1
|
Ściuk A, Wątor K, Staroń I, Worsztynowicz P, Pokrywka K, Sliwiak J, Kilichowska M, Pietruszewska K, Mazurek Z, Skalniak A, Lewandowski K, Jaskolski M, Loch JI, Surmiak M. Substrate Affinity Is Not Crucial for Therapeutic L-Asparaginases: Antileukemic Activity of Novel Bacterial Enzymes. Molecules 2024; 29:2272. [PMID: 38792133 PMCID: PMC11124013 DOI: 10.3390/molecules29102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
L-asparaginases are used in the treatment of acute lymphoblastic leukemia. The aim of this work was to compare the antiproliferative potential and proapoptotic properties of novel L-asparaginases from different structural classes, viz. EcAIII and KpAIII (class 2), as well as ReAIV and ReAV (class 3). The EcAII (class 1) enzyme served as a reference. The proapoptotic and antiproliferative effects were tested using four human leukemia cell models: MOLT-4, RAJI, THP-1, and HL-60. The antiproliferative assay with the MOLT-4 cell line indicated the inhibitory properties of all tested L-asparaginases. The results from the THP-1 cell models showed a similar antiproliferative effect in the presence of EcAII, EcAIII, and KpAIII. In the case of HL-60 cells, the inhibition of proliferation was observed in the presence of EcAII and KpAIII, whereas the proliferation of RAJI cells was inhibited only by EcAII. The results of the proapoptotic assays showed individual effects of the enzymes toward specific cell lines, suggesting a selective (time-dependent and dose-dependent) action of the tested L-asparaginases. We have, thus, demonstrated that novel L-asparaginases, with a lower substrate affinity than EcAII, also exhibit significant antileukemic properties in vitro, which makes them interesting new drug candidates for the treatment of hematological malignancies. For all enzymes, the kinetic parameters (Km and kcat) and thermal stability (Tm) were determined. Structural and catalytic properties of L-asparaginases from different classes are also summarized.
Collapse
Affiliation(s)
- Anna Ściuk
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (A.Ś.); (M.K.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
- II Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawińska 8, 31-066 Krakow, Poland
| | - Kinga Wątor
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (A.Ś.); (M.K.)
- II Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawińska 8, 31-066 Krakow, Poland
| | - Izabela Staroń
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (A.Ś.); (M.K.)
- II Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawińska 8, 31-066 Krakow, Poland
| | - Paulina Worsztynowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; (P.W.); (K.P.); (J.S.); (M.J.)
| | - Kinga Pokrywka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; (P.W.); (K.P.); (J.S.); (M.J.)
| | - Joanna Sliwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; (P.W.); (K.P.); (J.S.); (M.J.)
| | - Marta Kilichowska
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (A.Ś.); (M.K.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Kamila Pietruszewska
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, 31-066 Krakow, Poland; (K.P.); (Z.M.); (A.S.)
| | - Zofia Mazurek
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, 31-066 Krakow, Poland; (K.P.); (Z.M.); (A.S.)
| | - Anna Skalniak
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, 31-066 Krakow, Poland; (K.P.); (Z.M.); (A.S.)
| | - Krzysztof Lewandowski
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Szamarzewskiego 84, 60-569 Poznan, Poland;
| | - Mariusz Jaskolski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; (P.W.); (K.P.); (J.S.); (M.J.)
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (A.Ś.); (M.K.)
| | - Marcin Surmiak
- II Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawińska 8, 31-066 Krakow, Poland
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, 31-066 Krakow, Poland; (K.P.); (Z.M.); (A.S.)
| |
Collapse
|
2
|
Ben Hmad I, Gargouri A. Stable and effective eco-enzyme cocktails in powder and liquid form of Stachybotrys microspora used as detergent additives. Heliyon 2024; 10:e25610. [PMID: 38356555 PMCID: PMC10865333 DOI: 10.1016/j.heliyon.2024.e25610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Objective The present work aims to optimize fermentation parameters for the simultaneous production of eco-enzymes: proteases, amylases, and endoglucanases from the same fungus Stachybotrys microspora, and to evaluate their stability in free form and formulated in lye as detergent additives. Methods Initially, enzyme cocktail production was assayed in a medium comprising inexpensive waste biomass. Using the best substrate, we investigated the effect of its different concentrations and the NaCl concentration on the three enzymes co-production. Next, we studied the effect of several additives on the storage stability of the lyophilized enzyme cocktail (powder in liquid forms) free and incorporated in commercial laundry detergent. Finally, the washing efficiency analysis of the newly formulated enzyme cocktail was evaluated on dirty tissue pieces with different stains. Results The highest enzymatic cocktail production was achieved at 30 °C for 96 h after adding 0.1% NaCl and 1.5% wheat bran as waste biomass in the basal culture medium. The effect of adding maltodextrin, sucrose, or polyethylene glycol 4000 during freeze-drying showed that maltodextrin is the best additive to protect the activities of proteases, amylases, and cellulases of liquid and powder enzyme form. Additionally, the liquid formulation of these enzymes showed excellent stability and compatibility with 1% maltodextrin and 10% glycerol. Interestingly, we have developed a new formulation of an enzyme cocktail (liquid and powder) stable and highly compatible with detergents. Comparing the washing performance of different formulations containing our enzyme cocktail to commercial ones showed significantly better removal of different types of stains. Conclusions This research shows a cost-effective approach to simultaneously produce proteases, amylases, and endoglucanases from Stachybotrys microspora that could be considered a compatible detergent additive in the green detergent industry.
