1
|
Menzorov AG, Iukhtanov DA, Naumenko LG, Bobrovskikh AV, Zubairova US, Morozova KN, Doroshkov AV. Thraustochytrids: Evolution, Ultrastructure, Biotechnology, and Modeling. Int J Mol Sci 2024; 25:13172. [PMID: 39684882 DOI: 10.3390/ijms252313172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
The thraustochytrids are a group of marine protists known for their significant ecological roles as decomposers and parasites as well as for their potential biotechnological applications, yet their evolutionary and structural diversity remains poorly understood. Our review critically examines the phylogeny of this taxa, utilizing available up-to-date knowledge and their taxonomic classifications. Additionally, advanced imaging techniques, including electron microscopy, are employed to explore the ultrastructural characteristics of these organisms, revealing key features that contribute to their adaptive capabilities in varying marine environments. The integration of this knowledge with available omics data highlights the huge biotechnological potential of thraustochytrids, particularly in producing ω-3 fatty acids and other bioactive compounds. Our review underscores the importance of a systems biology approach in understanding thraustochytrids biology and highlights the urgent need for novel, accurate omics research to unlock their full biotechnological potential. Overall, this review aims to foster a deeper appreciation of thraustochytrids by synthesizing information on their evolution, ultrastructure, and practical applications, thereby providing a foundation for future studies in microbiology and biotechnology.
Collapse
Affiliation(s)
- Aleksei G Menzorov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Daniil A Iukhtanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Ludmila G Naumenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Aleksandr V Bobrovskikh
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ulyana S Zubairova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ksenia N Morozova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexey V Doroshkov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia
| |
Collapse
|
2
|
Jia L, Li T, Wang R, Ma M, Yang Z. Enhancing docosahexaenoic acid production from Schizochytrium sp. by using waste Pichia pastoris as nitrogen source based on two-stage feeding control. BIORESOURCE TECHNOLOGY 2024; 403:130891. [PMID: 38788808 DOI: 10.1016/j.biortech.2024.130891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
To reduce the cost of docosahexaenoic acid (DHA) production from Schizochytrium sp., the waste Pichia pastoris was successfully used as an alternative nitrogen source to achieve high-density cultivation during the cell growth phase. However, due to the high oxygen consumption feature when implementing high-density cultivation, the control of both the nitrogen source and dissolved oxygen concentration (DO) at each sufficient level was impossible; thus, two realistic control strategies, including "DO sufficiency-nitrogen limitation" and "DO limitation-nitrogen sufficiency", were proposed. When using the strategy of "DO sufficiency-nitrogen limitation", the lowest maintenance coefficient of glucose (12.3 mg/g/h vs. 17.0 mg/g/h) and the highest activities of related enzymes in DHA biosynthetic routes were simultaneously obtained; thus, a maximum DHA concentration of 12.8 ± 1.2 g/L was achieved, which was 1.58-fold greater than that of the control group. Overall, two-stage feeding control for alternative nitrogen sources is an efficient strategy to industrial DHA fermentation.
Collapse
Affiliation(s)
- Luqiang Jia
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, China.
| | - Tianyi Li
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, China
| | - Ruoyu Wang
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, China
| | - Mengyao Ma
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, China
| | - Zhenquan Yang
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, China.
| |
Collapse
|
3
|
Cutolo EA, Caferri R, Campitiello R, Cutolo M. The Clinical Promise of Microalgae in Rheumatoid Arthritis: From Natural Compounds to Recombinant Therapeutics. Mar Drugs 2023; 21:630. [PMID: 38132951 PMCID: PMC10745133 DOI: 10.3390/md21120630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Rheumatoid arthritis (RA) is an invalidating chronic autoimmune disorder characterized by joint inflammation and progressive bone damage. Dietary intervention is an important component in the treatment of RA to mitigate oxidative stress, a major pathogenic driver of the disease. Alongside traditional sources of antioxidants, microalgae-a diverse group of photosynthetic prokaryotes and eukaryotes-are emerging as anti-inflammatory and immunomodulatory food supplements. Several species accumulate therapeutic metabolites-mainly lipids and pigments-which interfere in the pro-inflammatory pathways involved in RA and other chronic inflammatory conditions. The advancement of the clinical uses of microalgae requires the continuous exploration of phytoplankton biodiversity and chemodiversity, followed by the domestication of wild strains into reliable producers of said metabolites. In addition, the tractability of microalgal genomes offers unprecedented possibilities to establish photosynthetic microbes as light-driven biofactories of heterologous immunotherapeutics. Here, we review the evidence-based anti-inflammatory mechanisms of microalgal metabolites and provide a detailed coverage of the genetic engineering strategies to enhance the yields of endogenous compounds and to develop innovative bioproducts.
