1
|
Aly R, Olalere O, Ryder A, Alyammahi M, Samad WA. Mechanical Property Characterization of Virgin and Recycled PLA Blends in Single-Screw Filament Extrusion for 3D Printing. Polymers (Basel) 2024; 16:3569. [PMID: 39771420 PMCID: PMC11679278 DOI: 10.3390/polym16243569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Additive manufacturing is an attractive technology due to its versatility in producing parts with diverse properties from a single material. However, the process often generates plastic waste, particularly from failed prints, making sustainability a growing concern. Recycling this waste material presents a potential solution for reducing environmental impact while creating new, functional parts. In this study, the feasibility of creating printable filaments from recycled polylactic acid (PLA) waste and virgin PLA pellets was explored. Filaments were manufactured in the lab using a single-screw desktop extruder with four temperature zones, with compositions ranging from 100% virgin PLA to 100% recycled PLA in 10% composition increments. Test samples were 3D printed using a Material Extrusion 3D printer and subjected to tensile testing in conjunction with digital image correlation to evaluate their ultimate tensile strength, yield strength, Young's modulus, ductility, toughness, and strain distribution. The results indicated that the optimal mechanical properties were observed in specimens made from 100% virgin PLA, 100% recycled PLA, and a 50% virgin/50% recycled PLA blend. Additionally, comparisons with a commercially produced PLA filament revealed that 100% virgin and 100% recycled blends have a 50.33% and 48% higher tensile strength than commercial filament, respectively. However, commercial filaments exhibited higher ductility and toughness than the lab-made extruded filament.
Collapse
Affiliation(s)
- Reem Aly
- Department of Mechanical & Industrial Engineering, Rochester Institute of Technology, Dubai 341055, United Arab Emirates; (R.A.); (O.O.)
| | - Olafisoye Olalere
- Department of Mechanical & Industrial Engineering, Rochester Institute of Technology, Dubai 341055, United Arab Emirates; (R.A.); (O.O.)
| | - Aaron Ryder
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA;
| | - Mozah Alyammahi
- R&D Technologist Dubai Electricity & Water Authority, Dubai 341055, United Arab Emirates;
| | - Wael A. Samad
- Department of Mechanical & Industrial Engineering, Rochester Institute of Technology, Dubai 341055, United Arab Emirates; (R.A.); (O.O.)
| |
Collapse
|
2
|
Janutėnienė J, Vasylius M, Tadžijevas A, Kartašovas V, Šapalas D, Grigaliūnienė S. Influence of Recycling and UV Exposure on the Properties of 3D Printing Polymer Materials. Polymers (Basel) 2024; 16:3292. [PMID: 39684037 DOI: 10.3390/polym16233292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
The use of polymer materials in various fields has increased significantly due to their ease of thermoforming and relatively low production costs. The production volume of these materials is extremely high, and according to forecasts from global statistical centers, it is expected to continue rising in the future. However, the extensive use and easy availability of polymeric materials have caused significant ecological problems. The world faces large amounts of polymer waste and environmental pollution. Plastic recycling remains challenging due to issues related to sorting polymer waste and separating it according to polymer types. Recycling certain plastics requires only a quarter of the energy needed to produce new plastic. To address this, circular economy principles should be applied to 3D printing products made from polymeric materials. A particularly wide application of these technologies is found when polymeric materials are used due to their low cost, low melting temperatures, and other advantageous properties. This paper investigates the impact of plastic recycling on the quality of 3D-printed products. During the research, samples were 3D printed and tested using both virgin and recycled PLA, ABS, and PET-G materials. The samples underwent static and dynamic tests to determine their mechanical properties, such as tensile strength, elongation, and impact resistance. The research results showed that the properties of recycled polymer materials deteriorate, with relative elongation of recycled and 3D-printed materials decreased by 16-45%. Despite this, recycled polymer materials can still be used, but it is necessary to account for the reduction in plasticity when creating products that will be exposed to dynamic loads. The impact strength is reduced by 6% for PLA, 54% for ABS, and 58% for PET-G. Additionally, the research included tests on samples printed with 3D printing technology that were exposed to UV irradiation. The results indicated similar dependences, as UV exposure also affects the reduction of material plasticity. After 66 Wh/m2 of UV radiation, the tensile strength of PET-G and PLA decreased by 17%, while ABS showed a reduction of about 5%.
