1
|
Chen W, Liu J, Chu G, Wang Q, Zhang Y, Gao C, Gao M. Comparative evaluation of four Chlorella species treating mariculture wastewater under different photoperiods: Nitrogen removal performance, enzyme activity, and antioxidant response. BIORESOURCE TECHNOLOGY 2023; 386:129511. [PMID: 37468008 DOI: 10.1016/j.biortech.2023.129511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
The nitrogen removal performance, nitrogen metabolism enzyme activities, and antioxidant response of four Chlorella species (Chlorella sp., Chlorella vulgaris, Chlorella sorokiniana, and Chlorella protothecoides) were compared under different light: dark (L:D) photoperiods during treating mariculture wastewater. The increase of light duration in the range of 8L:16D to 16L:8D was beneficial to the chlorophyll synthesis of selected four Chlorella species. Chlorella vulgaris was the most effective to treat mariculture wastewater than Chlorella sp., Chlorella sorokiniana, and Chlorella protothecoides. and its microalgae density, photosynthetic activity, and nitrogen metabolism enzyme activity were higher than those of the other three Chlorella species. An obvious oxidative stress in microalgal cells was under 20L:4D photoperiod, which led to a decrease in photosynthetic activity and nitrogen metabolizing enzyme activity. Among the four Chlorella species, Chlorella protothecoides had the highest degree of light-induced stress and ROS accumulation. This study can provide suitable microalgae and optimal photoperiod for treating mariculture wastewater.
Collapse
Affiliation(s)
- Wenzheng Chen
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiateng Liu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Guangyu Chu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Qianzhi Wang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yuqiao Zhang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Chang Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
2
|
Sarkar S, Bhowmick TK, Gayen K. Enhancement for the synthesis of bio-energy molecules (carbohydrates and lipids) in Desmodesmus subspicatus: experiments and optimization techniques. Prep Biochem Biotechnol 2023; 54:343-357. [PMID: 37531084 DOI: 10.1080/10826068.2023.2241898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Microalgae are regarded as renewable resources of energy, foods and high-valued compounds using a biorefinery approach. In the present study, we explored isolated microalgae (Desmodesmus subspicatus) for the production of bio-energy molecules (carbohydrate and lipid). Optimizations of media (BG-11) components have been made using the Taguchi orthogonal array (TOA) technique to maximize biomass, carbohydrate and lipid production. Optimized results showed that biomass, carbohydrates and lipid productivity increased by 1.3 times at optimal combinations of media components than standard BG-11 media. Further, the influence of various carbon and nitrogen sources as nutritional supplement with optimum media composition under different light intensities was investigated for productivity of carbohydrate and lipid. Results demonstrated that 1.5 times higher productivity of carbohydrate and lipids were achieved in the presence optimum BG-11 under a broad range of light intensities (84-504 µmol m-2 s-1). Among different nitrogen sources, glycine was found to give higher productivity (1.5 times) followed by urea. Use of the cellulose as a carbon source in the media significantly increases biomass (2.4 times), carbohydrates (2.3 times) and lipids (2.3 times) productivity. Investigations revealed that cultivating Desmodesmus subspicatus under optimum culture conditions has the potential for large-scale bio-ethanol and bio-diesel production.
Collapse
Affiliation(s)
- Sreya Sarkar
- Department of Chemical Engineering, National Institute of Technology Agartala, West Tripura, Tripura, India
| | - Tridib Kumar Bhowmick
- Department of Bioengineering, National Institute of Technology Agartala, West Tripura, Tripura, India
| | - Kalyan Gayen
- Department of Chemical Engineering, National Institute of Technology Agartala, West Tripura, Tripura, India
| |
Collapse
|
3
|
Chu G, Wang Q, Song C, Liu J, Zhao Y, Lu S, Zhang Z, Jin C, Gao M. Platymonas helgolandica-driven nitrogen removal from mariculture wastewater under different photoperiods: Performance evaluation, enzyme activity and transcriptional response. BIORESOURCE TECHNOLOGY 2023; 372:128700. [PMID: 36738978 DOI: 10.1016/j.biortech.2023.128700] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The nitrogen removal performance and biological mechanism of Platymonas helgolandica var. Tsingtaoensis (P. helgolandica) were investigated in treating mariculture wastewater under different light: dark (L:D) photoperiods. The growth of P. helgolandica was positively correlated with the photoperiods from 6L:18D to 15L:9D, and the highest photosynthetic activity appeared under 6L:18D photoperiod on day 3. P. helgolandica exhibited the highest removal efficiencies of total nitrogen and COD at 89 % and 93 % under 15L:9D photoperiod, respectively. NH4+-N assimilation was proportional to the photoperiods from 6L:18D to 15L:9D and longer illumination promoted NO2--N removal. However, the highest NO3--N reduction rate was achieved under 12L:12D photoperiod. The different nitrogen-transformed enzymatic activities were affected by photoperiod. Transcriptome revealed that unigenes were enriched in nitrogen metabolism and photosynthesis pathways, of which the functional gene expression was up-regulated significantly. This study provides insights into the optimization of photoperiod for mariculture wastewater treatment by P. helgolandica.
