1
|
El-Araby R. Biofuel production: exploring renewable energy solutions for a greener future. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:129. [PMID: 39407282 PMCID: PMC11481588 DOI: 10.1186/s13068-024-02571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/15/2024] [Indexed: 10/19/2024]
Abstract
Biofuel production has emerged as a leading contender in the quest for renewable energy solutions, offering a promising path toward a greener future. This comprehensive state-of-the-art review delves into the current landscape of biofuel production, exploring its potential as a viable alternative to conventional fossil fuels. This study extensively examines various feedstock options, encompassing diverse sources such as plants, algae, and agricultural waste, and investigates the technological advancements driving biofuel production processes. This review highlights the environmental benefits of biofuels, emphasizing their capacity to significantly reduce greenhouse gas emissions compared to those of fossil fuels. Additionally, this study elucidates the role of biofuels in enhancing energy security by decreasing reliance on finite fossil fuel reserves, thereby mitigating vulnerabilities to geopolitical tensions and price fluctuations. The economic prospects associated with biofuel production are also elucidated, encompassing job creation, rural development, and the potential for additional revenue streams for farmers and landowners engaged in biofuel feedstock cultivation. While highlighting the promise of biofuels, the review also addresses the challenges and considerations surrounding their production. Potential issues such as land use competition, resource availability, and sustainability implications are critically evaluated. Responsible implementation, including proper land-use planning, resource management, and adherence to sustainability criteria, is emphasized as critical for the long-term viability of biofuel production. Moreover, the review underscores the importance of ongoing research and development efforts aimed at enhancing biofuel production efficiency, feedstock productivity, and conversion processes. Technological advancements hold the key to increasing biofuel yields, reducing production costs, and improving overall sustainability. This review uniquely synthesizes the latest advancements across the entire spectrum of biofuel production, from feedstock selection to end-use applications. It addresses critical research gaps by providing a comprehensive analysis of emerging technologies, sustainability metrics, and economic viability of various biofuel pathways. Unlike previous reviews, this work offers an integrated perspective on the interplay between technological innovation, environmental impact, and socio-economic factors in biofuel development, thereby providing a holistic framework for future research and policy directions in renewable energy.
Collapse
Affiliation(s)
- R El-Araby
- Chemical Engineering and Pilot Plant Department, Institute of Engineering Research and New and Renewable Energy, National Research Centre, Cairo, Egypt.
| |
Collapse
|
2
|
Kim JH, Kim M, Park G, Kim E, Song H, Jung S, Park YK, Tsang YF, Lee J, Kwon EE. Chemicals and fuels from lipid-containing biomass: A comprehensive exploration. Biotechnol Adv 2024; 75:108418. [PMID: 39067778 DOI: 10.1016/j.biotechadv.2024.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
In response to address the climate crisis, there has been a growing focus on substituting conventional refinery-derived products with those derived from biorefineries. The utilization of lipids as primary materials or intermediates for the synthesis of chemicals and fuels, which are integral to the existing chemical and petrochemical industries, is a key step in this transition. This review provides a comprehensive overview of the production of sustainable chemicals (acids and alcohols), biopolymers, and fuels (including gasoline, kerosene, biodiesel, and heavy fuel oil) from lipids derived from terrestrial and algal biomass. The production of chemicals from lipids involves diverse methods, including polymerization, epoxidation, and separation/purification. Additionally, the transformation of lipids into biofuels can be achieved through processes such as catalytic cracking, hydroprocessing, and transesterification. This review also suggests future research directions that further advance the lipid valorization processes, including enhancement of catalyst durability at harsh conditions, development of deoxygenation process with low H2 consumption, investigation of precise separation of target compounds, increase in lipid accumulation in algal biomass, and development of methods that utilize residues and byproducts generated during lipid extraction and conversion.
