1
|
Jiang C, Zhao G, Wang H, Zheng W, Zhang R, Wang L, Zheng Z. Comparative genomics analysis and transposon mutagenesis provides new insights into high menaquinone-7 biosynthetic potential of Bacillus subtilis natto. Gene 2024; 907:148264. [PMID: 38346457 DOI: 10.1016/j.gene.2024.148264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
This research combined Whole-Genome sequencing, intraspecific comparative genomics and transposon mutagenesis to investigate the menaquinone-7 (MK-7) synthesis potential in Bacillus subtilis natto. First, Whole-Genome sequencing showed that Bacillus subtilis natto BN-P15-11-1 contains one single circular chromosome in size of 3,982,436 bp with a GC content of 43.85 %, harboring 4,053 predicted coding genes. Next, the comparative genomics analysis among strain BN-P15-11-1 with model Bacillus subtilis 168 and four typical Bacillus subtilis natto strains proves that the closer evolutionary relationship Bacillus subtilis natto BN-P15-11-1 and Bacillus subtilis 168 both exhibit strong biosynthetic potential. To further dig for MK-7 biosynthesis latent capacity of BN-P15-11-1, we constructed a mutant library using transposons and a high throughput screening method using microplates. We obtained a YqgQ deficient high MK-7 yield strain F4 with a yield 3.02 times that of the parent strain. Experiments also showed that the high yield mutants had defects in different transcription and translation regulatory factor genes, indicating that regulatory factor defects may affect the biosynthesis and accumulation of MK-7 by altering the overall metabolic level. The findings of this study will provide more novel insights on the precise identification and rational utilization of the Bacillus subtilis subspecies for biosynthesis latent capacity.
Collapse
Affiliation(s)
- Chunxu Jiang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China; University of Science and Technology of China, Hefei, Anhui, PR China
| | - Genhai Zhao
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Han Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Wenqian Zheng
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China; University of Science and Technology of China, Hefei, Anhui, PR China
| | - Rui Zhang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Li Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China.
| | - Zhiming Zheng
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China.
| |
Collapse
|
2
|
Preparation of Cellulose-Based Flocculant and Its Application in the Enrichment of Vitamin K 2 in Fermentation Supernatant. Polymers (Basel) 2022; 14:polym14122410. [PMID: 35745984 PMCID: PMC9231056 DOI: 10.3390/polym14122410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023] Open
Abstract
Nutritional food supplements and pharmaceutical products produced with vitamin K2 as raw materials a very promising market in the global scope. The main production method of vitamin K2 is microbial fermentation, but approximately 50% of vitamin K2 synthesized by the main production strain Bacillus subtilis natto exists in extracellular form, which is not easy to separate and extract. In order to solve this problem, in this study, we synthesized a novel cellulose flocculant, MCC-g-LMA, by grafting reaction using microcrystalline cellulose (MCC) and lauryl methacrylate (LMA) as monomers, and ammonium persulfate as an initiator to flocculate VK2 from the fermentation supernatant. The flocculant was characterized by Fourier transform infrared spectroscopy (FTIR), elemental analysis, and scanning electron microscopy (SEM), and the grafting reaction was successful. When the flocculant dosage was 48.0 mg/L and pH was 5.0, the flocculation rate of the MCC-g-LMA on the fermentation supernatant reached 85.3%, and the enrichment rate of VK2 reached 90.0%. Furthermore, we explored the flocculation mechanism of VK2 by the MCC-g-LMA and speculated that the flocculation mechanism mainly included adsorption bridging, hydrophobic association and net trapping and sweep effect. In this study, the extraction method for trace high-value biological products in the fermentation supernatant was improved, which provided a method and theoretical basis for the efficient separation and purification of VK2 and other terpenoids.