Collapse
Affiliation(s)
- Jolanta Janutėnienė
- Department of Engineering, Klaipeda University, Bijunu St. 17, LT-91224 Klaipeda, Lithuania
| | - Marius Vasylius
- Marine Research Institute, Universiteto Av. 17, LT-92295 Klaipeda, Lithuania
| | - Artūras Tadžijevas
- Marine Research Institute, Universiteto Av. 17, LT-92295 Klaipeda, Lithuania
| | | | - Deivydas Šapalas
- Marine Research Institute, Universiteto Av. 17, LT-92295 Klaipeda, Lithuania
| | - Simona Grigaliūnienė
- Department of Engineering, Klaipeda University, Bijunu St. 17, LT-91224 Klaipeda, Lithuania
| |
Collapse
|
3
|
Atsani SI, Sing SL. Optimization of Glass-Powder-Reinforced Recycled High-Density Polyethylene (rHDPE) Filament for Additive Manufacturing: Transforming Bottle Caps into Sound-Absorbing Material. Polymers (Basel) 2024; 16:2324. [PMID: 39204544 PMCID: PMC11359929 DOI: 10.3390/polym16162324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Additive manufacturing presents promising potential as a sustainable processing technology, notably through integrating post-consumer recycled polymers into production. This study investigated the recycling of high-density polyethylene (rHDPE) into 3D printing filament, achieved by the following optimal extrusion parameters: 180 °C temperature, 7 rpm speed, and 10% glass powder addition. The properties of the developed rHDPE filament were compared with those of commonly used FDM filaments such as acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) to benchmark the performance of rHDPE against well-established materials in the 3D printing industry, providing a practical perspective for potential users. The resulting filament boasted an average tensile strength of 25.52 MPa, slightly exceeding ABS (25.41 MPa) and comparable to PLA (28.55 MPa). Despite diameter fluctuations, the filament proved usable in 3D printing. Mechanical tests compared the rHPDE filament 3D printed objects with ABS and PLA, showing lower strength but exceptional ductility and flexibility, along with superior sound absorption. A life cycle analysis underscored the sustainability advantages of rHDPE, reducing environmental impact compared to conventional disposal methods. While rHDPE falls behind in mechanical strength against virgin filaments, its unique attributes and sustainability position it as a valuable option for 3D printing, showcasing recycled materials' potential in sustainable innovation.
Collapse
Affiliation(s)
| | - Swee Leong Sing
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore;
| |
Collapse
|
4
|
de Sousa Alves BA, Kontziampasis D, Soliman AH. The Quest for the Holy Grail Of 3D Printing: A Critical Review of Recycling in Polymer Powder Bed Fusion Additive Manufacturing. Polymers (Basel) 2024; 16:2306. [PMID: 39204526 PMCID: PMC11359051 DOI: 10.3390/polym16162306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The benefits of additive manufacturing (AM) are widely recognised, boosting the AM method's use in industry, while it is predicted AM will dominate the global manufacturing industry. Alas, 3D printing's growth is hindered by its sustainability. AM methods generate vast amounts of residuals considered as waste, which are disposed of. Additionally, the energy consumed, the materials used, and numerous other factors render AM unsustainable. This paper aims to bring forward all documented solutions in the literature. The spotlight is on potential solutions for the Powder Bed Fusion (PBF) AM, focusing on Selective Laser Sintering (SLS), as these are candidates for mass manufacturing by industry. Solutions are evaluated critically, to identify research gaps regarding the recyclability of residual material. Only then can AM dominate the manufacturing industry, which is extremely important since this is a milestone for our transition into sustainable manufacturing. This transition itself is a complex bottleneck on our quest for becoming a sustainable civilisation. Unlike previous reviews that primarily concentrate on specific AM recycling materials, this paper explores the state of the art in AM recycling processes, incorporating the latest market data and projections. By offering a holistic and forward-looking perspective on the evolution and potential of AM, this review serves as a valuable resource for researchers and industry professionals alike.
Collapse
Affiliation(s)
- Bruno Alexandre de Sousa Alves
- Department of Engineering, School of Digital, Technology, Innovation & Business, Staffordshire University, College Road, Stoke-on-Trent, Staffordshire ST4 2DE, UK;
- Ford-Werke GmbH, Henry-Ford-Straße 1, 50735 Cologne, Germany
| | - Dimitrios Kontziampasis
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
- Dundee International Institute of Central South University, Central South University, Tongzipo Road, Changsha 410013, China
- School of Mechanical Engineering, Faculty of Science and Engineering, University of Leeds, Woodhouse Ln, Leeds LS 29JT, UK
| | - Abdel-Hamid Soliman
- Department of Engineering, School of Digital, Technology, Innovation & Business, Staffordshire University, College Road, Stoke-on-Trent, Staffordshire ST4 2DE, UK;
| |
Collapse
|
5
|
Pemas S, Gkiliopoulos D, Samiotaki C, Bikiaris DN, Terzopoulou Z, Pechlivani EM. Valorization of Tomato Agricultural Waste for 3D-Printed Polymer Composites Based on Poly(lactic acid). Polymers (Basel) 2024; 16:1536. [PMID: 38891482 PMCID: PMC11174512 DOI: 10.3390/polym16111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Agricultural waste is a renewable source of lignocellulosic components, which can be processed in a variety of ways to yield added-value materials for various applications, e.g., polymer composites. However, most lignocellulosic biomass is incinerated for energy. Typically, agricultural waste is left to decompose in the fields, causing problems such as greenhouse gas release, attracting insects and rodents, and impacting soil fertility. This study aims to valorise nonedible tomato waste with no commercial value in Additive Manufacturing (AM) to create sustainable, cost-effective and added-value PLA composites. Fused Filament Fabrication (FFF) filaments with 5 and 10 wt.% tomato stem powder (TSP) were developed, and 3D-printed specimens were tested. Mechanical testing showed consistent tensile properties with 5% TSP addition, while flexural strength decreased, possibly due to void formation. Dynamic mechanical analysis (DMA) indicated changes in storage modulus and damping factor with TSP addition. Notably, the composites exhibited antioxidant activity, increasing with higher TSP content. These findings underscore the potential of agricultural waste utilization in FFF, offering insights into greener waste management practices and addressing challenges in mechanical performance and material compatibility. This research highlights the viability of integrating agricultural waste into filament-based AM, contributing to sustainable agricultural practices and promoting circular economy initiatives.