Collapse
Affiliation(s)
- Ines Ben Hmad
- Laboratory of Molecular Biotechnology of Eukaryotes, Centre of Biotechnology of Sfax (CBS) University of Sfax, B.P “1177” 3018, Sfax, Tunisia
| | - Ali Gargouri
- Laboratory of Molecular Biotechnology of Eukaryotes, Centre of Biotechnology of Sfax (CBS) University of Sfax, B.P “1177” 3018, Sfax, Tunisia
| |
Collapse
|
3
|
Arredondo-Nuñez A, Monteiro G, Flores-Fernández CN, Antenucci L, Permi P, Zavaleta AI. Characterization of a Type II L-Asparaginase from the Halotolerant Bacillus subtilis CH11. Life (Basel) 2023; 13:2145. [PMID: 38004285 PMCID: PMC10672034 DOI: 10.3390/life13112145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
L-asparaginases from bacterial sources have been used in antineoplastic treatments and the food industry. A type II L-asparaginase encoded by the N-truncated gene ansZP21 of halotolerant Bacillus subtilis CH11 isolated from Chilca salterns in Peru was expressed using a heterologous system in Escherichia coli BL21 (DE3)pLysS. The recombinant protein was purified using one-step nickel affinity chromatography and exhibited an activity of 234.38 U mg-1 and a maximum catalytic activity at pH 9.0 and 60 °C. The enzyme showed a homotetrameric form with an estimated molecular weight of 155 kDa through gel filtration chromatography. The enzyme half-life at 60 °C was 3 h 48 min, and L-asparaginase retained 50% of its initial activity for 24 h at 37 °C. The activity was considerably enhanced by KCl, CaCl2, MgCl2, mercaptoethanol, and DL-dithiothreitol (p-value < 0.01). Moreover, the Vmax and Km were 145.2 µmol mL-1 min-1 and 4.75 mM, respectively. These findings evidence a promising novel type II L-asparaginase for future industrial applications.
Collapse
Affiliation(s)
- Annsy Arredondo-Nuñez
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima 01, Peru;
| | - Gisele Monteiro
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Carol N. Flores-Fernández
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima 01, Peru;
| | - Lina Antenucci
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland; (L.A.); (P.P.)
| | - Perttu Permi
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland; (L.A.); (P.P.)
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland
| | - Amparo Iris Zavaleta
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima 01, Peru;
| |
Collapse
|
4
|
Diaz A, Ramakrishnan V. Effect of osmolytes on the EcoRI endonuclease: Insights into hydration and protein dynamics from molecular dynamics simulations. Comput Biol Chem 2023; 105:107883. [PMID: 37210944 DOI: 10.1016/j.compbiolchem.2023.107883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Osmolytes play an important role in cellular physiology by modulating the properties of proteins, including their molecular specificity. EcoRI is a model restriction enzyme whose specificity to DNA is altered in the presence of osmolytes. Here, we investigate the effect of two different osmolytes, glycerol and DMSO, on the dynamics and hydration of the EcoRI enzyme using molecular dynamics simulations. Our results show that the osmolytes, alter the essential dynamics of EcoRI. Particularly, we observe that the dynamics of the arm region of EcoRI which is involved in DNA binding is significantly altered. In addition, conformational free energy analyses reveals that the osmolytes bring about a change in the landscape similar to that of EcoRI bound to cognate DNA. We further observe that the hydration of the enzyme for each of the osmolyte is different, indicating that the mechanism of action of each of these osmolytes could be different. Further analyses of interfacial water dynamics using rotational autocorrelation function reveals that while the protein surface contributes to a slower tumbling motion of water, osmolytes, additionally contribute to the slowing of the angular motion of the water molecules. Entropy analysis also corroborates with this finding. We also find that the slowed rotational motion of interfacial waters in the presence of osmolytes contributes to a slowed relaxation of the hydrogen bonds between the interfacial waters and the functionally important residues in the protein. Taken together, our results show that osmolytes alter the dynamics of the protein by altering the dynamics of water. This altered dynamics, mediated by the changes in the water dynamics and hydrogen bonds with functionally important residues, may contribute to the altered specificity of EcoRI in the presence of osmolytes.