Collapse
Affiliation(s)
- Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Roberto Caferri
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Rosanna Campitiello
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (R.C.)
| | - Maurizio Cutolo
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (R.C.)
| |
Collapse
|
4
|
Chen ZL, Yang LH, He SJ, Du YH, Guo DS. Development of a green fermentation strategy with resource cycle for the docosahexaenoic acid production by Schizochytrium sp. BIORESOURCE TECHNOLOGY 2023:129434. [PMID: 37399951 DOI: 10.1016/j.biortech.2023.129434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
The fermentation production of docosahexaenoic acid (DHA) is an industrial process with huge consumption of freshwater resource and nutrient, such as carbon sources and nitrogen sources. In this study, seawater and fermentation wastewater were introduced into the fermentation production of DHA, which could solve the problem of fermentation industry competing with humans for freshwater. In addition, a green fermentation strategy with pH control using waste ammonia, NaOH and citric acid as well as FW recycling was proposed. It could provide a stable external environment for cell growth and lipid synthesis while alleviating the dependence on organic nitrogen sources of Schizochytrium sp. It was proved that this strategy has good industrialization potential for DHA production, and the biomass, lipid and DHA yield reached to 195.8 g/L, 74.4 g/L and 46.4 g/L in 50 L bioreactor, respectively. This study provides a green and economic bioprocess technology for DHA production by Schizochytrium sp.
Collapse
Affiliation(s)
- Zi-Lei Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Lin-Hui Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Shao-Jie He
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Yuan-Hang Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China.
| |
Collapse
|
5
|
Yin FW, Zhan CT, Huang J, Sun XL, Yin LF, Zheng WL, Luo X, Zhang YY, Fu YQ. Efficient Co-production of Docosahexaenoic Acid Oil and Carotenoids in Aurantiochytrium sp. Using a Light Intensity Gradient Strategy. Appl Biochem Biotechnol 2023; 195:623-638. [PMID: 36114924 DOI: 10.1007/s12010-022-04134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
Aurantiochytrium is a promising source of docosahexaenoic acid (DHA) and carotenoids, but their synthesis is influenced by environmental stress factors. In this study, the effect of different light intensities on the fermentation of DHA oil and carotenoids using Aurantiochytrium sp. TZ209 was investigated. The results showed that dark culture and low light intensity conditions did not affect the normal growth of cells, but were not conducive to the accumulation of carotenoids. High light intensity promoted the synthesis of DHA and carotenoids, but caused cell damage, resulting in a decrease of oil yield. To solve this issue, a light intensity gradient strategy was developed, which markedly improved the DHA and carotenoid content without reducing the oil yield. This strategy produced 30.16 g/L of microalgal oil with 15.11 g/L DHA, 221 µg/g astaxanthin, and 386 µg/g β-carotene. This work demonstrates that strain TZ209 is a promising DHA producer and provides an efficient strategy for the co-production of DHA oil together with carotenoids.
Collapse
Affiliation(s)
- Feng-Wei Yin
- College of Life Science, Taizhou University, No. 1139 Shifu Road, Taizhou, 318000, People's Republic of China
| | - Ci-Tong Zhan
- College of Life Science, Taizhou University, No. 1139 Shifu Road, Taizhou, 318000, People's Republic of China
| | - Jiao Huang
- College of Life Science, Taizhou University, No. 1139 Shifu Road, Taizhou, 318000, People's Republic of China
| | - Xiao-Long Sun
- College of Life Science, Taizhou University, No. 1139 Shifu Road, Taizhou, 318000, People's Republic of China
| | - Long-Fei Yin
- College of Life Science, Taizhou University, No. 1139 Shifu Road, Taizhou, 318000, People's Republic of China
| | - Wei-Long Zheng
- College of Life Science, Taizhou University, No. 1139 Shifu Road, Taizhou, 318000, People's Republic of China
| | - Xi Luo
- College of Life Science, Taizhou University, No. 1139 Shifu Road, Taizhou, 318000, People's Republic of China
| | - Ying-Ying Zhang
- College of Life Science, Taizhou University, No. 1139 Shifu Road, Taizhou, 318000, People's Republic of China
| | - Yong-Qian Fu
- College of Life Science, Taizhou University, No. 1139 Shifu Road, Taizhou, 318000, People's Republic of China.