Collapse
Affiliation(s)
- Sotirios Pemas
- Centre for Research and Technology Hellas, Information Technologies Institute, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (S.P.); (D.G.)
| | - Dimitrios Gkiliopoulos
- Centre for Research and Technology Hellas, Information Technologies Institute, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (S.P.); (D.G.)
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christina Samiotaki
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.S.); (D.N.B.)
| | - Dimitrios N. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.S.); (D.N.B.)
| | - Zoi Terzopoulou
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.S.); (D.N.B.)
- Laboratory of Industrial Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Eleftheria Maria Pechlivani
- Centre for Research and Technology Hellas, Information Technologies Institute, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (S.P.); (D.G.)
| |
Collapse
|
6
|
Maraveas C, Kyrtopoulos IV, Arvanitis KG. Evaluation of the Viability of 3D Printing in Recycling Polymers. Polymers (Basel) 2024; 16:1104. [PMID: 38675022 PMCID: PMC11054724 DOI: 10.3390/polym16081104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The increased use of plastics in industrial and agricultural applications has led to high levels of pollution worldwide and is a significant challenge. To address this plastic pollution, conventional methods such as landfills and incineration are used, leading to further challenges such as the generation of greenhouse gas emissions. Therefore, increasing interest has been directed to identifying alternative methods to dispose of plastic waste from agriculture. The novelty of the current research arose from the lack of critical reviews on how 3-Dimensional (3D) printing was adopted for recycling plastics, its application in the production of agricultural plastics, and its specific benefits, disadvantages, and limitations in recycling plastics. The review paper offers novel insights regarding the application of 3D printing methods including Fused Particle Fabrication (FPF), Hot Melt Extrusion (HME), and Fused Deposition Modelling (FDM) to make filaments from plastics. However, the methods were adopted in local recycling setups where only small quantities of the raw materials were considered. Data was collected using a systematic review involving 39 studies. Findings showed that the application of the 3D printing methods led to the generation of agricultural plastics such as Polylactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS), Polyethylene Terephthalate (PET), and High-Density Polyethylene (HDPE), which were found to have properties comparable to those of virgin plastic, suggesting the viability of 3D printing in managing plastic pollution. However, limitations were also associated with the 3D printing methods; 3D-printed plastics deteriorated rapidly under Ultraviolet (UV) light and are non-biodegradable, posing further risks of plastic pollution. However, UV stabilization helps reduce plastic deterioration, thus increasing longevity and reducing disposal. Future directions emphasize identifying methods to reduce the deterioration of 3D-printed agricultural plastics and increasing their longevity in addition to UV stability.
Collapse
Affiliation(s)
- Chrysanthos Maraveas
- Department of Natural Resources Development and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece; (I.V.K.); (K.G.A.)
| | | | | |
Collapse
|
7
|
Garwacki M, Cudnik I, Dziadowiec D, Szymczak P, Andrzejewski J. The Development of Sustainable Polyethylene Terephthalate Glycol-Based (PETG) Blends for Additive Manufacturing Processing-The Use of Multilayered Foil Waste as the Blend Component. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1083. [PMID: 38473555 DOI: 10.3390/ma17051083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
The polymer foil industry is one of the leading producers of plastic waste. The development of new recycling methods for packaging products is one of the biggest demands in today's engineering. The subject of this research was the melt processing of multilayered PET-based foil waste with PETG copolymer. The resulting blends were intended for additive manufacturing processing using the fused deposition modeling (FDM) method. In order to improve the properties of the developed materials, the blends compounding procedure was conducted with the addition of a reactive chain extender (CE) and elastomeric copolymer used as an impact modifier (IM). The samples were manufactured using the 3D printing technique and, for comparison, using the traditional injection molding method. The obtained samples were subjected to a detailed characterization procedure, including mechanical performance evaluation, thermal analysis, and rheological measurements. This research confirms that PET-based film waste can be successfully used for the production of filament, and for most samples, the FDM printing process can be conducted without any difficulties. Unfortunately, the unmodified blends are characterized by brittleness, which makes it necessary to use an elastomer additive (IM). The presence of a semicrystalline PET phase improves the thermal resistance of the prepared blends; however, an annealing procedure is required for this purpose.