Collapse
Affiliation(s)
- Jung-Hun Kim
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Minyoung Kim
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Gyeongnam Park
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunji Kim
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hocheol Song
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sungyup Jung
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies and State Key Laboratory in Marine Pollution, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Jechan Lee
- Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Eilhann E Kwon
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
3
|
Rahmawati Z, Santoso L, Abdullah WNW, Hamid A, Jamari NLA, Sugiarso D, Ni'mah YL, Widati AA. Biomass as an alternative feedstock to oleochemicals. RSC Adv 2024; 14:28827-28843. [PMID: 39257661 PMCID: PMC11386174 DOI: 10.1039/d4ra04481a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
The huge demands for petrochemicals have led to a rapid increase in the production of these fossil-based derivatives. Biomass represents a promising feedstock for addressing the challenges related to petrochemicals in terms of the necessity to apply renewable sources and the need to decrease carbon emissions. Among the natural biomass products, most studies have attempted to upgrade natural oils owing to their promising advantages of worldwide availability, low-cost processing, and built-in functionality. This paper discusses the upgradation of natural oils to the most beneficial oleochemicals, including fatty acids, fatty alcohols, and fatty acid methyl esters. This review also covers the utility, physico-chemical properties, and the production processes for such materials. The interconnected reaction routes to produce oleochemicals and the affecting parameters (catalyst design, temperature, and pressure) are also elucidated. Furthermore, this article discusses the future perspective of oleochemicals based on their development in recent years.
Collapse
Affiliation(s)
- Zeni Rahmawati
- Chemistry Department, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Keputih, Sukolilo Surabaya 60111 Indonesia
| | - Liangga Santoso
- Chemistry Department, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Keputih, Sukolilo Surabaya 60111 Indonesia
| | | | - Abdul Hamid
- Department of Heavy Equipment Mechanical Engineering, Politeknik Negeri Madura Indonesia
| | - Nor Laili Azua Jamari
- Departmen of Chemistry & Biology, Centre of Defence Studies, National Defence University of Malaysia, Kem Sungai Besi Kuala Lumpur 57000 Malaysia
| | - Djarot Sugiarso
- Chemistry Department, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Keputih, Sukolilo Surabaya 60111 Indonesia
| | - Yatim Lailun Ni'mah
- Chemistry Department, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Keputih, Sukolilo Surabaya 60111 Indonesia
| | - Alfa Akustia Widati
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga Surabaya 60115 Indonesia
| |
Collapse
|
4
|
Mangesh VL, Perumal T, Santhosh S, Siva Kumar N, Vijayaraj A, Kumar GSVS, Sugumaran S, Murali G, Basivi PK, Al-Fatesh AS. Sustainable biofuel synthesis from non-edible oils: a mesoporous ZSM-5/Ni/Pt catalyst approach. RSC Adv 2024; 14:7728-7739. [PMID: 38444966 PMCID: PMC10913418 DOI: 10.1039/d4ra00346b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
This work examines the hydrodeoxygenation (HDO) activity of non-edible oils using a high surface area catalyst. The HDO activity was thoroughly examined and contrasted using the high surface area catalyst Ni/Pt-ZSM-5 as well as other supports like MCM-48 and H-beta. Ni/Pt bimetals supported on mesoporous ZSM-5 were created via reverse order impregnation to facilitate HDO of non-edible oils. Techniques such as XRD, FT-IR, BET, HR-TEM, HR-SEM, TPD, and TGA were used to characterize the produced catalysts. The synthesized catalysts considerably influenced the hydrodeoxygenation activities for the synthesis of lengthy chain hydrocarbons in a stainless-steel reactor with a high-pressure fixed bed between 300 and 375 °C under 10-40 bar hydrogen pressure. High levels of Ni/Pt-ZSM-5 acidity, textural, and H2 consumption qualities were discovered. Distributions of the products were also reviewed, along with comparisons of the structure-activity connections.