| |
Collapse
|
6
|
Wang XL, Zhou JJ, Liu S, Sun YQ, Xiu ZL. In situ carbon dioxide capture to co-produce 1,3-propanediol, biohydrogen and micro-nano calcium carbonate from crude glycerol by Clostridium butyricum. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:91. [PMID: 36057610 PMCID: PMC9440576 DOI: 10.1186/s13068-022-02190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
Background Climate change caused by greenhouse gas emission has become a global hot topic. Although biotechnology is considered as an environmentally friendly method to produce chemicals, almost all biochemicals face carbon dioxide emission from inevitable respiration and energy metabolism of most microorganisms. To cater for the broad prospect of biochemicals, bioprocess optimization of diverse valuable products is becoming increasingly important for environmental sustainability and cleaner production. Based on Ca(OH)2 as a CO2 capture agent and pH regulator, a bioprocess was proposed for co-production of 1,3-propanediol (1,3-PDO), biohydrogen and micro-nano CaCO3 by Clostridium butyricum DL07. Results In fed-batch fermentation, the maximum concentration of 1,3-PDO reached up to 88.6 g/L with an overall productivity of 5.54 g/L/h. This productivity is 31.9% higher than the highest value previously reports (4.20 g/L/h). In addition, the ratio of H2 to CO2 in exhaust gas showed a remarkable 152-fold increase in the 5 M Ca(OH)2 group compared to 5 M NaOH as the CO2 capture agent. Green hydrogen in exhaust gas ranged between 17.2% and 20.2%, with the remainder being N2 with negligible CO2 emissions. During CO2 capture in situ, micro-nano calcite particles of CaCO3 with sizes in the range of 300 nm to 20 µm were formed simultaneously. Moreover, when compared with 5M NaOH group, the concentrations of soluble salts and proteins in the fermentation broth of 5 M Ca(OH)2 group were notably reduced by 53.6% and 44.1%, respectively. The remarkable reduction of soluble salts and proteins would contribute to the separation of 1,3-PDO. Conclusions Ca(OH)2 was used as a CO2 capture agent and pH regulator in this study to promote the production of 1,3-PDO. Meanwhile, micro-nano CaCO3 and green H2 were co-produced. In addition, the soluble salts and proteins in the fermentation broth were significantly reduced. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02190-2.
Collapse
|
7
|
Rohman FS, Zahan KA, Azmi A, Roslan MFB, Hamid AA, Shoparwe NFB. Optimal Feeding Strategy in Fermentation of Docosahexaenoic Acid Production by Schizochytrium sp. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202200062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fakhrony Sholahudin Rohman
- School of Chemical Engineering Universiti Sains Malaysia Engineering Campus, Seri Ampangan Nibong Tebal, Pulau Pinang 14300 Malaysia
- Department of Chemical Engineering Universitas Brawijaya Jalan Mayjen Haryono 167 Malang 65145 Indonesia
| | - Khairul Azly Zahan
- Department of Systems Science, Graduate School of Informatics Kyoto University Kyoto 606-8501 Japan
- Faculty of Engineering Technology Universiti Tun Hussein Onn Malaysia Parit Raja Batu Pahat, Johor 86400 Malaysia
| | - Ashraf Azmi
- School of Chemical Engineering,College of Engineering Universiti Teknologi MARA Shah Alam Selangor 40450 Malaysia
| | | | - Aidil Abdul Hamid
- Department of Biological Sciences and Biotechnology Universiti Kebangsaan Malaysia Bangi, Selangor 43600 Malaysia
| | | |
Collapse
|
8
|
Efficient ε-poly-L-lysine production by Streptomyces albulus based on a dynamic pH-regulation strategy. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Current trends and next generation of future edible oils. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Ma W, Wang YZ, Nong FT, Du F, Xu YS, Huang PW, Sun XM. An emerging simple and effective approach to increase the productivity of thraustochytrids microbial lipids by regulating glycolysis process and triacylglycerols' decomposition. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:247. [PMID: 34972534 PMCID: PMC8719115 DOI: 10.1186/s13068-021-02097-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/18/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND The oleaginous microorganism Schizochytrium sp. is widely used in scientific research and commercial lipid production processes. However, low glucose-to-lipid conversion rate (GLCR) and low lipid productivity of Schizochytrium sp. restrict the feasibility of its use. RESULTS Orlistat is a lipase inhibitor, which avoids triacylglycerols (TAGs) from hydrolysis by lipase. TAGs are the main storage forms of fatty acids in Schizochytrium sp. In this study, the usage of orlistat increased the GLCR by 21.88% in the middle stage of fermentation. Whereas the productivity of lipid increased 1.34 times reaching 0.73 g/L/h, the saturated fatty acid and polyunsaturated fatty acid yield increased from 21.2 and 39.1 to 34.9 and 48.5 g/L, respectively, indicating the advantages of using a lipase inhibitor