1
|
Guerreiro BM, Concórdio-Reis P, Pericão H, Martins F, Moppert X, Guézennec J, Lima JC, Silva JC, Freitas F. Elevated fucose content enhances the cryoprotective performance of anionic polysaccharides. Int J Biol Macromol 2024; 261:129577. [PMID: 38246459 DOI: 10.1016/j.ijbiomac.2024.129577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Biological cryopreservation often involves using a cryoprotective agent (CPA) to mitigate lethal physical stressors cells endure during freezing and thawing, but effective CPA concentrations are cytotoxic. Hence, natural polysaccharides have been studied as biocompatible alternatives. Here, a subset of 26 natural polysaccharides of various chemical composition was probed for their potential in enhancing the metabolic post-thaw viability (PTV) of cryopreserved Vero cells. The best performing cryoprotective polysaccharides contained significant fucose amounts, resulting in average PTV 2.8-fold (up to 3.1-fold) compared to 0.8-fold and 2.2-fold for all non-cryoprotective and cryoprotective polysaccharides, respectively, outperforming the optimized commercial CryoStor™ CS5 formulation (2.6-fold). Stoichiometrically, a balance between fucose (18-35.7 mol%), uronic acids (UA) (13.5-26 mol%) and high molecular weight (MW > 1 MDa) generated optimal PTV. Principal component analysis (PCA) revealed that fucose enhances cell survival by a charge-independent, MW-scaling mechanism (PC1), drastically different from the charge-dominated ice growth disruption of UA (PC2). Its neutral nature and unique properties distinguishable from other neutral monomers suggest fucose may play a passive role in conformational adaptability of polysaccharide to ice growth inhibition, or an active role in cell membrane stabilization through binding. Ultimately, fucose-rich anionic polysaccharides may indulge in polymer-ice and polymer-cell interactions that actively disrupt ice and minimize lethal volumetric fluctuations due to a balanced hydrophobic-hydrophilic character. Our research showed the critical role neutral fucose plays in enhancing cellular cryopreservation outcomes, disputing previous assumptions of polyanionicity being the sole governing predictor of cryoprotection.
Collapse
Affiliation(s)
- Bruno M Guerreiro
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Patrícia Concórdio-Reis
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Helena Pericão
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Filipa Martins
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Xavier Moppert
- Pacific Biotech SAS, BP 140 289, 98 701 Arue, Tahiti, French Polynesia.
| | - Jean Guézennec
- AiMB (Advices in Marine Biotechnology), 17 Rue d'Ouessant, 29280 Plouzané, France
| | - João C Lima
- LAQV-REQUIMTE, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Jorge C Silva
- CENIMAT/I3N, Department of Physics, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Filomena Freitas
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| |
Collapse
|
2
|
Araújo D, Martins M, Freitas F. Exploring the Drug-Loading and Release Ability of FucoPol Hydrogel Membranes. Int J Mol Sci 2023; 24:14591. [PMID: 37834039 PMCID: PMC10572272 DOI: 10.3390/ijms241914591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
The polysaccharide FucoPol has recently been shown to yield hydrogel membranes (HMs) characterized by good mechanical properties, biocompatibility, and anti-inflammatory activity that render them promising biomaterials for use in the biomedical field. Subsequently to such findings, envisaging their development into novel delivery systems for topical applications, in this study, FucoPol HMs prepared by crosslinking the biopolymer with iron cations were loaded with caffeine or diclofenac sodium as model drugs. Two loading methods, namely diffusion and mixing, were applied to evaluate the FucoPol's HM drug-loading capacity and entrapment efficiency. The diffusion method led to a higher caffeine loading (101.9 ± 19.1 mg/g) in the HM1_DCAF membranes, while the mixing method resulted in a higher diclofenac sodium loading (82.3 ± 5.1 mg/g) in the HM1_DDS membranes. The HM1_DCAF membranes were characterized by increased mechanical and rheological parameters, such as their hardness (130.0 ± 5.3 kPa) and storage modulus (1014.9 ± 109.7 Pa), compared to the HM1_DDS membranes that exhibited lower values (7.3 ± 1.2 kPa and 19.8 ± 3.8 Pa, respectively), probably due to leaching occurring during the drug-loading process. The release profiles revealed a fast release of both APIs from the membranes loaded by diffusion, while a prolonged and sustained release was obtained from the membranes loaded by mixing. Moreover, for all API-loaded membranes, the release mechanism followed Fickian diffusion, with the release rate being essentially governed by the diffusion process. These findings, together with their previously shown biological properties, support the suitability of the developed FucoPol HMs to be used as platforms for the topical delivery of drugs.