Collapse
Affiliation(s)
- V L Mangesh
- Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation Vaddeswaram Guntur Andhra Pradesh 522502 India
| | - Tamizhdurai Perumal
- Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous) (Affiliated to the University of Madras, Chennai) 833, Gokul Bagh, E. V. R. Periyar Road, Arumbakkam Chennai 600 106 Tamil Nadu India +91 9677146579
| | - S Santhosh
- Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous) (Affiliated to the University of Madras, Chennai) 833, Gokul Bagh, E. V. R. Periyar Road, Arumbakkam Chennai 600 106 Tamil Nadu India +91 9677146579
| | - Nadavala Siva Kumar
- Department Chemical Engineering, College of Engineering, King Saud University P. O. Box 800 Riyadh 11421 Saudi Arabia
| | - A Vijayaraj
- Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous) (Affiliated to the University of Madras, Chennai) 833, Gokul Bagh, E. V. R. Periyar Road, Arumbakkam Chennai 600 106 Tamil Nadu India +91 9677146579
| | - G S V Seshu Kumar
- Sagi Rama Krishnam Raju Engineering College Bhimavaram Andhra Pradesh 534204 India
| | - S Sugumaran
- Vishnu Institute of Technology Bhimavaram Andhra Pradesh 534202 India
| | - G Murali
- Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation Vaddeswaram Guntur Andhra Pradesh 522502 India
| | - Praveen Kumar Basivi
- Pukyong National University Industry-University Cooperation Foundation, Pukyong National University Busan 48513 Republic of Korea
| | - Ahmed S Al-Fatesh
- Department Chemical Engineering, College of Engineering, King Saud University P. O. Box 800 Riyadh 11421 Saudi Arabia
| |
Collapse
|
5
|
Abd AA, Othman MR, Majdi HS, Helwani Z. Green route for biomethane and hydrogen production via integration of biogas upgrading using pressure swing adsorption and steam-methane reforming process. RENEWABLE ENERGY 2023; 210:64-78. [DOI: 10.1016/j.renene.2023.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
6
|
Zamri MFMA, Shamsuddin AH, Ali S, Bahru R, Milano J, Tiong SK, Fattah IMR, Raja Shahruzzaman RMH. Recent Advances of Triglyceride Catalytic Pyrolysis via Heterogenous Dolomite Catalyst for Upgrading Biofuel Quality: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1947. [PMID: 37446463 DOI: 10.3390/nano13131947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 07/15/2023]
Abstract
This review provides the recent advances in triglyceride catalytic pyrolysis using heterogeneous dolomite catalysts for upgrading biofuel quality. The production of high-quality renewable biofuels through catalytic cracking pyrolysis has gained significant attention due to their high hydrocarbon and volatile matter content. Unlike conventional applications that require high operational costs, long process times, hazardous material pollution, and enormous energy demand, catalytic cracking pyrolysis has overcome these challenges. The use of CaO, MgO, and activated dolomite catalysts has greatly improved the yield and quality of biofuel, reducing the acid value of bio-oil. Modifications of the activated dolomite surface through bifunctional acid-base properties also positively influenced bio-oil production and quality. Dolomite catalysts have been found to be effective in catalyzing the pyrolysis of triglycerides, which are a major component of vegetable oils and animal fats, to produce biofuels. Recent advances in the field include the use of modified dolomite catalysts to improve the activity and selectivity of the catalytic pyrolysis process. Moreover, there is also research enhancement of the synthesis and modification of dolomite catalysts in improving the performance of biofuel yield conversion. Interestingly, this synergy contribution has significantly improved the physicochemical properties of the catalysts such as the structure, surface area, porosity, stability, and bifunctional acid-base properties, which contribute to the catalytic reaction's performance.