in microbial lipids fermentation. Similarly, the system was also successful in Thraustochytrid Aurantiochytrium. The metabolic regulatory mechanisms stimulated by orlistat in Schizochytrium sp. were further investigated using transcriptomics and metabolomics. The results showed that orlistat redistributed carbon allocation and enhanced the energy supply when inhibiting the TAGs' degradation pathway. Therefore, lipase in Schizochytrium sp. prefers to hydrolyze saturated fatty acid TAGs into the β-oxidation pathway. CONCLUSIONS This study provides a simple and effective approach to improve lipid production, and makes us understand the mechanism of lipid accumulation and decomposition in Schizochytrium sp., offering new guidance for the exploitation of oleaginous microorganisms.
Collapse
Affiliation(s)
- Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Yu-Zhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Fang-Tong Nong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Fei Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Peng-Wei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China.
| |
Collapse
|
11
|
Chi G, Xu Y, Cao X, Li Z, Cao M, Chisti Y, He N. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnol Adv 2021; 55:107897. [PMID: 34974158 DOI: 10.1016/j.biotechadv.2021.107897] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
Diverse health benefits are associated with dietary consumption of omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Traditionally, these fatty acids have been obtained from fish oil, but limited supply, variably quality, and an inability to sustainably increase production for a rapidly growing market, are driving the quest for alternative sources. DHA derived from certain marine protists (heterotrophic thraustochytrids) already has an established history of commercial production for high-value dietary use, but is too expensive for use in aquaculture feeds, a much larger potential market for ω-3 LC-PUFA. Sustainable expansion of aquaculture is prevented by its current dependence on wild-caught fish oil as the source of ω-3 LC-PUFA nutrients required in the diet of aquacultured animals. Although several thraustochytrids have been shown to produce DHA and EPA, there is a particular interest in Schizochytrium spp. (now Aurantiochytrium spp.), as some of the better producers. The need for larger scale production has resulted in development of many strategies for improving productivity and production economics of ω-3 PUFA in Schizochytrium spp. Developments in fermentation technology and metabolic engineering for enhancing LC-PUFA production in Schizochytrium spp. are reviewed.
Collapse
Affiliation(s)
- Guoxiang Chi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Xingyu Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Zhipeng Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361000, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
12
|
Chen X, Sen B, Zhang S, Bai M, He Y, Wang G. Chemical and Physical Culture Conditions Significantly Influence the Cell Mass and Docosahexaenoic Acid Content of Aurantiochytrium limacinum Strain PKU#SW8. Mar Drugs 2021; 19:671. [PMID: 34940670 PMCID: PMC8708202 DOI: 10.3390/md19120671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Thraustochytrids are well-known unicellular heterotrophic marine protists because of their promising ability to accumulate docosahexaenoic acid (DHA). However, the implications of their unique genomic and metabolic features on DHA production remain poorly understood. Here, the effects of chemical and physical culture conditions on the cell mass and DHA production were investigated for a unique thraustochytrid strain, PKU#SW8, isolated from the seawater of Pearl River Estuary. All the tested fermentation parameters showed a significant influence on the cell mass and concentration and yield of DHA. The addition of monosaccharides (fructose, mannose, glucose, or galactose) or glycerol to the culture medium yielded much higher cell mass and DHA concentrations than that of disaccharides and starch. Similarly, organic nitrogen sources (peptone, yeast extract, tryptone, and sodium glutamate) proved to be beneficial in achieving a higher cell mass and DHA concentration. PKU#SW8 was found to grow and accumulate a considerable amount of DHA over wide ranges of KH2PO4 (0.125-1.0 g/L), salinity (0-140% seawater), pH (3-9), temperature (16-36 °C), and agitation (140-230 rpm). With the optimal culture conditions (glycerol, 20 g/L; peptone, 2.5 g/L; 80% seawater; pH 4.0; 28 °C; and 200 rpm) determined based on the shake-flask experiments, the cell mass and concentration and yield of DHA were improved up to 7.5 ± 0.05 g/L, 2.14 ± 0.03 g/L, and 282.9 ± 3.0 mg/g, respectively, on a 5-L scale fermentation. This study provides valuable information about the fermentation conditions of the PKU#SW8 strain and its unique physiological features, which could be beneficial for strain development and large-scale DHA production.