Collapse
Affiliation(s)
- Diana Araújo
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (D.A.); (M.M.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Matilde Martins
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (D.A.); (M.M.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Filomena Freitas
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (D.A.); (M.M.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
3
|
Araújo D, Martins M, Concórdio-Reis P, Roma-Rodrigues C, Morais M, Alves VD, Fernandes AR, Freitas F. Novel Hydrogel Membranes Based on the Bacterial Polysaccharide FucoPol: Design, Characterization and Biological Properties. Pharmaceuticals (Basel) 2023; 16:991. [PMID: 37513903 PMCID: PMC10383424 DOI: 10.3390/ph16070991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
FucoPol, a fucose-rich polyanionic polysaccharide, was used for the first time for the preparation of hydrogel membranes (HMs) using Fe3+ as a crosslinking agent. This study evaluated the impact of Fe3+ and FucoPol concentrations on the HMs' strength. The results show that, above 1.5 g/L, Fe3+ concentration had a limited influence on the HMs' strength, and varying the FucoPol concentration had a more significant effect. Three different FucoPol concentrations (1.0, 1.75 and 2.5 wt.%) were combined with Fe3+ (1.5 g/L), resulting in HMs with a water content above 97 wt.% and an Fe3+ content up to 0.16 wt.%. HMs with lower FucoPol content exhibited a denser porous microstructure as the polymer concentration increased. Moreover, the low polymer content HM presented the highest swelling ratio (22.3 ± 1.8 g/g) and a lower hardness value (32.4 ± 5.8 kPa). However, improved mechanical properties (221.9 ± 10.2 kPa) along with a decrease in the swelling ratio (11.9 ± 1.6 g/g) were obtained for HMs with a higher polymer content. Furthermore, all HMs were non-cytotoxic and revealed anti-inflammatory activity. The incorporation of FucoPol as a structuring agent and bioactive ingredient in the development of HMs opens up new possibilities for its use in tissue engineering, drug delivery and wound care management.
Collapse
Affiliation(s)
- Diana Araújo
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Matilde Martins
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Patrícia Concórdio-Reis
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Catarina Roma-Rodrigues
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Maria Morais
- i3N/CENIMAT, Department of Materials Science, Faculty of Sciences and Technology, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Vítor D Alves
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Alexandra R Fernandes
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Filomena Freitas
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
4
|
Pereira JR, Rafael AM, Esmail A, Morais M, Matos M, Marques AC, Reis MAM, Freitas F. Preparation of Porous Scaffold Based on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) and FucoPol. Polymers (Basel) 2023; 15:2945. [PMID: 37447591 DOI: 10.3390/polym15132945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
This work focused on the development of porous scaffolds based on biocomposites comprising two biodegradable and biocompatible biopolymers: a terpolyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PHBHVHHx), and the bacterial polysaccharide FucoPol. The PHBHVHHx terpolymer was composed of 3-hydroxybutyrate (55 wt%), 3-hydroxyvalerate (21 wt%), and 3-hydroxyhexanoate (24 wt%). This hydrophobic polyester has low crystallinity and can form elastic and flexible films. Fucopol is a fucose-containing water-soluble polysaccharide that forms viscous solutions with shear thinning behavior and has demonstrated emulsion-forming and stabilizing capacity and wound healing ability. Emulsion-templating was used to fabricate PHA-based porous structures in which FucoPol acted as a bioemulsifier. Compared with the scaffolds obtained from emulsions with only water, the use of FucoPol aqueous solutions resulted in structures with improved mechanical properties, namely higher tensile strength (4.4 MPa) and a higher Young's Modulus (85 MPa), together with an elongation at break of 52%. These features, together with the scaffolds' high porosity and pore interconnectivity, suggest their potential to sustain cell adhesion and proliferation, which is further supported by FucoPol's demonstrated wound healing ability. Therefore, the developed PHBHVHHx:FucoPol scaffolds arise as innovative porous bioactive structures with great potential for use in tissue engineering applications.