Collapse
Affiliation(s)
- Guangyu Chu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Qianzhi Wang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Chenguang Song
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiateng Liu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuailing Lu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhiming Zhang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
4
|
Outdoor Inclined Plastic Column Photobioreactor: Growth, and Biochemicals Response of Arthrospira platensis Culture on Daily Solar Irradiance in a Tropical Place. Metabolites 2022; 12:metabo12121199. [PMID: 36557237 PMCID: PMC9785283 DOI: 10.3390/metabo12121199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Implementation of outdoor photobioreactors has been challenged by an extremely oversaturated daily peak of solar irradiance. This study aims to understand the role of column size and paranet shading as well as to investigate the most convenient light control in outdoor cyanobacterial culture. The photobioreactor (PBR) consisted of plastic columns with a diameter of 12.74 cm (PBRd-20) and 31.85 cm (PBRd-50) laid outdoors and inclined at 158.22° upwards against solar radiation, while paranet shading was provided at 0%, 50%, 70%, and 90% shading capacity. A semi-continuous culture of cyanobacterium Arthrospira (Spirulina) platensis was conducted for 6 weeks with weekly monitoring of the growth parameter as well as the proximate and pigments content, while the daily irradiance and culture maximum temperature were recorded. The result shows that the column diameter of 12.74 cm had a lethal risk of 44.7% and this decreased to 10.5% by widening the column diameter to 31.85 cm. This lethal risk can be eliminated by the application of a paranet at a 50% reduction level for the column diameter of 31.85 cm and a 70% reduction level for the column diameter of 12.74 cm. The highest culture productivity of 149.03 mg/(L·day) was achieved with a PBRd-20 with 50% shading treatment, but a PBRd-50 with 90% shading treatment led to an increase in the protein and phycocyanin content by 66.7% and 14.91%, respectively.
Collapse
|
5
|
Sarkar S, Mankad J, Padhihar N, Manna MS, Bhowmick TK, Gayen K. Enhancement of growth and biomolecules (carbohydrates, proteins, and chlorophylls) of isolated Chlorella thermophila using optimization tools. Prep Biochem Biotechnol 2022; 52:1173-1189. [PMID: 35234575 DOI: 10.1080/10826068.2022.2033995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The production of multiple products from microalgae is essential for economic sustainability and the knowledge of optimum cultivation conditions for high growth and biomolecule synthesis of a microalgal strain is the prerequisite for its commercial production. In this work, optimization of nutrient concentrations for the cultivation of isolated Chlorella thermophila was performed by manipulating nine nutrients with the objectives of maximization of growth, carbohydrate, protein, and chlorophyll contents. Experiments were designed and effects of the parameters were studied using Taguchi orthogonal array (TOA). Experimental results of TOA were used for modeling artificial neural networks (ANN) followed by the optimization using genetic algorithm (GA) to find global optimal solutions. Results showed an increase of 36, 88, 36, and 88% for growth, carbohydrates, proteins, and chlorophylls, respectively, at optimal combinations of parameters given by TOA. Results obtained through the ANN-GA optimization were 9, 10, and 3% more compared to the TOA for biomass, carbohydrates, and chlorophylls, respectively with experimental verification. Nitrates and bicarbonate were found to play the most pivotal role in biomass and biomolecule synthesis of the isolated microalgal strain. Results of the current investigation can be used in the industrial scale-up for the production of multiple products using the biorefinery approach.
Collapse
Affiliation(s)
- Sambit Sarkar
- Department of Chemical Engineering, National Institute of Technology Agartala, Agartala, India
| | - Jaivik Mankad
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Nitin Padhihar
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Mriganka Sekhar Manna
- Department of Chemical Engineering, National Institute of Technology Agartala, Agartala, India
| | - Tridib Kumar Bhowmick
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, India
| | - Kalyan Gayen
- Department of Chemical Engineering, National Institute of Technology Agartala, Agartala, India
| |
Collapse
|
6
|
Wang Z, Hartline CJ, Zhang F, He Z. Enhanced microalgae cultivation using wastewater nutrients extracted by a microbial electrochemical system. WATER RESEARCH 2021; 206:117722. [PMID: 34637970 DOI: 10.1016/j.watres.2021.117722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Cultivating algae using wastewater nutrients is a potential approach to realize resource recovery that can contribute to circular economy. However, growing algae directly in a wastewater has problems such as bacterial contamination and a low biomass density. To address those problems, we investigated microalgal cultivation in a photobioreactor (PBR) fed with the nutrients extracted from wastewater by a microbial nutrient recovery cell (MNRC). With an external voltage of 0.3 V, the MNRC-PBR system removed 96% of COD and recovered 44% of NH4+-N and 39% of PO43--P at a hydraulic retention time of 7.2 h. Microalgae cultivated in the nutrient recovery medium from the MNRC had 8.3-fold biomass density and 1.4-fold lipid contents, versus that cultivated in a food wastewater containing more nutrients. More significantly, 90% of biomass yielded from the MNRC-PBR system was microalgae, much higher than ∼30% in the food wastewater. A liquid exchange ratio of 30% achieved the highest microalgal density of 0.61 ± 0.06 g L-1, comparable to that in a standard BG11 medium. There was a tradeoff between recycling PBR medium and microalgal growth. The accumulated salinity was observed in the extended operation of the MNRC-PBR system treating an actual food wastewater. The results of this study have demonstrated an effective approach to extract nutrients from wastewater for enhanced microalgal growth and improved biomass quality.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Christopher J Hartline
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Fuzhong Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Zhen He
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|