Collapse
|
3
|
Ding X, Zheng Z, Zhao G, Wang L, Wang H, Yang Q, Zhang M, Li L, Wang P. Bottom-up synthetic biology approach for improving the efficiency of menaquinone-7 synthesis in Bacillus subtilis. Microb Cell Fact 2022; 21:101. [PMID: 35643569 PMCID: PMC9148487 DOI: 10.1186/s12934-022-01823-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Menaquinone-7 (MK-7), which is associated with complex and tightly regulated pathways and redox imbalances, is produced at low titres in Bacillus subtilis. Synthetic biology provides a rational engineering principle for the transcriptional optimisation of key enzymes and the artificial creation of cofactor regeneration systems without regulatory interference. This holds great promise for alleviating pathway bottlenecks and improving the efficiency of carbon and energy utilisation.
Results
We used a bottom-up synthetic biology approach for the synthetic redesign of central carbon and to improve the adaptability between material and energy metabolism in MK-7 synthesis pathways. First, the rate-limiting enzymes, 1-deoxyxylulose-5-phosphate synthase (DXS), isopentenyl-diphosphate delta-isomerase (Fni), 1-deoxyxylulose-5-phosphate reductase (DXR), isochorismate synthase (MenF), and 3-deoxy-7-phosphoheptulonate synthase (AroA) in the MK-7 pathway were sequentially overexpressed. Promoter engineering and fusion tags were used to overexpress the key enzyme MenA, and the titre of MK-7 was 39.01 mg/L. Finally, after stoichiometric calculation and optimisation of the cofactor regeneration pathway, we constructed two NADPH regeneration systems, enhanced the endogenous cofactor regeneration pathway, and introduced a heterologous NADH kinase (Pos5P) to increase the availability of NADPH for MK-7 biosynthesis. The strain expressing pos5P was more efficient in converting NADH to NADPH and had excellent MK-7 synthesis ability. Following three Design-Build-Test-Learn cycles, the titre of MK-7 after flask fermentation reached 53.07 mg/L, which was 4.52 times that of B. subtilis 168. Additionally, the artificially constructed cofactor regeneration system reduced the amount of NADH-dependent by-product lactate in the fermentation broth by 9.15%. This resulted in decreased energy loss and improved carbon conversion.
Conclusions
In summary, a "high-efficiency, low-carbon, cofactor-recycling" MK-7 synthetic strain was constructed, and the strategy used in this study can be generally applied for constructing high-efficiency synthesis platforms for other terpenoids, laying the foundation for the large-scale production of high-value MK-7 as well as terpenoids.
Collapse
|
4
|
Lee SY, Hu X, Stuckey DC. Optimised “green solvent” extraction of long-chain menaquinones (Vitamin K2) from wet Lactococcus lactis biomass. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Liao C, Ayansola H, Ma Y, Ito K, Guo Y, Zhang B. Advances in Enhanced Menaquinone-7 Production From Bacillus subtilis. Front Bioeng Biotechnol 2021; 9:695526. [PMID: 34354987 PMCID: PMC8330505 DOI: 10.3389/fbioe.2021.695526] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/01/2021] [Indexed: 12/02/2022] Open
Abstract
The production of nutraceutical compounds through biosynthetic approaches has received considerable attention in recent years. For example, Menaquinone-7 (MK-7), a sub-type of Vitamin K2, biosynthesized from Bacillus subtilis (B. subtilis), proved to be more efficiently produced than the conventional chemical synthesis techniques. This is possible due to the development of B. subtilis as a chassis cell during the biosynthesis stages. Hence, it is imperative to provide insights on the B. subtilis membrane permeability modifications, biofilm reactors, and fermentation optimization as advanced techniques relevant to MK-7 production. Although the traditional gene-editing method of homologous recombination improves the biosynthetic pathway, CRISPR-Cas9 could potentially resolve the drawbacks of traditional genome editing techniques. For these reasons, future studies should explore the applications of CRISPRi (CRISPR interference) and CRISPRa (CRISPR activation) system gene-editing tools in the MK-7 anabolism pathway.