Collapse
Affiliation(s)
- Mikołaj Garwacki
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3 Str, 60-965 Poznan, Poland
| | - Igor Cudnik
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3 Str, 60-965 Poznan, Poland
| | - Damian Dziadowiec
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3 Str, 61-138 Poznan, Poland
- Eurocast Sp. z o.o., Wejherowska 9 Str, 84-220 Strzebielino, Poland
| | - Piotr Szymczak
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3 Str, 61-138 Poznan, Poland
- Eurocast Sp. z o.o., Wejherowska 9 Str, 84-220 Strzebielino, Poland
| | - Jacek Andrzejewski
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3 Str, 61-138 Poznan, Poland
| |
Collapse
|
8
|
Sola A, Trinchi A. Recycling as a Key Enabler for Sustainable Additive Manufacturing of Polymer Composites: A Critical Perspective on Fused Filament Fabrication. Polymers (Basel) 2023; 15:4219. [PMID: 37959900 PMCID: PMC10649055 DOI: 10.3390/polym15214219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Additive manufacturing (AM, aka 3D printing) is generally acknowledged as a "green" technology. However, its wider uptake in industry largely relies on the development of composite feedstock for imparting superior mechanical properties and bespoke functionality. Composite materials are especially needed in polymer AM, given the otherwise poor performance of most polymer parts in load-bearing applications. As a drawback, the shift from mono-material to composite feedstock may worsen the environmental footprint of polymer AM. This perspective aims to discuss this chasm between the advantage of embedding advanced functionality, and the disadvantage of causing harm to the environment. Fused filament fabrication (FFF, aka fused deposition modelling, FDM) is analysed here as a case study on account of its unparalleled popularity. FFF, which belongs to the material extrusion (MEX) family, is presently the most widespread polymer AM technique for industrial, educational, and recreational applications. On the one hand, the FFF of composite materials has already transitioned "from lab to fab" and finally to community, with far-reaching implications for its sustainability. On the other hand, feedstock materials for FFF are thermoplastic-based, and hence highly amenable to recycling. The literature shows that recycled thermoplastic materials such as poly(lactic acid) (PLA), acrylonitrile-butadiene-styrene (ABS), and polyethylene terephthalate (PET, or its glycol-modified form PETG) can be used for printing by FFF, and FFF printed objects can be recycled when they are at the end of life. Reinforcements/fillers can also be obtained from recycled materials, which may help valorise waste materials and by-products from a wide range of industries (for example, paper, food, furniture) and from agriculture. Increasing attention is being paid to the recovery of carbon fibres (for example, from aviation), and to the reuse of glass fibre-reinforced polymers (for example, from end-of-life wind turbines). Although technical challenges and economical constraints remain, the adoption of recycling strategies appears to be essential for limiting the environmental impact of composite feedstock in FFF by reducing the depletion of natural resources, cutting down the volume of waste materials, and mitigating the dependency on petrochemicals.
Collapse
Affiliation(s)
- Antonella Sola
- Advanced Materials and Processing, Manufacturing Business Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Melbourne, VIC 3169, Australia
| | - Adrian Trinchi
- Advanced Materials and Processing, Manufacturing Business Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Melbourne, VIC 3169, Australia
| |
Collapse
|
9
|
Kassab A, Al Nabhani D, Mohanty P, Pannier C, Ayoub GY. Advancing Plastic Recycling: Challenges and Opportunities in the Integration of 3D Printing and Distributed Recycling for a Circular Economy. Polymers (Basel) 2023; 15:3881. [PMID: 37835930 PMCID: PMC10575100 DOI: 10.3390/polym15193881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The concept of the circular economy has emerged as a promising solution to address the mounting concerns surrounding plastic waste and the urgent need for sustainable resource management. While conventional centralized recycling remains a common practice for plastic waste, centralized facilities may prove inadequate in handling the ever-increasing volumes of plastic waste generated globally. Consequently, exploring alternative recycling methods, such as distributed recycling by additive manufacturing, becomes paramount. This innovative approach encompasses actively involving communities in recycling practices and promotes a circular economy. This comprehensive review paper aims to explore the critical aspects necessary to realize the potential of distributed recycling by additive manufacturing. In this paper, our focus lies on proposing schemes that leverage existing literature to harness the potential of distributed recycling by additive manufacturing as an effective approach to plastic waste management. We explore the intricacies of the recycling process, optimize 3D printing parameters, address potential challenges, and evaluate the mechanical properties of recycled materials. Our investigation draws heavily from the literature of the last five years, as we conduct a thorough critical assessment of DRAM implementation and its influence on the properties of 3D printing structures. Through comprehensive analysis, we reveal the potential of recycled materials in delivering functional components, with insights into their performance, strengths, and weaknesses. This review serves as a comprehensive guide for those interested in embracing distributed recycling by additive manufacturing as a transformative approach to plastic recycling. By fostering community engagement, optimizing 3D printing processes, and incorporating suitable additives, it is possible to collectively contribute to a more sustainable future while combatting the plastic waste crisis. As progress is made, it becomes essential to further delve into the complexities of material behavior, recycling techniques, and the long-term durability of recycled 3D printed components. By addressing these challenges head-on, it is feasible to refine and advance distributed recycling by additive manufacturing as a viable pathway to minimize plastic waste, fostering a circular economy and cultivating a cleaner planet for generations to come.
