1
|
Jaffur BN, Kumar G, Khadoo-Jeetah P. Enhancing deep eutectic solvent systems for efficient fermentable sugar recovery from lignocellulosic fiber. Int J Biol Macromol 2024; 269:131888. [PMID: 38704963 DOI: 10.1016/j.ijbiomac.2024.131888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
Efficient conversion of sugars into fermentable sugars is a critical challenge in the cost-effective production of lignocellulosic biopolymers and biofuels. This study focuses on various sugar quantification techniques applied to Furcraea Foetida (Mauritius Hemp) samples, utilizing natural deep eutectic solvents (NADES) and deep eutectic solvents (DES) like urea, glycerol, citrates, pyrogallol (PY), and cetyltrimethylammonium bromide (CTAB). Employing a Taguchi-designed experiment, operational conditions were fine-tuned to evaluate the influence of time, concentration, and temperature on each deep eutectic solvent-based process. The emerging green solvent extraction approach demonstrated significant results, achieving notably high sugar yields compared to traditional techniques such as alkali, hot-water, and acid-mediated extraction. At a CTAB:PY molar ratio of 1:3, optimized for 60 min at 50 °C, the highest fermentable sugar (FS) yield of 0.6891 ± 0.0123 g FS/g LCB was attained-2 to 6 times higher than non-optimized values and 0.2 to 0.3 times higher than optimized traditional methods. In light of this, this research study emphasizes the pivotal significance of efficient sugar conversion through optimized deep eutectic solvent-based extraction methods, with a particular focus on Furcraea Foetida fibers, offering promising outcomes for the biofuel and biopolymer production industry.
Collapse
Affiliation(s)
- Bibi Nausheen Jaffur
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius.
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental, Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea
| | - Pratima Khadoo-Jeetah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius
| |
Collapse
|
2
|
Vieira Sanches M, Freitas R, Oliva M, Mero A, De Marchi L, Cuccaro A, Fumagalli G, Mezzetta A, Colombo Dugoni G, Ferro M, Mele A, Guazzelli L, Pretti C. Are natural deep eutectic solvents always a sustainable option? A bioassay-based study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17268-17279. [PMID: 36192589 PMCID: PMC9928812 DOI: 10.1007/s11356-022-23362-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The traditional use of organic solvents in various branches of industry is being rethought as these compounds very often display high volatility, toxicity and lipophilicity (related to the ability to interact with biological membranes). More recently, developments in the field of Green Chemistry are focusing on the design of more sustainable and cost-effective solvent alternatives like Ionic Liquids (ILs), bio-based solvents and natural deep eutectic solvents (NADESs). The present study aimed at performing an ecotoxicological screening of 15 NADESs using an extensive set of marine and freshwater bioassays, based on different endpoints as the following: immobilization of the crustacean Daphnia magna, growth inhibition of Raphidocelis subcapitata and of Phaeodactylum tricornutum, larval development alterations on the serpulid Ficopomatus enigmaticus and bioluminescence inhibition of Aliivibrio fischeri. What emerged was a general absence of toxicity of all samples. However, both algal assays showed a certain degree of biostimulation, up to over 100% growth increase in respect to controls with 8 out of 15 compounds tested with Raphidocelis subcapitata. Despite NADESs-induced negligible toxicity effects to invertebrates, encouraging their labelling as "sustainable" solvents, the liability of their intentional or accidental release into aquatic systems may represent a serious risk in terms of ecosystem functioning impairments.
Collapse
Affiliation(s)
- Matilde Vieira Sanches
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Matteo Oliva
- Interuniversitary Consortium of Marine Biology and Applied Ecology of Leghorn "G. Bacci", 57128, Leghorn, Italy
| | - Angelica Mero
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Lucia De Marchi
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
- Interuniversitary Consortium of Marine Biology and Applied Ecology of Leghorn "G. Bacci", 57128, Leghorn, Italy
| | - Alessia Cuccaro
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
- Interuniversitary Consortium of Marine Biology and Applied Ecology of Leghorn "G. Bacci", 57128, Leghorn, Italy
| | - Giorgia Fumagalli
- Interuniversitary Consortium of Marine Biology and Applied Ecology of Leghorn "G. Bacci", 57128, Leghorn, Italy
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Greta Colombo Dugoni
- Department of Chemistry, Materials and Chemical Engineering "G. Natta, Politecnico Di Milano, Piazza Leonardo da Vinci, 32, Milano, Italy
| | - Monica Ferro
- Department of Chemistry, Materials and Chemical Engineering "G. Natta, Politecnico Di Milano, Piazza Leonardo da Vinci, 32, Milano, Italy
| | - Andrea Mele
- Department of Chemistry, Materials and Chemical Engineering "G. Natta, Politecnico Di Milano, Piazza Leonardo da Vinci, 32, Milano, Italy
| | | | - Carlo Pretti
- Interuniversitary Consortium of Marine Biology and Applied Ecology of Leghorn "G. Bacci", 57128, Leghorn, Italy.
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122, Pisa, Italy.
| |
Collapse
|
3
|
Ding Z, Kumar V, Sar T, Harirchi S, Dregulo AM, Sirohi R, Sindhu R, Binod P, Liu X, Zhang Z, Taherzadeh MJ, Awasthi MK. Agro waste as a potential carbon feedstock for poly-3-hydroxy alkanoates production: Commercialization potential and technical hurdles. BIORESOURCE TECHNOLOGY 2022; 364:128058. [PMID: 36191751 DOI: 10.1016/j.biortech.2022.128058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The enormous production and widespread applications of non -biodegradable plastics lead to their accumulation and toxicity to animals and humans. The issue can be addressed by the development of eco-friendly strategies for the production of biopolymers by utilization of waste residues like agro residues. This will address two societal issues - waste management and the development of an eco-friendly biopolymer, poly-3-hydroxy alkanoates (PHAs). Strategies adopted for utilization of agro-residues, challenges and future perspectives are discussed in detail in this comprehensive review. The possibility of PHA properties improvements can be increased by preparation of blends.
Collapse
Affiliation(s)
- Zheli Ding
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan Province 571101, China
| | - Vinay Kumar
- Department of Community Medicine, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam 602105, India
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Andrei Mikhailovich Dregulo
- Institute for Regional Economy Problems of the Russian Academy of Sciences (IRES RAS), 38 Serpukhovskaya str, 190013 Saint-Petersburg, Russia
| | - Ranjna Sirohi
- Department of Food Technology, School of Health Sciences & Technology, University of Petroleum and Energy Studies, Dehradun 248 007, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - Xiaodi Liu
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan Province 571101, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|