Collapse
Affiliation(s)
- Mohd Faiz Muaz Ahmad Zamri
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
| | - Abd Halim Shamsuddin
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
| | - Salmiaton Ali
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Raihana Bahru
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Jassinnee Milano
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
| | - Sieh Kiong Tiong
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
| | - Islam Md Rizwanul Fattah
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | | |
Collapse
|
7
|
Kassa Dada T, Vuppaladadiyam A, Xiaofei Duan A, Kumar R, Antunes E. Probing the effect of Cu-SrO loading on catalyst supports (ZSM-5, Y-zeolite, activated carbon, Al 2O 3, and ZrO2) for aromatics production during catalytic co-pyrolysis of biomass and waste cooking oil. BIORESOURCE TECHNOLOGY 2022; 360:127515. [PMID: 35764281 DOI: 10.1016/j.biortech.2022.127515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
In this work, Cu-SrO bimetallic catalyst was synthesised and examined for catalytic co-pyrolysis of ironbark (IB) and waste cooking oil (WCO) using Py-GC/MS. The effect of catalyst supports (ZSM-5, Y-zeolite, activated carbon, Al2O3, and ZrO2) on aromatic hydrocarbons yield was studied. The effect of catalyst support on the selectivity of gasoline (C8-C14), diesel (C15-C17), and heavy oil (>C20) components of bio-oil were studied. Non-catalytic co-pyrolysis of IB and WCO produced a heavy oil component of 58.7% (>C20). SrO initiated a ketonization reaction that converted carboxylic acids into new C-C bonds. The addition of Cu effectively promoted secondary cracking and aromatization reactions enhancing the hydrocarbon yield. Cu-SrO/ZSM-5 and Cu-SrO/Y-zeolite produced low acid content of 4.43% and 12.5%, respectively. Overall, the bimetallic catalyst Cu-SrO/ZSM-5 significantly increased the amount of C8-C14 compounds to 87.28% and reduced compounds over C20 to 1.19%.
Collapse
Affiliation(s)
- Tewodros Kassa Dada
- College of Science and Engineering, James Cook University, Townsville, Australia
| | - Arun Vuppaladadiyam
- College of Science and Engineering, James Cook University, Townsville, Australia
| | - Alex Xiaofei Duan
- Melbourne Trace Analysis for Chemical, Earth and Environmental Sciences (TrACEES) Platform and School of Chemistry, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ravinder Kumar
- College of Science and Engineering, James Cook University, Townsville, Australia
| | - Elsa Antunes
- College of Science and Engineering, James Cook University, Townsville, Australia.
| |
Collapse
|
8
|
Istadi I, Amalia R, Riyanto T, Anggoro DD, Jongsomjit B, Putranto AB. Acids treatment for improving catalytic properties and activity of the spent RFCC catalyst for cracking of palm oil to kerosene-diesel fraction fuels. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Pocha CKR, Chia SR, Chia WY, Koyande AK, Nomanbhay S, Chew KW. Utilization of agricultural lignocellulosic wastes for biofuels and green diesel production. CHEMOSPHERE 2022; 290:133246. [PMID: 34906526 DOI: 10.1016/j.chemosphere.2021.133246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/21/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The ever-growing human population has resulted in the expansion of agricultural activity; evident by the deforestation of rainfoamrests as a means of acquiring fertile land for crops. The crops and fruits produced by such means should be utilized completely; however, there are still losses and under-exploitation of these produces which has resulted in wastes being mounted in landfills. These underutilized agricultural wastes including vegetables and fruits can serve as a potential source for biofuels and green diesel. This paper discusses the main routes (e.g., biological and thermochemical) for producing biofuels such as bioethanol, biodiesel, biogas, bio-oil and green diesel from underutilized crops by emphasizing recent technological innovations for improving biofuels and green diesel yields. The future prospects of a successful production of biofuels and green diesel by this source are also explained. Underutilized lignocelluloses including fruits and vegetables serve as a prospective biofuel and green diesel generation source for the future prosperity of the biofuel industry.