Collapse
Affiliation(s)
- Chaoyong Liao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hammed Ayansola
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanbo Ma
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Koichi Ito
- Department of Food and Physiological Models, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, Japan
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
A rapid and efficient method for the extraction and identification of menaquinones from Actinomycetes in wet biomass. BMC Microbiol 2021; 21:175. [PMID: 34103006 PMCID: PMC8188722 DOI: 10.1186/s12866-021-02240-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/23/2021] [Indexed: 11/30/2022] Open
Abstract
Background Menaquinones are constituents of prokaryote cell membranes where they play important functions during electron transport. Menaquinone profiles are strongly recommended for species classification when proposing a new Actinomycetes taxon. Presently, the most widely used methods to determine menaquinones are based on freeze-dried cells. Taxonomic research in our lab has revealed that menaquinone concentrations are low for some species of the genus Microbacterium, leading to difficulties in identifying menaquinones. Results Menaquinones extracted using the novel lysozyme-chloroform-methanol (LCM) method were comparable in quality to those obtained using the Collins method, the most widely used method. All tested strains extracted via the LCM method showed higher concentrations of menaquinones than those extracted via the Collins method. For some Microbacterium strains, the LCM method exhibited higher sensitivity than the Collins method, and more trace menaquinones were detected with the LCM method than the Collins method. In addition, LCM method is faster than the Collins method because it uses wet cells. Conclusion The LCM method is a simple, rapid and efficient technique for the extraction and identification of menaquinones from Actinomycetes. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02240-z.
Collapse
|
7
|
Tang B, Wu L, Wang J, Sun W, Zhao Y, Liu F. Separation of Heat-Stable Antifungal Factor From Lysobacter enzymogenes Fermentation Broth via Photodegradation and Macroporous Resin Adsorption. Front Microbiol 2021; 12:663065. [PMID: 34054766 PMCID: PMC8155363 DOI: 10.3389/fmicb.2021.663065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Heat-stable antifungal factor (HSAF) is produced by the fermentation of Lysobacter enzymogenes, which is known for its broad-spectrum antifungal activity and novel mode of action. However, studies on the separation of HSAF have rarely been reported. Herein, alteramide B (the main byproduct) was removed firstly from the fermentation broth by photodegradation to improve the purity of HSAF. Then, the separation of HSAF via adsorption by macroporous adsorption resins (MARs) was evaluated and NKA resin showed highest static adsorption and desorption performances. After optimizing the static and dynamic adsorption characteristics, the content of HSAF in the purified product increased from 8.67 ± 0.32% (ethyl acetate extraction) to 31.07 ± 1.12% by 3.58-fold. These results suggest that the developed strategy via photodegradation and macroporous resin adsorption is an effective process for the separation of HSAF, and it is also a promising method for the large-scale preparation of HSAF for agricultural applications.
Collapse
Affiliation(s)
- Bao Tang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Chemistry and Chemical Engineering, Jiangsu University, Zhengjiang, China
| | - Lingtian Wu
- College of Biological and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Jinzi Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Weibo Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yancun Zhao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fengquan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Life Sciences, Jiangsu University, Zhengjiang, China
| |
Collapse
|
8
|
Tang H, Zhu Z, Zheng Z, Wang H, Li C, Wang L, Zhao G, Wang P. A study of hydrophobins-modified menaquinone-7 on osteoblastic cells differentiation. Mol Cell Biochem 2021; 476:1939-1948. [PMID: 33502649 DOI: 10.1007/s11010-021-04062-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
Menaquinone-7 is involved in bone metabolism and can be used to prevent and treat osteoporosis. However, as a fat-soluble vitamin, menaquinone-7 has poor water solubility. As a surfactant, hydrophobins can change the affinity/hydrophobicity of the covered interface. In this study, menaquinone-7 was modified by hydrophobins, and the different addition ratios were explored. Moreover, Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and water contact angle (WCA) measurements indicated that hydrophobins effectively bind to menaquinone-7 and greatly increase the hydrophilicity of the surface of menaquinone-7. Studies on the metabolism of MC3T3-E1 cells showed that compared with native menaquinone-7, HGFI-modified menaquinone-7 can significantly promote osteoblast differentiation but inhibit osteoclast differentiation. Besides, the Mito-Tracker Green experiments show that HGFI-modified menaquinone-7 can significantly promote the activity of mitochondria in cells. These findings indicate that hydrophobins can be used as an effective biomaterial to modify menaquinone-7, promote the formation of osteoblasts, and better to bone balance.
