1
|
Li P, Jin A, Liang Y, Zhang Y, Ding D, Xiang H, Ding Y, Qiu X, Han W, Ye F, Feng H. Biocathode-anode cascade system in PRB: Efficient degradation of p-chloronitrobenzene in groundwater. WATER RESEARCH 2024; 266:122359. [PMID: 39232255 DOI: 10.1016/j.watres.2024.122359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/10/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
The consistent presence of p-chloronitrobenzene (p-CNB) in groundwater has raised concerns regarding its potential harm. In this study, we developed a biocathode-anode cascade system in a permeable reactive barrier (BACP), integrating biological electrochemical system (BES) with permeable reactive barrier (PRB), to address the degradation of p-CNB in the groundwater. BACP efficiently accelerated the formation of biofilms on both the anode and cathode using the polar periodical reversal method, proving more conducive to biofilm development. Notably, BACP demonstrated a remarkable p-CNB removal efficiency of 94.76 % and a dechlorination efficiency of 64.22 % under a voltage of 0.5 V, surpassing the results achieved through traditional electrochemical and biological treatment processes. Cyclic voltammetric results highlighted the primary contributing factor as the synergistic effect between the bioanode and biocathode. It is speculated that this system primarily relies on bioelectrocatalytic reduction as the predominant process for p-CNB removal, followed by subsequent dechlorination. Furthermore, electrochemical and microbiological tests demonstrated that BACP exhibited optimal electron transfer efficiency and selective microbial enrichment ability under a voltage of 0.3-0.5 V. Additionally, we investigated the operational strategy for initiating BACP in engineering applications. The results showed that directly introducing BACP technology effectively enhanced microbial film formation and pollutant removal performance.
Collapse
Affiliation(s)
- Pingli Li
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Anan Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Yuxiang Liang
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; Zhejiang Bainuo Digital Intelligence Environmental Technology Co., Ltd., Hangzhou, Zhejiang 310061, China
| | - Yanqing Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Danna Ding
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Hai Xiang
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Yangcheng Ding
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Xiawen Qiu
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Wei Han
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Fangfang Ye
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Huajun Feng
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
2
|
Li W, Chen X, Yang T, Zhu H, He Z, Zhao R, Chen Y. Sponge iron enriches autotrophic/aerobic denitrifying bacteria to enhance denitrification in sequencing batch reactor. BIORESOURCE TECHNOLOGY 2024; 407:131097. [PMID: 38986882 DOI: 10.1016/j.biortech.2024.131097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Sponge iron (SFe) coupled with a sludge system has great potential for improving biological denitrification; however, the underlying mechanism is not yet fully understood. In this study, the denitrification performance and microbial characteristics of ordinary sludge and SFe-sludge systems were investigated. Overall, the SFe-sludge reactor had faster ammonium degradation rate (94.0 %) and less nitrate accumulation (1.5-53.3 times lower) than ordinary reactor during the complete operation cycle of sequencing batch reactors. The addition of SFe increased the activities of nitrate and nitrite reductases. The total relative abundance of autotrophic denitrifying bacteria (Acidovorax, Arenimonas, etc.) in the SFe-sludge system after 38 days of operation was found to be 10.6 % higher than that in the ordinary sludge reactor. The aerobic denitrifying bacteria (Dokdonella, Phaeodactylibacter, etc.) was 5.3 % higher than ordinary sludge. The SFe-sludge system improved denitrification by enriching autotrophic/aerobic denitrifying bacteria in low carbon-to-nitrogen ratio wastewater treatment.
Collapse
Affiliation(s)
- Wenxuan Li
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xinjuan Chen
- Department of Architecture and Materials Technology, Xinjiang Industry Technical College, Urumqi 830021, China
| | - Tianxue Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Hongjuan Zhu
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Zihan He
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ruifeng Zhao
- Jiuquan Iron & Steel (Group) Co., Ltd, Jiayuguan 735100, China
| | - Yongfan Chen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100083, China
| |
Collapse
|
3
|
Xie H, Zhao W, Li J, Li J. Degradation of different wastewater by a biological sponge iron system: microbial growth and influencing factors. RSC Adv 2024; 14:17318-17325. [PMID: 38813119 PMCID: PMC11134168 DOI: 10.1039/d4ra02696a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
The bio-ZVI process has undergone widespread development in wastewater treatment in recent years. However, there has been limited examination of the growth and degradation characteristics of functional microorganisms within the system. In the present research, strains were isolated and identified from the bio-ZVI system constructed by sponge iron (encoded as SFe-M). The consistency of operating conditions in treating different wastewater was explored. Three SFe-acclimated microorganisms exhibiting characteristics of degrading organic pollutants and participating in the nitrogen removal process were isolated. The adaptation time of these microorganisms prolonged as the substrate toxicity increased, while the pollutant degradation was related to their metabolic rate in the logarithmic phase. All these functional bacteria exhibited the ability to treat wastewater in a wide pH range (5-8). However, the improper temperature (such as 10 °C and 40 °C) significantly inhibited their growth, and the optimal working temperature was identified as 30 °C. The iron dosage had a significant impact on these function bacteria, ranging from 1 g L-1 to 150 g L-1. It was inferred that the SFe-acclimated microorganisms are capable of resisting the poison of excessive iron, that is, they all have strong adaptability. The results provide compelling evidence for further understanding of the degradation mechanism involved in the bio-ZVI process.