Collapse
Affiliation(s)
- Ali Kassab
- Department of Industrial and Manufacturing Systems, University of Michigan-Dearborn, Dearborn, MI 48128, USA;
| | - Dawood Al Nabhani
- Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA; (D.A.N.); (C.P.)
| | - Pravansu Mohanty
- Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA; (D.A.N.); (C.P.)
| | - Christopher Pannier
- Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA; (D.A.N.); (C.P.)
| | - Georges Y. Ayoub
- Department of Industrial and Manufacturing Systems, University of Michigan-Dearborn, Dearborn, MI 48128, USA;
| |
Collapse
|
10
|
Nagengast N, Bay C, Döpper F, Schmidt HW, Neuber C. Thermo-Mechanical Recyclability of Additively Manufactured Polypropylene and Polylactic Acid Parts and Polypropylene Support Structures. Polymers (Basel) 2023; 15:2291. [PMID: 37242864 PMCID: PMC10223719 DOI: 10.3390/polym15102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Polymers have a reputation for several advantageous characteristics like chemical resistance, weight reduction, and simple form-giving processes. The rise of additive manufacturing technologies such as Fused Filament Fabrication (FFF) has introduced an even more versatile production process that supported new product design and material concepts. This led to new investigations and innovations driven by the individualization of customized products. The other side of the coin contains an increasing resource and energy consumption satisfying the growing demand for polymer products. This turns into a magnitude of waste accumulation and increased resource consumption. Therefore, appropriate product and material design, taking into account end-of-life scenarios, is essential to limit or even close the loop of economically driven product systems. In this paper, a comparison of virgin and recycled biodegradable (polylactic acid (PLA)) and petroleum-based (polypropylene (PP) & support) filaments for extrusion-based Additive Manufacturing is presented. For the first time, the thermo-mechanical recycling setup contained a service-life simulation, shredding, and extrusion. Specimens and complex geometries with support materials were manufactured with both, virgin and recycled materials. An empirical assessment was executed through mechanical (ISO 527), rheological (ISO 1133), morphological, and dimensional testing. Furthermore, the surface properties of the PLA and PP printed parts were analyzed. In summary, PP parts and parts from its support structure showed, in consideration of all parameters, suitable recyclability with a marginal parameter variance in comparison to the virgin material. The PLA components showed an acceptable decline in the mechanical values but through thermo-mechanical degradation processes, rheological and dimensional properties of the filament dropped decently. This results in significantly identifiable artifacts of the product optics, based on an increase in surface roughness.
Collapse
Affiliation(s)
- Niko Nagengast
- Chair of Biomechanics, Faculty of Engineering, University of Bayreuth, Universitaetsstrasse 9, 95447 Bayreuth, Germany
| | - Christian Bay
- Research Center for Additive Innovations, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
- Chair of Manufacturing and Remanufacturing Technology, Faculty of Engineering, University of Bayreuth, Universitaetsstrasse 9, 95447 Bayreuth, Germany
| | - Frank Döpper
- Research Center for Additive Innovations, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
- Chair of Manufacturing and Remanufacturing Technology, Faculty of Engineering, University of Bayreuth, Universitaetsstrasse 9, 95447 Bayreuth, Germany
| | - Hans-Werner Schmidt
- Chair of Macromolecular Chemistry, Faculty of Natural Science, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
- Bavarian Polymer Institute, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Christian Neuber
- Chair of Macromolecular Chemistry, Faculty of Natural Science, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| |
Collapse
|
11
|
Cieślik M, Rodak A, Susik A, Wójcik N, Szociński M, Ryl J, Formela K. Multiple Reprocessing of Conductive PLA 3D-Printing Filament: Rheology, Morphology, Thermal and Electrochemical Properties Assessment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16031307. [PMID: 36770313 PMCID: PMC9920316 DOI: 10.3390/ma16031307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 05/27/2023]
Abstract
Additive manufacturing technologies are gaining more and more attention, resulting in the development or modification of 3D printing techniques and dedicated materials. On the other hand, economic and ecological aspects force the industry to develop material recycling strategies. In this work, the multiple reprocessing of a commercially available PLA conductive composite with carbon black filler, dedicated to 3D printing, was investigated. The effects of extrusion temperature (190 °C and 200 °C) and reprocessing steps (1-5 steps) on the rheology, morphology, thermal and electrochemical properties of the conductive PLA 3D-printing filament were evaluated. The results showed deterioration of the thermal stability and material strength, as well as the influence of reprocessing on the melting point, which increases after initial melting. The electronic conduction mechanism of the composite depends on the percolation paths and it is also affected by the multiple processing. The reversibility of the [Fe(CN)6]3-/4- redox process diminishes with a higher degradation level of the conductive PLA. Importantly, the material fluidity was too high after the multiple reprocessing, which should be considered and suitably corrected during CB-PLA application as a 3D-printed electrode material.