Collapse
Affiliation(s)
- Hengfang Tang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.,Science Island Branch of Graduate, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Zhu Zhu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.,Science Island Branch of Graduate, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Zhiming Zheng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China. .,Hefei Institute of Technology Innovation Engineering, CAS, Hefei, People's Republic of China.
| | - Han Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Chu Li
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Li Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Genhai Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Peng Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China. .,Hefei Institute of Technology Innovation Engineering, CAS, Hefei, People's Republic of China.
| |
Collapse
|
9
|
Tang B, Chen X, Laborda P, Liu F. Efficient direct preparation of antifungal Alteramide B from Lysobacter enzymogenes fermentation broth by macroporous resin adsorption. BIORESOURCE TECHNOLOGY 2021; 319:124220. [PMID: 33039845 DOI: 10.1016/j.biortech.2020.124220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Alteramide B (ATB) is an antifungal metabolite produced by Lysobacter enzymogenes. However, its separation method has not been explored. This study attempted to directly adsorb ATB from fermentation broth using macroporous adsorption resins (MARs) NKA resin exhibited better adsorption as well as desorption capacities. The static and dynamic adsorption characteristics were assessed to determine the following optimal separation conditions: initial fermentation broth with a pH of 12.0, 2 BV/h flow rate, 8 BV loading volume, and 6 BV 80% aqueous ethanol for elution. After a single treatment, ATB content in the final product was higher by 4.51-fold (i.e, from 12.72 ± 1.21% to 57.35 ± 3.46%), resulting in a recovery yield of 86.20 ± 4.47%. In addition, NKA resin showed superior reusability within eight cycles of adsorption/desorption. The developed method is thus a simple, efficient, and economical process for ATB separation.
Collapse
Affiliation(s)
- Bao Tang
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xian Chen
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
10
|
Su Y, Liu C, Fang H, Zhang D. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb Cell Fact 2020; 19:173. [PMID: 32883293 PMCID: PMC7650271 DOI: 10.1186/s12934-020-01436-8] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
Due to its clear inherited backgrounds as well as simple and diverse genetic manipulation systems, Bacillus subtilis is the key Gram-positive model bacterium for studies on physiology and metabolism. Furthermore, due to its highly efficient protein secretion system and adaptable metabolism, it has been widely used as a cell factory for microbial production of chemicals, enzymes, and antimicrobial materials for industry, agriculture, and medicine. In this mini-review, we first summarize the basic genetic manipulation tools and expression systems for this bacterium, including traditional methods and novel engineering systems. Secondly, we briefly introduce its applications in the production of chemicals and enzymes, and summarize its advantages, mainly focusing on some noteworthy products and recent progress in the engineering of B. subtilis. Finally, this review also covers applications such as microbial additives and antimicrobials, as well as biofilm systems and spore formation. We hope to provide an overview for novice researchers in this area, offering them a better understanding of B. subtilis and its applications.
Collapse
Affiliation(s)
- Yuan Su
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Chuan Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Hu LX, Feng JJ, Wu J, Li W, Gningue SM, Yang ZM, Wang Z, Liu Y, Xue ZL. Identification of six important amino acid residues of MenA from Bacillus subtilis natto for enzyme activity and formation of menaquinone. Enzyme Microb Technol 2020; 138:109583. [PMID: 32527527 DOI: 10.1016/j.enzmictec.2020.109583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 11/26/2022]
Abstract
The enzyme 1, 4-dihydroxy-2-naphthoic acid (DHNA) prenyltransferase (MenA) is a critical player in determining the efficiency of the menaquinone (MK) synthesis pathway and is an attractive target for the development of novel chemotherapeutics against pathogenic Gram-positive bacteria. However, there has been no report on structural properties or active region of MenA. To solve this challenge, we predicted the three-dimensiona structure and critical amino acid sites of MenA by bioinformatics analysis. Six amino acid sites were chosen by alligning the amino acid sequence of MenA from Bacillus subtilis natto with 4-hydroxybenzoate octaprenyl transferase (UbiA) from Escherichia coli, Aeropyrum pernix and Archaeoglobus fulgidus. Among them, four Asp sites located in two Asp-rich motifs (D78XXXXXD84 and D208XXXD212) were found to be indispensable amino acid residues in maintaining MenA activity. Site-directed mutagenesis of two other sites (Q67th, N74th) positively affected the catalytic activity of MenA and the MK titer. Q67R resulted in more than a 5-fold increase in specific 2-demethylmenaquinone (DMK) content (YP1/x) compared to wild-type, and the hydrophobic interaction between Cys63 and Arg67 could be the main reason according to the three-dimensional structure analysis. Moreover, a dramatic increase in specific MK content (YP2/x) was realized by co-expressing menG in EcMenA (Q67R). The results obtained could be useful not only in developing novel chemotherapeutics to combat potentially pathogenic Gram-positive bacteria, but also in regulating and optimizating E. coli mutant cultures for the efficient production of MK metabolites.