Collapse
Affiliation(s)
- Aathithya Diaz
- Computational Molecular Biophysics Laboratory, Bioinformatics Center, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India
| | - Vigneshwar Ramakrishnan
- Computational Molecular Biophysics Laboratory, Bioinformatics Center, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
5
|
Biasoto HP, Hebeda CB, Farsky SHP, Pessoa A, Costa-Silva TA, Monteiro G. Extracellular expression of Saccharomyces cerevisiae's L-asparaginase II in Pichia pastoris results in novel enzyme with better parameters. Prep Biochem Biotechnol 2022; 53:511-522. [PMID: 35981094 DOI: 10.1080/10826068.2022.2111582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
L-asparaginase (ASNase) is an efficient inhibitor of tumor development, used in chemotherapy sessions against acute lymphoblastic leukemia (ALL) tumor cells; its use results in 80% complete remission of the disease in treated patients. Saccharomyces cerevisiae's L-asparaginase II (ScASNaseII) has a high potential to substitute bacteria ASNase in patients that developed hypersensitivity, but the endogenous production of it results in hypermannosylated immunogenic enzyme. Here we describe the genetic process to acquire the ScASNaseII expressed in the extracellular medium. Our strategy involved a fusion of mature sequence of protein codified by ASP3 (amino acids 26-362) with the secretion signal sequence of Pichia pastoris acid phosphatase enzyme; in addition, this DNA construction was integrated in P. pastoris Glycoswitch® strain genome, which has the cellular machinery to express and secrete high quantity of enzymes with humanized glycosylation. Our data show that the DNA construction and strain employed can express extracellular asparaginase with specific activity of 218.2 IU mg-1. The resultant enzyme is 40% more stable than commercially available Escherichia coli's ASNase (EcASNaseII) when incubated with human serum. In addition, ScASNaseII presents 50% lower cross-reaction with anti-ASNase antibody produced against EcASNaseII when compared with ASNase from Dickeya chrysanthemi.
Collapse
Affiliation(s)
- Henrique P Biasoto
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Cristina B Hebeda
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Sandra H P Farsky
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Adalberto Pessoa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Tales A Costa-Silva
- Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Gisele Monteiro
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Darvishi F, Jahanafrooz Z, Mokhtarzadeh A. Microbial L-asparaginase as a promising enzyme for treatment of various cancers. Appl Microbiol Biotechnol 2022; 106:5335-5347. [DOI: 10.1007/s00253-022-12086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
|
7
|
Costa-Silva T, Carvalho A, Souza C, Freitas L, De Castro H, Oliveira W. Highly effective Candida rugosa lipase immobilization on renewable carriers: integrated drying and immobilization process to improve enzyme performance. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Rafeeq H, Hussain A, Tarar MHA, Afsheen N, Bilal M, Iqbal HMN. Expanding the bio-catalysis scope and applied perspectives of nanocarrier immobilized asparaginases. 3 Biotech 2021; 11:453. [PMID: 34616647 PMCID: PMC8486911 DOI: 10.1007/s13205-021-02999-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/18/2021] [Indexed: 02/08/2023] Open
Abstract
l-asparaginase is an essential enzyme in medicine and a well-known chemotherapeutic agent. This enzyme's importance is not limited to its use as an anti-cancer agent; it also has a wide variety of medicinal applications. Antimicrobial properties, prevention of infectious disorders, autoimmune diseases, and canine and feline cancer are among the applications. Apart from the healthcare industry, its importance has been identified in the food industry as a food manufacturing agent to lower acrylamide levels. When isolated from their natural habitats, they are especially susceptible to different denaturing conditions due to their protein composition. The use of an immobilization technique is one of the most common approaches suggested to address these limitations. Immobilization is a technique that involves fixing enzymes to or inside stable supports, resulting in a heterogeneous immobilized enzyme framework. Strong support structures usually stabilize the enzymes' configuration, and their functions are maintained as a result. In recent years, there has been a lot of curiosity and focus on the ability of immobilized enzymes. The nanomaterials with ideal properties can be used to immobilize enzymes to regulate key factors that determine the efficacy of bio-catalysis. With applications in biotechnology, immunosensing, biomedicine, and nanotechnology sectors have opened a realm of opportunities for enzyme immobilization.