Collapse
Affiliation(s)
- Mateusz Cieślik
- Advanced Materials Center, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Agata Rodak
- Advanced Materials Center, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Agnieszka Susik
- Advanced Materials Center, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Natalia Wójcik
- Advanced Materials Center, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Michał Szociński
- Department of Electrochemistry, Corrosion and Materials Engineering, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Jacek Ryl
- Advanced Materials Center, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Krzysztof Formela
- Advanced Materials Center, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
12
|
Mishra V, Negi S, Kar S. FDM-based additive manufacturing of recycled thermoplastics and associated composites. JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT 2023; 25:758-784. [PMID: 36686404 PMCID: PMC9838364 DOI: 10.1007/s10163-022-01588-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Hailed since the fourth industrial revolution, three-dimensional (3D) printing or additive manufacturing (AM) has been extensively implemented in various manufacturing sectors. This process is popular for generating regular products and incorporating innovative designs into the components like auxetic structures, such as fabrication of engineering products, customized implants and sophisticated biomedical devices. Over the years, one of the interesting outputs of this emerging technology is the reuse of waste thermoplastic materials to produce competent products through the fused deposition modeling (FDM) technique. The strength of FDM components produced from thermoplastic waste is lower than that of virgin plastic FDM counterparts. So, there is a need to understand the significant changes in the recycled thermoplastic material during subsequent extrusions, which are chain scission, change in viscosity and breaking strength. The use of additives has been a promising solution to improve the performance of recycled material for 3D printing applications. Hence, this study aims to provide an overview of reusing plastic waste through FDM-based 3D printing. This review summarizes the current knowledge about the effect of processing on thermo-mechanical properties of recycled plastic FDM parts and the use of various additives to improve the overall quality. In addition, two case studies from open literature have been demonstrated to explain the use of FDM and associated technology for plastic recycling.
Collapse
Affiliation(s)
- Vishal Mishra
- National Institute of Technology Silchar, Silchar, Assam India
| | - Sushant Negi
- National Institute of Technology Silchar, Silchar, Assam India
| | - Simanchal Kar
- National Institute of Technology Silchar, Silchar, Assam India
| |
Collapse
|
13
|
Ramezani Dana H, Ebrahimi F. Synthesis, properties, and applications of polylactic
acid‐based
polymers. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hossein Ramezani Dana
- Mechanics, Surfaces and Materials Processing (MSMP) – EA 7350 Arts et Metiers Institute of Technology Aix‐en‐Provence France
- Texas A&M Engineering Experiment Station (TEES) Texas A&M University College Station Texas USA
| | - Farnoosh Ebrahimi
- PRISM Polymer, Recycling, Industrial, Sustainability and Manufacturing Technological University of the Shannon (TUS) Athlone Ireland
| |
Collapse
|
14
|
Madhu NR, Erfani H, Jadoun S, Amir M, Thiagarajan Y, Chauhan NPS. Fused deposition modelling approach using 3D printing and recycled industrial materials for a sustainable environment: a review. THE INTERNATIONAL JOURNAL, ADVANCED MANUFACTURING TECHNOLOGY 2022; 122:2125-2138. [PMID: 36091410 PMCID: PMC9443620 DOI: 10.1007/s00170-022-10048-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/25/2022] [Indexed: 06/12/2023]
Abstract
According to research findings of many peer-reviewed studies, up to 90% of household items may be made of plastic. But nowadays, just a small portion of plastic waste is recycled. Plastic pyrolysis and polymer breakdown are environmentally hazardous. Processing is, therefore, necessary for recycling. Plastics are constantly being manufactured and require minimal processing, necessitating innovation. Plastic recycling is becoming a major issue for environmentalists and waste management professionals. Fused deposition modelling, or FDM, is one of the most popular types of additive manufacturing. It uses the melt extrusion process to deposit filaments of thermal polymers in a predetermined pattern. Using a computer-generated design, 3D printing, sometimes referred to as additive manufacturing, is a technique for building three-dimensional objects layer by layer. A 3D item is produced by the additive method of 3D printing, which involves building up layers of material. To make a three-dimensional object, FDM printers eject a thermoplastic filament that has been heated to its melting point layer by layer. 3D printing is a rapidly expanding industry and the market in this field has grown up to 23% by 2021. Several experiments on new 3D printing materials have been carried out to reduce pollution and the supply of plastic. Various additives have been investigated to increase recycled polymers' molecular weight and mechanical properties. The most frequent type of fibre found in that is thermoplastic fibre. In this instance, waste ABS (acrylonitrile butadiene styrene) plastic from industrial FDM printers was gathered and examined in a bustling open shop. In this review, we discussed the use of recyclable polymers in 3D printing for waste material management.