Collapse
Affiliation(s)
- Liu-Xiu Hu
- College of Biochemical Engineering, Anhui Polytechnic University, 241000, Wuhu, China; Wuhu Zhanghengchun Medicine CO., LTD, 241000, Wuhu, China
| | - Jing-Jing Feng
- College of Biochemical Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Jing Wu
- College of Biochemical Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Wei Li
- College of Biochemical Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Sokhna Mbacke Gningue
- College of Biochemical Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Zi-Ming Yang
- College of Biochemical Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Zhou Wang
- College of Biochemical Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Yan Liu
- College of Biochemical Engineering, Anhui Polytechnic University, 241000, Wuhu, China.
| | - Zheng-Lian Xue
- College of Biochemical Engineering, Anhui Polytechnic University, 241000, Wuhu, China.
| |
Collapse
|
12
|
Liu Y, van Bennekom EO, Zhang Y, Abee T, Smid EJ. Long-chain vitamin K2 production in Lactococcus lactis is influenced by temperature, carbon source, aeration and mode of energy metabolism. Microb Cell Fact 2019; 18:129. [PMID: 31387603 PMCID: PMC6683496 DOI: 10.1186/s12934-019-1179-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Background Vitamin K2 (menaquinone, MK-n) is a lipid-soluble vitamin that functions as a carboxylase co-factor for maturation of proteins involved in many vital physiological processes in humans. Notably, long-chain vitamin K2 is produced by bacteria, including some species and strains belonging to the group of lactic acid bacteria (LAB) that play important roles in food fermentation processes. This study was performed to gain insights into the natural long-chain vitamin K2 production capacity of LAB and the factors influencing vitamin K2 production during cultivation, providing a basis for biotechnological production of vitamin K2 and in situ fortification of this vitamin in food products. Results We observed that six selected Lactococcus lactis strains produced MK-5 to MK-10, with MK-8 and MK-9 as the major MK variant. Significant diversities between strains were observed in terms of specific concentrations and titres of vitamin K2. L. lactis ssp. cremoris MG1363 was selected for more detailed studies of the impact of selected carbon sources tested under different growth conditions [i.e. static fermentation (oxygen absent, heme absent); aerobic fermentation (oxygen present, heme absent) and aerobic respiration (oxygen present, heme present)] on vitamin K2 production in M17 media. Aerobic fermentation with fructose as a carbon source resulted in the highest specific concentration of vitamin K2: 3.7-fold increase compared to static fermentation with glucose, whereas aerobic respiration with trehalose resulted in the highest titre: 5.2-fold increase compared to static fermentation with glucose. When the same strain was applied to quark fermentation, we consistently observed that altered carbon source (fructose) and aerobic cultivation of the pre-culture resulted in efficient vitamin K2 fortification in the quark product. Conclusions With this study we demonstrate that certain LAB strains can be employed for efficient production of long-chain vitamin K2. Strain selection and optimisation of growth conditions offer a viable strategy towards natural vitamin K2 enrichment of fermented foods, and to improved biotechnological vitamin K2 production processes. Electronic supplementary material The online version of this article (10.1186/s12934-019-1179-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yue Liu
- Food Microbiology, Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, The Netherlands
| | - Eric O van Bennekom
- BU Veterinary Drugs, RIKILT, Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Yu Zhang
- Food Microbiology, Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, The Netherlands.,, Shanghai, People's Republic of China
| | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, The Netherlands
| | - Eddy J Smid
- Food Microbiology, Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
13
|