Collapse
Affiliation(s)
- Xiaohong Chen
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (X.C.); (B.S.); (Y.H.)
| | - Biswarup Sen
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (X.C.); (B.S.); (Y.H.)
| | - Sai Zhang
- Polar Research Institute of China, Shanghai 200136, China;
| | - Mohan Bai
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Yaodong He
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (X.C.); (B.S.); (Y.H.)
| | - Guangyi Wang
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (X.C.); (B.S.); (Y.H.)
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
13
|
ARTP Mutagenesis of Schizochytrium sp. PKU#Mn4 and Clethodim-Based Mutant Screening for Enhanced Docosahexaenoic Acid Accumulation. Mar Drugs 2021; 19:md19100564. [PMID: 34677463 PMCID: PMC8539320 DOI: 10.3390/md19100564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Schizochytrium species are one of the best oleaginous thraustochytrids for high-yield production of docosahexaenoic acid (DHA, 22:6). However, the DHA yields from most wild-type (WT) strains of Schizochytrium are unsatisfactory for large-scale production. In this study, we applied the atmospheric and room-temperature plasma (ARTP) tool to obtain the mutant library of a previously isolated strain of Schizochytrium (i.e., PKU#Mn4). Two rounds of ARTP mutagenesis coupled with the acetyl-CoA carboxylase (ACCase) inhibitor (clethodim)-based screening yielded the mutant A78 that not only displayed better growth, glucose uptake and ACCase activity, but also increased (54.1%) DHA content than that of the WT strain. Subsequent optimization of medium components and supplementation improved the DHA content by 75.5 and 37.2%, respectively, compared with that of mutant A78 cultivated in the unoptimized medium. Interestingly, the ACCase activity of mutant A78 in a medium supplemented with biotin, citric acid or sodium citrate was significantly greater than that in a medium without supplementation. This study provides an effective bioengineering approach for improving the DHA accumulation in oleaginous microbes.
Collapse
|
14
|
Optimization of docosahexaenoic acid production by Schizochytrium SP. – A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Wang Q, Han W, Jin W, Gao S, Zhou X. Docosahexaenoic acid production by Schizochytrium sp.: review and prospect. FOOD BIOTECHNOL 2021. [DOI: 10.1080/08905436.2021.1908900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Qing Wang
- Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Wei Han
- Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Wenbiao Jin
- Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Shuhong Gao
- Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Xu Zhou
- Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
16
|
Yin F, Sun X, Zheng W, Luo X, Zhang Y, Yin L, Jia Q, Fu Y. Screening of highly effective mixed natural antioxidants to improve the oxidative stability of microalgal DHA-rich oil. RSC Adv 2021; 11:4991-4999. [PMID: 35424447 PMCID: PMC8694495 DOI: 10.1039/d0ra10312h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/19/2021] [Indexed: 11/21/2022] Open
Abstract
Docosahexaenoic acid (DHA)-rich oil sourced from microalgae can easily become oxidized. The objective of this work was to screen the optimal natural antioxidant mixture for protecting DHA-rich oil. Different natural antioxidants, encompassing tea polyphenols, natural vitamin E, rosemary extract, licorice root antioxidant, ascorbyl palmitate and lecithin were tested individually and in combination in an accelerated oxidation process. Three antioxidants namely natural vitamin E, rosemary extract and ascorbyl palmitate with synergistic effects were chosen, and their concentrations were further optimized using response-surface methodology. The highest antioxidants activity of 16.1740 was obtained with a combination of 0.0224% vitamin E, 0.0259% rosemary extract and 0.0166% ascorbyl palmitate, which prolonged the time until oxidation induction to 20.21 days. The mixed natural antioxidants showed a similar antioxidant effect to 0.02% tert-butylhydroquinone and was better than 0.02% butylated hydroxyanisole. These data indicate that the mixed natural antioxidants optimized in this work can be directly applied in the protection of commercial microalgal DHA-rich oil.