Collapse
Affiliation(s)
- Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Asim Hussain
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | | | - Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 China
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849 Monterrey, Mexico
| |
Collapse
|
9
|
Abstract
Bioelectrocatalysis using redox enzymes appears as a sustainable way for biosensing, electricity production, or biosynthesis of fine products. Despite advances in the knowledge of parameters that drive the efficiency of enzymatic electrocatalysis, the weak stability of bioelectrodes prevents large scale development of bioelectrocatalysis. In this review, starting from the understanding of the parameters that drive protein instability, we will discuss the main strategies available to improve all enzyme stability, including use of chemicals, protein engineering and immobilization. Considering in a second step the additional requirements for use of redox enzymes, we will evaluate how far these general strategies can be applied to bioelectrocatalysis.
Collapse
|
10
|
Saeed H, Hemida A, Abdel-Fattah M, Eldoksh A, Shalaby M, Nematalla H, El-Nikhely N, Elkewedi M. Pseudomonas aeruginosa recombinant L-asparaginase: Large scale production, purification, and cytotoxicity on THP-1, MDA-MB-231, A549, Caco2 and HCT-116 cell lines. Protein Expr Purif 2021; 181:105820. [PMID: 33440252 DOI: 10.1016/j.pep.2021.105820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/02/2020] [Accepted: 01/03/2021] [Indexed: 11/29/2022]
Abstract
In previous studies Pseudomonas aeruginosal-ASNase complete coding sequence gene, 984 bp (GenBank accession number KU161101.2) was isolated by PCR, cloned into pET28a(+) vector, expressed in E. coli DE3(BL21) pLysS, purified to apparent homogeneity and biochemically characterized. In the present work we highlight large scale production, affinity purification of the recombinant enzyme, effect of osmolytes on the stability of the l-ASNase and cytotoxicity on different cancer cell lines. Successful overexpression was achieved in E. coli as a 6-His-Tag fusion protein after 18 h of induction with lactose at a concentration of 2 g/L in fermentation medium and at 37 °C. The recombinant enzyme was purified to homogeneity using Ni2+ chelated Fast Flow Sepharose resin with 19758.8 specific activity and 10.28 purification fold. With respect to the effect of osmolytes on the stability of the purified enzyme, the majority of the tested osmolytes namely 5% maltose, 5% mannitol, 30% glycerol and 5% BSA were found to increase the stability of the recombinant l-ASNase as compared to the free enzyme. Triple negative breast cancer cell line, MDA-MB-231 treated with recombinant l-ASNase showed significant morphological changes and the IC50 of the purified enzyme was found to be 3.1 IU. Human leukemia cell line, THP-1 treated with l-ASNase showed apoptotic bodies and morphological changes with IC50 of the purified enzyme 1.75 IU. Moreover, the purified recombinant l-ASNase was found to induced cytotoxic effects on colorectal adenocarcinoma cell line, Caco-2 with IC50 of 68.28 IU. Results of apoptosis assay on THP-1 cells revealed that the purified l-ASNase induced early and late apoptosis at 14.16% and 7.56 respectively as compared to the control untreated cells.
Collapse
Affiliation(s)
- Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Asmaa Hemida
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Manal Abdel-Fattah
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Ahmad Eldoksh
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Manal Shalaby
- Department of Medical Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technology Applications, New Borg Al-Arab City, Alexandria, Egypt
| | - Hisham Nematalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhur University, Damnhour, Egypt
| | - Nefertiti El-Nikhely
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohamed Elkewedi
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
11
|
Improvement of PersiXyn2 activity and stability in presence of Trehalose and proline as a natural osmolyte. Int J Biol Macromol 2020; 163:348-357. [DOI: 10.1016/j.ijbiomac.2020.06.288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/04/2023]
|
12
|
|
13
|
Saeed H, Hemida A, El-Nikhely N, Abdel-Fattah M, Shalaby M, Hussein A, Eldoksh A, Ataya F, Aly N, Labrou N, Nematalla H. Highly efficient Pyrococcus furiosus recombinant L-asparaginase with no glutaminase activity: Expression, purification, functional characterization, and cytotoxicity on THP-1, A549 and Caco-2 cell lines. Int J Biol Macromol 2020; 156:812-828. [DOI: 10.1016/j.ijbiomac.2020.04.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 02/06/2023]
|
14
|
Mirzaeinia S, Pazhang M, Imani M, Chaparzadeh N, Amani-Ghadim AR. Improving the stability of uricase from Aspergillus flavus by osmolytes: Use of response surface methodology for optimization of the enzyme stability. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Lima GM, Effer B, Biasoto HP, Feijoli V, Pessoa A, Palmisano G, Monteiro G. Glycosylation of L-asparaginase from E. coli through yeast expression and site-directed mutagenesis. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|