Collapse
Affiliation(s)
- Nithar Ranjan Madhu
- Department of Zoology, Acharya Prafulla Chandra College, New Barrackpore, West Bengal India
| | - Hadi Erfani
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sapana Jadoun
- Laboratorio de Especiación Y Trazas Elementales, Departamento de Química Analítica E Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Mohammad Amir
- Department of Electrical Engineering, Jamia Millia Islamia Central University, Delhi, India
| | - Y. Thiagarajan
- Department of Electrical and Electronics Engineering, Christ College of Engineering and Technology, Puducherry, India
| | | |
Collapse
|
15
|
Rimkus A, Farh MM, Gribniak V. Continuously Reinforced Polymeric Composite for Additive Manufacturing—Development and Efficiency Analysis. Polymers (Basel) 2022; 14:polym14173471. [PMID: 36080547 PMCID: PMC9459897 DOI: 10.3390/polym14173471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
Additive manufacturing (AM) is a rapidly growing technology, referring to a 3D design process by which digital data builds a physical object in layers by depositing the printed material. The AM has evolved in the aviation, automotive, and medical industries. The AM development for fiber-reinforced composites is the point of current interest, with most research focused on using short fibers. However, notwithstanding particular technological complexities, continuous filaments have superior tensile properties compared to short fibers. Therefore, this manuscript develops an adaptive continuous reinforcement approach for AM based on polymeric material extrusion (ME) technology. It combines the raw material production process, including the ability to vary constituents (e.g., filament materials, reinforcement percentage, and recycled plastic replacement ratio), and the reinforcement efficiency analysis regarding the experimentally verified numerical model. The literature review has identified compatible materials for ensuring sustainable and high-performance plastic composites reinforced with continuous fibers. In addition, it identified the applicability of recycled polymers in developing ME processes. Thus, the study includes an experimental program to investigate the mechanical performance of 3D printed samples (polylactic acid, PLA, matrix reinforced with continuous aramid filament) through a tensile test. Recycled polymer replaced 40% of the virgin PLA. The test results do not demonstrate the recycled polymer’s negative effect on the mechanical performance of the printed samples. Moreover, the recycled material reduced the PLA cost by almost twice. However, together with the potential efficiency of the developed adaptive manufacturing technology, the mechanical characteristics of the printed material revealed room for printing technology improvement, including the aligned reinforcement distribution in the printed product and printing parameters’ setup.
Collapse
Affiliation(s)
- Arvydas Rimkus
- Laboratory of Innovative Building Structures, Vilnius Gediminas Technical University (VILNIUS TECH), LT-10223 Vilnius, Lithuania
- Department of Steel and Composite Structures, Vilnius Gediminas Technical University (VILNIUS TECH), LT-10223 Vilnius, Lithuania
| | - Mahmoud M. Farh
- Laboratory of Innovative Building Structures, Vilnius Gediminas Technical University (VILNIUS TECH), LT-10223 Vilnius, Lithuania
- Department of Steel and Composite Structures, Vilnius Gediminas Technical University (VILNIUS TECH), LT-10223 Vilnius, Lithuania
| | - Viktor Gribniak
- Laboratory of Innovative Building Structures, Vilnius Gediminas Technical University (VILNIUS TECH), LT-10223 Vilnius, Lithuania
- Department of Steel and Composite Structures, Vilnius Gediminas Technical University (VILNIUS TECH), LT-10223 Vilnius, Lithuania
- Correspondence: ; Tel.: +370-6-134-6759
| |
Collapse
|
16
|
Phutthimethakul L, Supakata N. Partial Replacement of Municipal Incinerated Bottom Ash and PET Pellets as Fine Aggregate in Cement Mortars. Polymers (Basel) 2022; 14:polym14132597. [PMID: 35808643 PMCID: PMC9269149 DOI: 10.3390/polym14132597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
The objective of this study was to examine the optimal mixing ratio of municipal incinerated bottom ash (MIBA) and PET pellets used as a partial replacement of fine aggregates in the manufacture of cement mortars. As a partial replacement for sand, 15 mortar specimens were prepared by mixing 0%, 10%, 20%, 30%, and 40% municipal incinerated bottom ash (MIBA) (A) and 0%, 10%, and 20% PET pellets (P) in 5 cm × 5 cm × 5 cm cube molds. The cement/aggregate ratio was 1:3, and the water/cement ratio was 0.5 for all specimens. The results showed that the compressive strength of cement mortars decreased when increasing the amount of MIBA and PET pellets. The mortar specimens with 10% PET pellets achieved the highest compressive strength (49.53 MPa), whereas the mortar specimens with 40% MIBA and 20% PET pellets achieved the lowest compressive strength (24.44 MPa). Based on this finding, replacing 10% and 20% sand in cement mortar with only MIBA or only PET pellets could result in compressive strengths ranging from 46.00 MPa to 49.53 MPa.
Collapse
Affiliation(s)
- Lalitsuda Phutthimethakul
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Nuta Supakata
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Research Group (STAR): Waste Utilization and Ecological Risk Assessment, The Ratchadaphiseksomphot Endowment Fund, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence:
| |
Collapse
|
17
|
A Systematic Literature Review on Additive Manufacturing in the Context of Circular Economy. SUSTAINABILITY 2021. [DOI: 10.3390/su13116007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Additive Manufacturing (AM) is, undoubtedly, one of the most promising and potentially disruptive technologies of the Industry 4.0 era, able to transform the traditional manufacturing paradigm and fuel the generally accepted and necessary shift towards the conceptualisation, design and adoption of sustainable and circular business models. The objective of this paper is to contribute to the structure of the scientific field residing in the intersection of AM and Circular Economy (CE), by determining the status of its current state-of-the-art, proposing an initial typology in an attempt to contribute to the existing efforts of structuring this rather novice research area and pinpointing research gaps where more focus should be put, and highlighting areas with a significant potential for added-value future research. To that end, a sample of 206 papers, published from 2014 to 2020, was retrieved from the Scopus and Google Scholar databases. After studying and critically evaluating their content in full, contributions were classified into six thematic categories, providing a first typology of the current literature, followed by a detailed section highlighting and taxonomizing existing review studies. Next, contributions of the three categories of interest are discussed followed by a critical evaluation of the study’s contribution, inherent limitations and future research potential.
