gram-negative strains Escherichia coli DH5α, Enterobacter sp. EtK3, and Klebsiella sp. SHC1. Gas Chromatography-Mass Spectrometry analysis of the crude pigment exhibited the dominant presence of major compounds as dotriacontane; 3,7 dimethyl 7 octanal; 1-eicosene and erucic acid. While column chromatography (ethanol:chloroform in 1:4 (v/v) ratio) purified pigment was identified as erucic acid using Nuclear Magnetic Resonance with a net yield of 3.06%.
Collapse
Affiliation(s)
- Bhagyashree Padhan
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Kasturi Poddar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Debapriya Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Angana Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India
| |
Collapse
|
4
|
Mogadem A, Almamary MA, Mahat NA, Jemon K, Ahmad WA, Ali I. Antioxidant Activity Evaluation of FlexirubinType Pigment from Chryseobacterium artocarpi CECT 8497 and Related Docking Study. Molecules 2021; 26:molecules26040979. [PMID: 33673263 PMCID: PMC7918587 DOI: 10.3390/molecules26040979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/26/2022] Open
Abstract
The current research is focused on studying the biological efficacy of flexirubin, a pigment extracted from Chryseobacterium artocarpi CECT 8497.Different methods such as DPPH, H2O2, NO•, O2•−, •OH, lipid peroxidation inhibition by FTC and TBA, ferric reducing and ferrous chelating activity were carried out to evaluate the antioxidant activity of flexirubin. Molecular docking was also carried out, seeking the molecular interactions of flexirubin and a standard antioxidant compound with SOD enzyme to figure out the possible flexirubin activity mechanism. The new findings revealed that the highest level of flexirubin exhibited similar antioxidant activity as that of the standard compound according to the H2O2, •OH, O2•−, FTC and TBA methods. On the other hand, flexirubin at the highest level has shown lower antioxidant activity than the positive control according to the DPPH and NO• and even much lower when measured by the FRAP method. Molecular docking showed that the interaction of flexirubin was in the binding cavity of the SOD enzyme and did not affect its metal-binding site. These results revealed that flexirubin has antioxidant properties and can be a useful therapeutic compound in preventing or treating free radical-related diseases.
Collapse
Affiliation(s)
- Abeer Mogadem
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia; (A.M.); (N.A.M.); (W.A.A.)
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia;
| | - Mohamed Ali Almamary
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia;
| | - Naji Arafat Mahat
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia; (A.M.); (N.A.M.); (W.A.A.)
| | - Khairunadwa Jemon
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia;
| | - Wan Azlina Ahmad
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia; (A.M.); (N.A.M.); (W.A.A.)
| | - Imran Ali
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia;
- Department of Chemistry, Jamia Millia Islamia, A Central University, New Delhi 11025, India
- Correspondence:
| |
Collapse
|
5
|
Majumdar S, Mandal T, Dasgupta Mandal D. Production kinetics of β-carotene from Planococcus sp. TRC1 with concomitant bioconversion of industrial solid waste into crystalline cellulose rich biomass. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Ram S, Tirkey SR, Kumar MA, Mishra S. Ameliorating process parameters for zeaxanthin yield in Arthrobacter gandavensis MTCC 25325. AMB Express 2020; 10:69. [PMID: 32297021 PMCID: PMC7158978 DOI: 10.1186/s13568-020-01008-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
The present study aims to escalate the production of prophylactic agent zeaxanthin using a screened potential bacterial isolate. For this purpose, a freshwater bacterium capable of producing zeaxanthin was isolated from Bor Talav, Bhavnagar. The 16S rRNA sequence confirmed the isolate as Arthrobacter gandavensis. The bacterium was also submitted to Microbial Type Culture Collection, CSIR-Institute of Microbial Technology, Chandigarh, India, with the accession number MTCC 25325. The chemo-metric tools were employed to optimise the influencing factors such as pH, temperature, inoculum size, agitation speed, carbon source and harvest time on zeaxanthin yield. Thereafter, six parameters were narrowed down to three factors and were optimised using the central composite design (CCD) matrix. Maximum zeaxanthin (1.51 mg/g) was derived when A. gandavensis MTCC 25325 was grown under pH 6.0, 1.5% (w/v) glucose and 10% (v/v) inoculum size. A high regression coefficient (R2= 0.92) of the developed model indicated the accurateness of the tested parameters. To the best of our knowledge, this is the first report on tailoring the process parameters using chemo-metric optimisation for escalating the zeaxanthin production by A. gandavensis MTCC 25325.
Collapse
|