1
|
Vees CA, Herwig C, Pflügl S. Mixotrophic co-utilization of glucose and carbon monoxide boosts ethanol and butanol productivity of continuous Clostridium carboxidivorans cultures. BIORESOURCE TECHNOLOGY 2022; 353:127138. [PMID: 35405210 DOI: 10.1016/j.biortech.2022.127138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
In this study, continuous cultivations of C.carboxidivorans to study heterotrophic and mixotrophic conversion of glucose and H2, CO2, and CO were established. Glucose fermentations at pH 6 showed a high ratio of alcohol-to-acid production of 2.79 mol mol-1. While H2 or CO2 were not utilized together with glucose, CO feeding drastically increased the combined alcohol titer to 9.1 g l-1. Specifically, CO enhanced acetate (1.9-fold) and ethanol (1.7-fold) production and triggered chain elongation to butanol (1.5-fold) production but did not change the alcohol:acid ratio. Flux balance analysis showed that CO served both as a carbon and energy source, and CO mixotrophy displayed a carbon and energy efficiency of 45 and 77%, respectively. This study expands the knowledge on physiology and metabolism of C.carboxidivorans and can serve as the starting point for rational engineering and process intensification to establish efficient production of alcohols and acids from carbon waste.
Collapse
Affiliation(s)
- Charlotte Anne Vees
- Technische Universität Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
| | - Christoph Herwig
- Technische Universität Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria; Competence Center CHASE GmbH, Altenbergerstraße 69, 4040 Linz, Austria.
| | - Stefan Pflügl
- Technische Universität Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
| |
Collapse
|
2
|
Kim J, Jung I, Cheong YE, Kim KH. Evaluation and optimization of quantitative analysis of cofactors from yeast by liquid chromatography/mass spectrometry. Anal Chim Acta 2022; 1211:339890. [DOI: 10.1016/j.aca.2022.339890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/17/2022] [Accepted: 04/28/2022] [Indexed: 11/01/2022]
|
3
|
Heffernan JK, Mahamkali V, Valgepea K, Marcellin E, Nielsen LK. Analytical tools for unravelling the metabolism of gas-fermenting Clostridia. Curr Opin Biotechnol 2022; 75:102700. [PMID: 35240422 DOI: 10.1016/j.copbio.2022.102700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/24/2022] [Accepted: 02/05/2022] [Indexed: 12/23/2022]
Abstract
Acetogens harness the Wood-Ljungdahl Pathway, a unique metabolic pathway for C1 capture close to the thermodynamic limit. Gas fermentation using acetogens is already used for CO-to-ethanol conversion at industrial-scale and has the potential to valorise a range of C1 and waste substrates to short-chain and medium-chain carboxylic acids and alcohols. Advances in analytical quantification and metabolic modelling have helped guide industrial gas fermentation designs. Further advances in the measurements of difficult to measure metabolites are required to improve kinetic modelling and understand the regulation of acetogen metabolism. This will help guide future synthetic biology designs needed to realise the full potential of gas fermentation in stimulating a circular bioeconomy.
Collapse
Affiliation(s)
- James K Heffernan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Vishnu Mahamkali
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kaspar Valgepea
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Node of Metabolomics Australia, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Node of Metabolomics Australia, The University of Queensland, Brisbane, QLD 4072, Australia; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| |
Collapse
|
4
|
Fan YX, Zhang JZ, Zhang Q, Ma XQ, Liu ZY, Lu M, Qiao K, Li FL. Biofuel and chemical production from carbon one industry flux gas by acetogenic bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2021; 117:1-34. [PMID: 34742365 DOI: 10.1016/bs.aambs.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Carbon one industry flux gas generated from fossil fuels, various industrial and domestic waste, as well as lignocellulosic biomass provides an innovative raw material to lead the sustainable development. Through the chemical and biological processing, the gas mixture composed of CO, CO2, and H2, also termed as syngas, is converted to biofuels and high-value chemicals. Here, the syngas fermentation process is elaborated to provide an overview. Sources of syngas are summarized and the influences of impurities on biological fermentation are exhibited. Acetogens and carboxydotrophs are the two main clusters of syngas utilizing microorganisms, their essential characters are presented, especially the energy metabolic scheme with CO, CO2, and H2. Synthetic biology techniques and microcompartment regulation are further discussed and proposed to create a high-efficiency cell factory. Moreover, the influencing factors in fermentation and products in carboxylic acids, alcohols, and others such like polyhydroxyalkanoate and poly-3-hydroxybutyrate are addressed. Biological fermentation from carbon one industry flux gas is a promising alternative, the latest scientific advances are expatiated hoping to inspire more creative transformation.