Collapse
Affiliation(s)
- João Ricardo Pereira
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Ana Margarida Rafael
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Asiyah Esmail
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Maria Morais
- CENIMAT/i3N, Materials Science Department, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Mariana Matos
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Ana Carolina Marques
- CENIMAT/i3N, Materials Science Department, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Maria A M Reis
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Filomena Freitas
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| |
Collapse
|
5
|
Novel exopolysaccharide produced by the marine dinoflagellate Heterocapsa AC210: Production, characterization, and biological properties. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
6
|
Development of Olive Oil and α-Tocopherol Containing Emulsions Stabilized by FucoPol: Rheological and Textural Analyses. Polymers (Basel) 2022; 14:polym14122349. [PMID: 35745925 PMCID: PMC9227800 DOI: 10.3390/polym14122349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
Biobased raw materials like natural polysaccharides are increasingly sought by the cosmetic industry for their valuable properties. Such biodegradable and usually non-cytotoxic biopolymers are commonly used in skin-care products as rheological modifiers, bioemulsifiers and/or bioactive ingredients. FucoPol is a natural polysaccharide with reported biocompatibility, emulsion-forming and stabilizing capacity, shear-thinning behavior and bioactivity (e.g., antioxidant capacity, wound healing ability) that potentiate its utilization in skin-care products. In this study, olive oil and α-tocopherol containing emulsions were stabilized with FucoPol. Although the presence of α-tocopherol negatively impacted the emulsions’ stability, it increased their emulsification index (EI). Moreover, FucoPol outperformed the commercial emulsifier Sepigel® 305, under the tested conditions, with higher EI and higher stability under storage for 30 days. The formulation of FucoPol-based emulsions with olive oil and α-tocopherol was studied by Response Surface Methodology (RSM) that allowed the definition of the ingredients’ content to attain high emulsification. The RSM model established that α-tocopherol concentration had no significant impact on the EI within the tested ranges, with optimal emulsification for FucoPol concentration in the range 0.7–1.2 wt.% and olive oil contents of 20–30 wt.%. Formulations with 25 wt.% olive oil and either 0.5 or 2.0 wt.% α-tocopherol were emulsified with 1.0 wt.% or 0.7 wt.% FucoPol, respectively, resulting in oil-in-water (O/W) emulsions. The emulsions had similar shear-thinning behavior, but the formulation with higher FucoPol content displayed higher apparent viscosity, higher consistency, as well as higher firmness, adhesiveness and cohesiveness, but lower spreadability. These findings show FucoPol’s high performance as an emulsifier for olive oil/α-tocopherol, which are supported by an effective impact on the physicochemical and structural characteristics of the emulsions. Hence, this natural polysaccharide is a potential alternative to other emulsifiers.
Collapse
|
7
|
Faizan A, Takeda M, Yoshitake H. Effective adsorption of perrhenate ions on the filamentous sheath‐forming bacteria,
Sphaerotilus montanus
,
Sphaerotilus natans
and
Thiothrix fructosivorans. J Appl Microbiol 2022; 133:607-618. [DOI: 10.1111/jam.15590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Arshad Faizan
- Graduate School of Engineering Yokohama National University, 79‐5 Tokiwadai, 240‐8501, Hodogaya‐ku Yokohama
| | - Minoru Takeda
- Graduate School of Engineering Yokohama National University, 79‐5 Tokiwadai, 240‐8501, Hodogaya‐ku Yokohama
| | - Hideaki Yoshitake
- Graduate School of Engineering Yokohama National University, 79‐5 Tokiwadai, 240‐8501, Hodogaya‐ku Yokohama
| |
Collapse
|
8
|
Extraction of the Bacterial Extracellular Polysaccharide FucoPol by Membrane-Based Methods: Efficiency and Impact on Biopolymer Properties. Polymers (Basel) 2022; 14:polym14030390. [PMID: 35160380 PMCID: PMC8838009 DOI: 10.3390/polym14030390] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
In this study, membrane-based methods were evaluated for the recovery of FucoPol, the fucose-rich exopolysaccharide (EPS) secreted by the bacterium Enterobacter A47, aiming at reducing the total water consumption and extraction time, while keeping a high product recovery, thus making the downstream procedure more sustainable and cost-effective. The optimized method involved ultrafiltration of the cell-free supernatant using a 30 kDa molecular weight cut-off (MWCO) membrane that allowed for a 37% reduction of the total water consumption and a 55% reduction of the extraction time, compared to the previously used method (diafiltration-ultrafiltration with a 100 kDa MWCO membrane). This change in the downstream procedure improved the product’s recovery (around 10% increase) and its purity, evidenced by the lower protein (8.2 wt%) and inorganic salts (4.0 wt%) contents of the samples (compared to 9.3 and 8.6 wt%, respectively, for the previously used method), without impacting FucoPol’s sugar and acyl groups composition, molecular mass distribution or thermal degradation profile. The biopolymer’s emulsion-forming and stabilizing capacity was also not affected (emulsification activity (EA) with olive oil, at a 2:3 ratio, of 98 ± 0% for all samples), while the rheological properties were improved (the zero-shear viscosity increased from 8.89 ± 0.62 Pa·s to 17.40 ± 0.04 Pa·s), which can be assigned to the higher purity degree of the extracted samples. These findings demonstrate a significant improvement in the downstream procedure raising FucoPol’s recovery, while reducing water consumption and operation time, key criteria in terms of process economic and environmental sustainability. Moreover, those changes improved the biopolymer’s rheological properties, known to significantly impact FucoPol’s utilization in cosmetic, pharmaceutical or food products.