Collapse
Affiliation(s)
- Chaitanya Kumar Reddy Pocha
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia
| | - Shir Reen Chia
- Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
| | - Wen Yi Chia
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Apurav Krishna Koyande
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Saifuddin Nomanbhay
- Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
10
|
Ahmed H, Altalhi AA, Elbanna SA, El-Saied HA, Farag AA, Negm NA, Mohamed EA. Effect of Reaction Parameters on Catalytic Pyrolysis of Waste Cooking Oil for Production of Sustainable Biodiesel and Biojet by Functionalized Montmorillonite/Chitosan Nanocomposites. ACS OMEGA 2022; 7:4585-4594. [PMID: 35155949 PMCID: PMC8829930 DOI: 10.1021/acsomega.1c06518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The use of waste oils as pyrolysis feedstocks to manufacture high-grade biofuels has prompted researchers to focus on developing renewable energy to overcome the depletion of fossil fuel supplies and the global warming phenomena. Because of their high hydrogen and volatile matter concentration, waste oils are ideal raw materials for the production of biofuels. It is challenging to attain satisfactory results with conventional methods, such as transesterification, gasification, solvent extraction, and hydrotreating due to flaws such as high energy demand, long time, and high operating costs. Catalytic pyrolysis of waste edible oils was employed as a resource for the generation of biodiesel. The application of the catalytic cracking process has the potential to alleviate the existing situation. In this study of catalytic cracking conversion of waste cooking oil to produce different biofuels, grades were investigated using two heterogeneous catalysts. The catalysts were activated montmorillonite (PAMMT) clay and its modified form using a chitosan biopolymer (PAMMT-CH) nanocomposite. The catalysts were identified using infrared spectroscopy, X-ray diffraction patterns, transmittance electron microscopy images, surface area, and thermal stability. The catalysts were tested for their performances using different amounts (0.1-1% by weight) at a temperature assortment of 200-400 °C during a time range of 60-300 min. The experimental studies were carried out in a batch reactor. GC mass spectra were used to investigate the catalytic cracking products. Fractional distillation is used to separate the final products from various reaction conditions. The physicochemical properties of resulting biofuels were profiled by quantifying their densities, viscosities, specific gravities, pour points, flash and fire points, cetane numbers, carbon and ash residues, and sulfur contents. The optimum conditions of the yield product were 300 and 400 °C, catalyst weights of 0.7 and 0.8% w/v, and reaction times of 120 and 180 min concerning the (PAMMT) and (PAMMT-CH) nanocomposite, respectively. The determined properties were located within the limits of the specific standards of ASTM specifications. As a result, the PAMMT nanocomposite produced biofuel comparable to biodiesel according to ASTM specifications, while the PAMMT-CH nanocomposite produced biofuel comparable to biojet.
Collapse
Affiliation(s)
- Hanan
A. Ahmed
- Egyptian
Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Amal A. Altalhi
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sameh A. Elbanna
- Egyptian
Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Hend A. El-Saied
- Egyptian
Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Ahmed A. Farag
- Egyptian
Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Nabel A. Negm
- Egyptian
Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Eslam A. Mohamed
- Egyptian
Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| |
Collapse
|
11
|
Advancements in the Conversion of Lipid-Rich Biowastes and Lignocellulosic Residues into High-Quality Road and Jet Biofuels Using Nanomaterials as Catalysts. Processes (Basel) 2022. [DOI: 10.3390/pr10020187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
At present, the majority of available road and jet biofuels are produced from oleochemical feedstocks that include vegetable oils and biowastes such as waste cooking oils and animal fats. Additionally, one of the most promising ways to achieve long-term environmental goals is to sustainably use lignocellulosic residues. These resources must be treated through a deoxygenation process and subsequent upgrading processes to obtain high-quality road and jet biofuels. Accordingly, in this review, we explore recent advancements in the deoxygenation of oleochemical and lignocellulosic feedstocks in the absence of hydrogen to produce high-quality road and jet biofuels, mainly focusing on the use of nanomaterials as catalysts and the valorization of lipid-rich biowastes and lignocellulosic residues. As a result, we found that regardless of the catalyst particle size, the coexistence of basic sites and weak/medium acid sites is highly important in catalytic systems. Basic sites can enhance the removal of oxygenates via decarboxylation and decarbonylation reactions and inhibit coke formation, while weak/medium acid sites can enhance the cracking reaction. Additionally, the extraction of value-added derivatives from lignocellulosic residues and their subsequent upgrade require the use of advanced methods such as the lignin-first approach and condensation reactions.
Collapse
|
12
|
Influence of synthesized catalyst on the pyrolytic conversion of waste oils into renewable biofuel: Synthesis and performance. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Ali Abd A, Roslee Othman M, Helwani Z. Evaluation of thermal effects on carbon dioxide breakthrough curve for biogas upgrading using pressure swing adsorption. ENERGY CONVERSION AND MANAGEMENT 2021; 247:114752. [DOI: 10.1016/j.enconman.2021.114752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|