Improvement of menaquinone-7 production by Bacillus subtilis natto in a novel residue-free medium by increasing the redox potential. Appl Microbiol Biotechnol 2019; 103:7519-7535. [PMID: 31378837 DOI: 10.1007/s00253-019-10044-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/13/2019] [Accepted: 07/23/2019] [Indexed: 01/12/2023]
Abstract
Bacillus subtilis natto is a GRAS bacterium. Nattokinase, with fibrinolytic and antithrombotic activities, is one of the major products of this organism. It is being gradually recognized that B. subtilis natto can also be used as a biosynthetic strain for vitamin K2, which has phenomenal benefits, such as effects in the prevention of cardiovascular diseases and osteoporosis along with antitumor effects. Knocking out of the aprN gene by homologous recombination could improve the redox potential and slightly increase the concentration of MK-7. By detecting the change in redox potential during the growth of B. subtilis natto, a good oxygen supply and state of the cell membrane were found to be beneficial to vitamin K2 synthesis. A two-step RSM was used to optimize the operation parameters and substrate concentration in the new residue-free fermentation culture. The optimal conditions for the residue-free medium and control were determined. The optimum concentrations of soybean flour, corn flour, and peptone were 78.9, 72.4, and 24.8 g/L, respectively. The optimum rotational speed and volume of the culture medium using a shaking flask were 117 rpm and 10%, respectively. The state and composition of the cell membranes were more stable when engineered bacteria were cultured in this residue-free fermentation medium. Finally, the concentration of MK-7 increased by 37% to 18.9 mg/L, and the fermentation time was shortened by 24 h.
Collapse
|
14
|
Mahdinia E, Demirci A, Berenjian A. Biofilm reactors as a promising method for vitamin K (menaquinone-7) production. Appl Microbiol Biotechnol 2019; 103:5583-5592. [PMID: 31152205 DOI: 10.1007/s00253-019-09913-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022]
Abstract
Menaquinone-7 (MK-7) is the most potent subtype of vitamin K with extraordinarily high half-life in the circulatory system. Therefore, MK-7 plays a critical role in promoting human wellbeing today. Studies on MK-7 every year show more and more magnificent benefits of it in preventing cardiovascular diseases and osteoporosis to battling cancer cells, Alzheimer's and Parkinson's diseases. Thus, it needs to be supplemented to daily diet for accumulative and long-term benefits. Chemical synthesis of MK-7 produces a significant cis-isomer form of it, which has no biological activity. Fortunately, due to its key role in electron transfer in bacteria, trans-MK-7 is biosynthesized by especially Gram-positive strains mainly Bacillus genus. Concordantly, MK-7 could be produced via solid or liquid state fermentation strategies. In either regime, when static fermentation is applied in the absence of agitation and aeration, operational issues arise such as heat and mass transfer inefficiencies. Thus, scaling up the process becomes a challenge. On the other hand, studies have indicated that biofilm and pellicle formation that occur in static fermentations are key characteristics for extracellular MK-7 secretion. Therefore, this review covers the most recent discoveries of the therapeutic properties of MK-7 and optimization attempts at increasing its biosynthesis in different media compositions and effective growth parameters as well as the cutting-edge use of biofilm reactors where B. subtilis cells have the infrastructures to form mature biofilm formations on plastic composite supports. Biofilm reactors therefore can provide robust extracellular MK-7 secretion while simultaneously enduring high agitation and aeration rates, which then address the scale-up and operational issues associated with static fermentation strategies.
Collapse
Affiliation(s)
- Ehsan Mahdinia
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, State College, PA, USA
| | - Ali Demirci
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, State College, PA, USA. .,The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Aydin Berenjian
- Faculty of Science and Engineering, The University of Waikato, Hamilton, 3240, New Zealand
| |
Collapse
|