Collapse
Affiliation(s)
- Yi-Xuan Fan
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Zhe Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Quan Zhang
- Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, Dalian, China
| | - Xiao-Qing Ma
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China
| | - Zi-Yong Liu
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China
| | - Ming Lu
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China
| | - Kai Qiao
- Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, Dalian, China.
| | - Fu-Li Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Dalian National Laboratory for Clean Energy, Dalian, China.
| |
Collapse
|
5
|
Han YF, Xie BT, Wu GX, Guo YQ, Li DM, Huang ZY. Combination of Trace Metal to Improve Solventogenesis of Clostridium carboxidivorans P7 in Syngas Fermentation. Front Microbiol 2020; 11:577266. [PMID: 33101253 PMCID: PMC7546793 DOI: 10.3389/fmicb.2020.577266] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
Higher alcohols such as butanol (C4 alcohol) and hexanol (C6 alcohol) are superior biofuels compared to ethanol. Clostridium carboxidivorans P7 is a typical acetogen capable of producing C4 and C6 alcohols natively. In this study, the composition of trace metals in culture medium was adjusted, and the effects of these adjustments on artificial syngas fermentation by C. carboxidivorans P7 were investigated. Nickel and ferrous ions were essential for growth and metabolite synthesis during syngas fermentation by P7. However, a decreased dose of molybdate improved alcohol fermentation performance by stimulating carbon fixation and solventogenesis. In response to the modified trace metal composition, cells grew to a maximum OD600 nm of 1.6 and accumulated ethanol and butanol to maximum concentrations of 2.0 and 1.0 g/L, respectively, in serum bottles. These yields were ten-fold higher than the yields generated using the original composition of trace metals. Furthermore, 0.5 g/L of hexanol was detected at the end of fermentation. The results from gene expression experiments examining genes related to carbon fixation and organic acid and solvent synthesis pathways revealed a dramatic up-regulation of the Wood-Ljungdahl pathway (WLP) gene cluster, the bcs gene cluster, and a putative CoA transferase and butanol dehydrogenase, thereby indicating that both de novo synthesis and acid re-assimilation contributed to the significantly elevated accumulation of higher alcohols. The bdh35 gene was speculated to be the key target for butanol synthesis during solventogenesis.
Collapse
Affiliation(s)
- Yi-Fan Han
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Bin-Tao Xie
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Guang-Xun Wu
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Ya-Qiong Guo
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - De-Mao Li
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Zhi-Yong Huang
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| |
Collapse
|
6
|
Morales GM, Ali SS, Si H, Zhang W, Zhang R, Hosseini K, Sun J, Zhu D. Acidic Versus Alkaline Bacterial Degradation of Lignin Through Engineered Strain E. coli BL21(Lacc): Exploring the Differences in Chemical Structure, Morphology, and Degradation Products. Front Bioeng Biotechnol 2020; 8:671. [PMID: 32714907 PMCID: PMC7344149 DOI: 10.3389/fbioe.2020.00671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/29/2020] [Indexed: 11/30/2022] Open
Abstract
There is increasing interest in research on lignin biodegradation compounds as potential building blocks in applications related to renewable products. More attention is necessary to evaluate the effects of the initial pH conditions during the bacterial degradation of lignin. In this study we performed experiments on lignin biodegradation under acidic and mild alkaline conditions. For acidic biodegradation, lignin was chemically pretreated with hydrogen peroxide. Alkaline biodegradation was achieved by developing the bacterial growth on Luria and Bertani medium with alkali lignin as the sole carbon source. The mutant strain Escherichia coli BL21(Lacc) was used to carry out lignin biodegradation over 10 days of incubation. Results demonstrated that under acidic conditions there was a predominance of aliphatic compounds of the C3–C4 type. Alkaline biodegradation was produced in the context of oxidative stress, with a greater abundance of aryl compounds. The final pH values of acidic and alkaline biodegradation of lignin were 2.53 and 7.90, respectively. The results of the gas chromatography mass spectrometry analysis detected compounds such as crotonic acid, lactic acid and 3-hydroxybutanoic acid for acidic conditions, with potential applications for adhesives and polymer precursors. Under alkaline conditions, detected compounds included 2-phenylethanol and dehydroabietic acid, with potential applications for perfumery and anti tumor/anti-inflammatory medications. Size-exclusion chromatography analysis showed that the weight-average molecular weight of the alkaline biodegraded lignin increased by 6.75-fold compared to the acidic method, resulting in a repolymerization of its molecular structure. Lignin repolymerization coincided with an increase in the relative abundance of dehydroabietic acid and isovanillyl alcohol, from 2.70 and 3.96% on day zero to 13.43 and 10.26% on 10th day. The results of the Fourier-transformed Infrared spectroscopy detected the presence of C = O bond and OH functional group associated with carboxylic acids in the acidic method. In the alkaline method there was a greater preponderance of signals related to skeletal aromatic structures, the amine functional group and the C – O – bond. Lignin biodegradation products from E. coli BL21(Lacc), under different initial pH conditions, demonstrated a promising potential to enlarge the spectrum of renewable products for biorefinery activities.
Collapse
Affiliation(s)
- Gabriel Murillo Morales
- Biofuels Institute, School of Environmental Science and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Sameh S Ali
- Biofuels Institute, School of Environmental Science and Safety Engineering, Jiangsu University, Zhenjiang, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Haibing Si
- Biofuels Institute, School of Environmental Science and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Weimin Zhang
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Rongxian Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Keyvan Hosseini
- School of Public Affairs, University of Science and Technology of China, Hefei, China
| | - Jianzhong Sun
- Biofuels Institute, School of Environmental Science and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Daochen Zhu
- Biofuels Institute, School of Environmental Science and Safety Engineering, Jiangsu University, Zhenjiang, China.,Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|