Collapse
|
9
|
Romero Soto L, Thabet H, Maghembe R, Gameiro D, Van-Thuoc D, Dishisha T, Hatti-Kaul R. Metabolic potential of the moderate halophile Yangia sp. ND199 for co-production of polyhydroxyalkanoates and exopolysaccharides. Microbiologyopen 2021; 10:e1160. [PMID: 33650793 PMCID: PMC7892980 DOI: 10.1002/mbo3.1160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/02/2022] Open
Abstract
Yangia sp. ND199 is a moderately halophilic bacterium isolated from mangrove samples in Northern Vietnam, which was earlier reported to grow on several sugars and glycerol to accumulate poly(hydroxyalkanoates) (PHA). In this study, the potential of the bacterium for co‐production of exopolysaccharides (EPS) and PHA was investigated. Genome sequence analysis of the closely related Yangia sp. CCB‐M3 isolated from mangroves in Malaysia revealed genes encoding enzymes participating in different EPS biosynthetic pathways. The effects of various cultivation parameters on the production of EPS and PHA were studied. The highest level of EPS (288 mg/L) was achieved using sucrose and yeast extract with 5% NaCl and 120 mM phosphate salts but with modest PHA accumulation (32% of cell dry weight, 1.3 g/L). Growth on fructose yielded the highest PHA concentration (85% of CDW, 3.3 g/L) at 90 mM phosphate and higher molecular weight EPS at 251 mg/L yield at 120 mM phosphate concentration. Analysis of EPS showed a predominance of glucose, followed by fructose and galactose, and minor amounts of acidic sugars.
Collapse
Affiliation(s)
- Luis Romero Soto
- Division of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden.,Instituto de Investigación y Desarrollo de Procesos Químicos, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Habib Thabet
- Division of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden.,Food Science and Technology Department, Ibb University, Ibb, Yemen
| | - Reuben Maghembe
- Division of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden.,Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Denise Gameiro
- Division of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Doan Van-Thuoc
- Department of Biotechnology and Microbiology, Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
| | - Tarek Dishisha
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rajni Hatti-Kaul
- Division of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Silver nanocomposites based on the bacterial fucose-rich polysaccharide secreted by Enterobacter A47 for wound dressing applications: Synthesis, characterization and in vitro bioactivity. Int J Biol Macromol 2020; 163:959-969. [DOI: 10.1016/j.ijbiomac.2020.07.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
|
11
|
Biosorption of Heavy Metals by the Bacterial Exopolysaccharide FucoPol. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196708] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Despite the efforts for minimizing the usage of heavy metals, anthropogenic activities still generate high amounts of wastewater containing these contaminants that cause significant health and environmental problems. Given the drawbacks of the conventional physical and chemical methods currently used, natural biosorbents (microbial cells or their products) arise as promising environmentally friendly alternatives. In this study, the binding efficiency of the polysaccharide secreted by Enterobacter A47, FucoPol, towards lead (Pb2+), cobalt (Co2+), copper (Cu2+) and zinc (Zn2+) cations was demonstrated. FucoPol revealed a higher performance for the biosorption of Pb2+, with a maximum overall metal removal of 93.9 ± 5.3% and a specific metal uptake of 41.1 ± 2.3 mg/gEPS, from a Pb2+ solution with an initial concentration of 10 mg/L, by a 5 g/L FucoPol solution. The overall metal removal decreased considerably (≤31.3 ± 1.6%) for higher Pb2+ concentrations (48 and 100 mg/L) probably due to the saturation of FucoPol’s binding sites. Pb2+ removal was also less efficient (66.0 ± 8.2%) when a higher FucoPol concentration (10 g/L) was tested. Pb2+ removal efficiency of FucoPol was maximized at pH 4.3, however, it was affected by lower pH values (2.5–3.3). Moreover, the FucoPol’s sorption performance was unaffected (overall metal removal: 91.6–93.9%) in the temperature range of 5–40 °C. These findings demonstrate FucoPol’s great potential for utilization as a biodegradable and safe biosorbent for treating waters and wastewaters contaminated with Pb2+.
Collapse
|