Collapse
Affiliation(s)
- Fengwei Yin
- Institute of Biomass Resources, Taizhou University No. 1139 Shifu Road Taizhou 318000 People's Republic of China
| | - Xiaolong Sun
- Institute of Biomass Resources, Taizhou University No. 1139 Shifu Road Taizhou 318000 People's Republic of China
| | - Weilong Zheng
- Institute of Biomass Resources, Taizhou University No. 1139 Shifu Road Taizhou 318000 People's Republic of China
| | - Xi Luo
- Institute of Biomass Resources, Taizhou University No. 1139 Shifu Road Taizhou 318000 People's Republic of China
| | - Yingying Zhang
- Institute of Biomass Resources, Taizhou University No. 1139 Shifu Road Taizhou 318000 People's Republic of China
| | - Longfei Yin
- Institute of Biomass Resources, Taizhou University No. 1139 Shifu Road Taizhou 318000 People's Republic of China
| | - Qiang Jia
- Seasons Biotechnology (Taizhou) Co., Ltd Taizhou People's Republic of China
| | - Yongqian Fu
- Institute of Biomass Resources, Taizhou University No. 1139 Shifu Road Taizhou 318000 People's Republic of China
| |
Collapse
|
17
|
|
18
|
Kothri M, Mavrommati M, Elazzazy AM, Baeshen MN, Moussa TAA, Aggelis G. Microbial sources of polyunsaturated fatty acids (PUFAs) and the prospect of organic residues and wastes as growth media for PUFA-producing microorganisms. FEMS Microbiol Lett 2020; 367:5735438. [PMID: 32053204 DOI: 10.1093/femsle/fnaa028] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
The discovery of non-fish sources of polyunsaturated fatty acids (PUFAs) is of great biotechnological importance. Although various oleaginous microalgae and fungi are able of accumulating storage lipids (single cell oils - SCOs) containing PUFAs, the industrial applications utilizing these organisms are rather limited due to the high-fermentation cost. However, combining SCO production with other biotechnological applications, including waste and by-product valorization, can overcome this difficulty. In the current review, we present the major sources of fungi (i.e. members of Mucoromycota, fungoid-like Thraustochytrids and genetically modified strains of Yarrowia lipolytica) and microalgae (e.g. Isochrysis, NannochloropsisandTetraselmis) that have come recently to the forefront due to their ability to produce PUFAs. Approaches adopted in order to increase PUFA productivity and the potential of using various residues, such as agro-industrial, food and aquaculture wastes as fermentation substrates for SCO production have been considered and discussed. We concluded that several organic residues can be utilized as feedstock in the SCO production increasing the competitiveness of oleaginous organisms against conventional PUFA producers.
Collapse
Affiliation(s)
- Maria Kothri
- Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Maria Mavrommati
- Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Ahmed M Elazzazy
- Department of Biology, Faculty of Science, University of Jeddah, 23218 Jeddah, Saudi Arabi.,Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Mohamed N Baeshen
- Department of Biology, Faculty of Science, University of Jeddah, 23218 Jeddah, Saudi Arabi
| | - Tarek A A Moussa
- Department of Biology, Faculty of Science, University of Jeddah, 23218 Jeddah, Saudi Arabi.,Botany and Microbiology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - George Aggelis
- Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece.,Department of Biology, Faculty of Science, University of Jeddah, 23218 Jeddah, Saudi Arabi
| |
Collapse
|
19
|
Kiani A, Wolf C, Giller K, Eggerschwiler L, Kreuzer M, Schwarm A. In vitro ruminal fermentation and methane inhibitory effect of three species of microalgae. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, in vitro ruminal fermentation, anti-methanogenesis, and ammonia formation of two autotrophic algae [Nannochloropsis gaditana (NG), Phaeodactylum tricornutum (PT)], and one heterotrophic alga [Schizochytrium sp. (SS)] were investigated. The experimental diets consisted of a hay-concentrate basal diet (BD; 200 mg dry matter) supplemented with (1) no algae (just BD), (2) 40 mg of dried NG (BD + NG), (3) 40 mg of dried PT (BD + PT), and (4) 14 mg of dried SS. In total, 48 samples (four algal treatments × two replicates × three runs × two cows) were incubated for 24 h using the Hohenheim gas test method. All three algae decreased (P < 0.05) the production of short-chain fatty acids and protozoal abundance (both adjusted in amount to BD) as compared with BD. Ammonia formation of BD + NG and BD + PT was 1.2- and 1.1-fold of values in BD, respectively. The BD + NG diet enhanced the proportions of isobutyrate, valerate, and isovalerate at cost of acetate proportion of total short-chain fatty acids, whereas the BD + PT diet promoted the proportions of propionate and valerate at cost of acetate. None of the microalgae affected in vitro methane formation. In conclusion, these algae showed a very poor fermentability and no anti-methanogenic effect in vitro.