Collapse
Affiliation(s)
- Huina Xie
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Wei Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Jing Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Jie Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| |
Collapse
|
4
|
Wang L, Li A. Impact of zero-valent iron on nitrifying granular sludge for 17α-ethinylestradiol removal and its mechanism. CHEMOSPHERE 2023; 333:138904. [PMID: 37182710 DOI: 10.1016/j.chemosphere.2023.138904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Aerobic granulation of nitrifying activated sludge could enhance the removal of 17α-ethinylestradiol (EE2) via abiotic nitration induced by reactive nitrogen species, cometabolism by ammonia-oxidizing bacteria and biodegradation by heterotrophic bacteria. Zero-valent iron (ZVI), a promising and low-cost material, has previously been applied to effectively enhance biological wastewater treatment. The impact and the effect mechanism of ZVI on nitrifying granular sludge (NGS) for EE2 removal was investigated in this study. The results showed that the addition of ZVI achieved better EE2 removal, though ZVI was not conducive to the accumulation of nitrite in NGS which reduced the abiotic transformation of EE2. Moreover, ZVI enriched heterotrophic denitrifying bacteria such as Arenimonas, thus changing the EE2 removal pathway and improving the degradation and mineralization of EE2. In addition, ZVI reduced the emission risk of the greenhouse gas N2O and strengthened the stability of the granules. Metagenomic analysis further revealed that the functional genes related to EE2 mineralization, nitrite oxidation, N2O reduction and quorum sensing in NGS were enriched with ZVI addition. This study provides meaningful guidance for ZVI application in the NGS process to achieve efficient and simultaneous removal of ammonia and emerging contaminants.
Collapse
Affiliation(s)
- Lili Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Laboratory of Environmental Protection in Water Transport Engineering, Tianjin Research Institute of Water Transport Engineering, Tanggu, Tianjin, 300456, China
| | - Anjie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
5
|
Characterization of Achromobacter denitrificans QHR-5 for heterotrophic nitrification-aerobic denitrification with iron oxidation function isolated from BSIS:Nitrogen removal performance and enhanced SND capability of BSIS. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Guo K, Li W, Wang Y, Hao T, Mao F, Wang T, Yang Z, Chen X, Li J. Low strength wastewater anammox start-up and stable operation by inoculating sponge-iron sludge: Cooperation of biological iron and iron bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116086. [PMID: 36041306 DOI: 10.1016/j.jenvman.2022.116086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/20/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The application of anaerobic ammonium oxidation (Anammox) technology in low-strength wastewater treatment still faces difficult in-situ start-ups and unstable operations. Sponge-iron sludge (R1) was used as a novel inoculum to provide a promising solution. Conventional activated sludge (R0) was used as the control. However, little is known about the feasibility and performance during the start-up and operation of Anammox combined with biological iron and iron bacteria in an iron sludge system. Anammox was successfully started both in R1 (87 days) and R0 (89 days) with a low-strength influent (with a nitrogen loading rate (NLR) of 43.64 ± 0.41 g N/(m3⋅d)). During long-term operation, the R0 nevertheless produced higher nitrates (9.7 ± 0.1 mg/L) than expected. In contrast, R1 presented no excess nitrate production (2.1 ± 0.06 mg/L). The total inorganic nitrogen (TIN) removal efficiency increased from 78.2 ± 7.1% in R0 to 86.1 ± 4.3% in R1. The iron sludge in R1 was divided equally into three parts and three different nitrogen-feeding methods were used over the 34 days of operation, as follows: first using a mixture of ammonium (27.15 ± 1.0 mg/L) and nitrite (32.7 ± 1.7 mg/L), then only ammonium (27.15 ± 1.0 mg/L) and lastly only nitrite (32.7 ± 1.7 mg/L) as the influent. R1 was a coupled system composed of Anammox, Feammox, and NOx--dependent Fe(II) oxidation (NDFO). The contribution of Feammox and NDFO to TIN removal was 27.1 ± 1.2% and 31.9 ± 0.7%. However, Anammox was the primary nitrogen transformation pathway. X-ray diffraction (XRD) analysis shows that iron hydroxide (Fe(OH)3) and iron oxide hydroxide (FeOOH) were generated in R1. The produced Fe(OH)3 and FeOOH were capable of participating in Feammox and formed a Fe(II)/Fe(III) cycle which further removed nitrogen. Therefore, a highly stable and impressive nitrogen removal performance was demonstrated in the iron sludge Anammox system under the cooperation of biological iron and iron bacteria. The study considered the enrichment of norank_c_OM190, Desulfuromonas, and Thiobacillus and their contribution to the Anammox, Feammox, and NDFO processes, respectively. This study provides a new perspective for the start-up and stable operation of low-strength wastewater Anammox engineering applications.
Collapse
Affiliation(s)
- Kehuan Guo
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China; Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100123, PR China
| | - Wenxuan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Yae Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China.
| | - Tongyao Hao
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100123, PR China
| | - Feijian Mao
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210098, PR China
| | - Te Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| | - Zhenni Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| | - Xinjuan Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| | - Jie Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| |
Collapse
|
7
|
Zhu C, Huang H, Chen Y. Recent advances in biological removal of nitroaromatics from wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119570. [PMID: 35667518 DOI: 10.1016/j.envpol.2022.119570] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Various nitroaromatic compounds (NACs) released into the environment cause potential threats to humans and animals. Biological treatment is valued for cost-effectiveness, environmental friendliness, and availability when treating wastewater containing NACs. Considering the significance and wide use of NACs, this review focuses on recent advances in biological treatment systems for NACs removal from wastewater. Meanwhile, factors affecting biodegradation and methods to enhance removal efficiency of NACs are discussed. The selection of biological treatment system needs to consider NACs loading and cost, and its performance is affected by configuration and operation strategy. Generally, sequential anaerobic-aerobic biological treatment systems perform better in mineralizing NACs and removing co-pollutants. Future research on mechanism exploration of NACs biotransformation and performance optimization will facilitate the large-scale application of biological treatment systems.
Collapse
Affiliation(s)
- Cuicui Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|