Collapse
Affiliation(s)
- Ali Kiani
- Department of Animal Science, Lorestan University, P.O. Box 465, Khorramabad, Iran
- ETH Zurich, Institute of Agricultural Sciences, 8092 Zurich, Switzerland
| | - Christina Wolf
- ETH Zurich, Institute of Agricultural Sciences, 8092 Zurich, Switzerland
| | - Katrin Giller
- ETH Zurich, Institute of Agricultural Sciences, 8092 Zurich, Switzerland
| | | | - Michael Kreuzer
- ETH Zurich, Institute of Agricultural Sciences, 8092 Zurich, Switzerland
| | - Angela Schwarm
- ETH Zurich, Institute of Agricultural Sciences, 8092 Zurich, Switzerland
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|
20
|
Yin F, Sun X, Zheng W, Luo X, Peng C, Jia Q, Fu Y. Improving the quality of microalgae DHA‐rich oil in the deodorization process using deoxygenated steam. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fengwei Yin
- College of Life Science Taizhou University Taizhou People's Republic of China
| | - Xiaolong Sun
- College of Life Science Taizhou University Taizhou People's Republic of China
| | - Weilong Zheng
- College of Life Science Taizhou University Taizhou People's Republic of China
| | - Xi Luo
- College of Life Science Taizhou University Taizhou People's Republic of China
| | - Chao Peng
- COFCO Nutrition and Health Research Institute Beijing People's Republic of China
| | - Qiang Jia
- Seasons Biotechnology (Taizhou) Co., Ltd Taizhou People's Republic of China
| | - Yongqian Fu
- College of Life Science Taizhou University Taizhou People's Republic of China
| |
Collapse
|
21
|
Two-stage pH control combined with oxygen-enriched air strategies for the highly efficient production of EPA by Mortierella alpina CCFM698 with fed-batch fermentation. Bioprocess Biosyst Eng 2020; 43:1725-1733. [DOI: 10.1007/s00449-020-02367-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/26/2020] [Indexed: 12/19/2022]
|
22
|
Wang SK, Wang X, Tian YT, Cui YH. Nutrient recovery from tofu whey wastewater for the economical production of docosahexaenoic acid by Schizochytrium sp. S31. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136448. [PMID: 32050374 DOI: 10.1016/j.scitotenv.2019.136448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/19/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Docosahexaenoic acid plays a vital role in human health as it is essential for the proper function of the nervous system and for visual functions. To decrease the cost of docosahexaenoic acid production by Schizochytrium, the cost of the medium should be further decreased. In this study, the use of tofu whey wastewater to culture Schizochytrium sp. for docosahexaenoic acid production was tested, with the goal of reducing the medium cost. The results indicated that tofu whey wastewater presented a better culture performance with respect to biomass, lipid, and docosahexaenoic acid production compared with three traditional media. Through simple pH adjustment, the biomass and docosahexaenoic acid productivity reached 1.89 and 0.24 g/L/day, respectively, which were much higher than those obtained using traditional medium. The removal efficiency of chemical oxygen demand, total nitrogen, and total phosphorus reached 64.7, 66.0, and 59.3%, respectively. Due to the rich nutrients in tofu whey wastewater, the use of extra nitrogen source was avoided and the total medium cost for docosahexaenoic acid production in cultures using tofu whey wastewater was <1/3 of that of traditional media. This result indicated that tofu whey wastewater is an effective and economic basal medium for docosahexaenoic acid production by Schizochytrium sp.
Collapse
Affiliation(s)
- Shi-Kai Wang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China.
| | - Xu Wang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Yong-Ting Tian
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Yue-Hua Cui
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| |
Collapse
|