Collapse
|
18
|
Characterising the Mould Rectification Process for Designing Scoliosis Braces: Towards Automated Digital Design of 3D-Printed Braces. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The plaster-casting method to create a scoliosis brace consists of mould generation and rectification to obtain the desired orthosis geometry. Alternative methods entail the use of 3D scanning and CAD/CAM. However, both manual and digital design entirely rely on the orthotist expertise. Characterisation of the rectification process is needed to ensure that digital designs are as efficient as plaster-cast designs. Three-dimensional scans of five patients, pre-, and post-rectification plaster moulds were obtained using a Structure Mark II scanner. Anatomical landmark positions, transverse section centroids, and 3D surface deviation analyses were performed to characterise the rectification process. The rectification process was characterised using two parameters. First, trends in the external contours of the rectified moulds were found, resulting in lateral tilt angles of 81 ± 3.8° and 83.3 ± 2.6° on the convex and concave side, respectively. Second, a rectification ratio at the iliac crest (0.23 ± 0.04 and 0.11 ± 0.02 on the convex and concave side, respectively) was devised, based on the pelvis width to estimate the volume to be removed. This study demonstrates that steps of the manual rectification process can be characterised. Results from this study can be fed into software to perform automatic digital rectification.
Collapse
|
19
|
Mikula K, Skrzypczak D, Izydorczyk G, Warchoł J, Moustakas K, Chojnacka K, Witek-Krowiak A. 3D printing filament as a second life of waste plastics-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12321-12333. [PMID: 32888147 PMCID: PMC7473699 DOI: 10.1007/s11356-020-10657-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/26/2020] [Indexed: 05/22/2023]
Abstract
In recent times, the issue of plastic recycling has become one of the leading issues of environmental protection and waste management. Polymer materials have been found an application in many areas of daily life and industry. Along with their extended use, the problem of plastic wastes appeared because, after withdrawal from use, they became persistent and noxious wastes. The possibility of reusing polymeric materials gives a possibility of valorization-a second life-and enables effective waste utilization to obtain consumable products. The 3D printing market is a well-growing sector. Printable filaments can be made from a variety of thermoplastic materials, including those from recycling. This paper focuses on a review of the available literature on the production of filaments for 3D printers from recycled polymers as the alternative to present approach of central selective collection of plastics. The possibility of recycling of basic thermoplastic materials and the impact of processing on their physicochemical and mechanical properties were verified (Lanzotti et al. 2019). In addition, commercially available filaments produced from recycled materials and devices which allow self-production of filaments to 3D printing from plastic waste were reviewed.
Collapse
Affiliation(s)
- Katarzyna Mikula
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland.
| | - Dawid Skrzypczak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Jolanta Warchoł
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| |
Collapse
|
20
|
Rodríguez-León JF, Chaparro-Rico BDM, Russo M, Cafolla D. An Autotuning Cable-Driven Device for Home Rehabilitation. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6680762. [PMID: 33628406 PMCID: PMC7895582 DOI: 10.1155/2021/6680762] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/04/2021] [Accepted: 01/28/2021] [Indexed: 11/24/2022]
Abstract
Out of all the changes to our daily life brought by the COVID-19 pandemic, one of the most significant ones has been the limited access to health services that we used to take for granted. Thus, in order to prevent temporary injuries from having lingering or permanent effects, the need for home rehabilitation device is urgent. For this reason, this paper proposes a cable-driven device for limb rehabilitation, CUBE2, with a novel end-effector (EE) design and autotuning capabilities to enable autonomous use. The proposed design is presented as an evolution of the previous CUBE design. In this paper, the proposed device is modelled and analyzed with finite element analysis. Then, a novel vision-based control strategy is described. Furthermore, a prototype has been manufactured and validated experimentally. Preliminary test to estimate home position repeatability has been carried out.
Collapse
Affiliation(s)
| | | | - Matteo Russo
- Faculty of Engineering, University of Nottingham, Nottingham NG81BB, UK
| | - Daniele Cafolla
- Biomechatronics Lab, IRCCS Neuromed, Pozzilli (IS) 86077, Italy
| |
Collapse
|
21
|
De Santis R, Russo T, Rau JV, Papallo I, Martorelli M, Gloria A. Design of 3D Additively Manufactured Hybrid Structures for Cranioplasty. MATERIALS 2021; 14:ma14010181. [PMID: 33401673 PMCID: PMC7794857 DOI: 10.3390/ma14010181] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
A wide range of materials has been considered to repair cranial defects. In the field of cranioplasty, poly(methyl methacrylate) (PMMA)-based bone cements and modifications through the inclusion of copper doped tricalcium phosphate (Cu-TCP) particles have been already investigated. On the other hand, aliphatic polyesters such as poly(ε-caprolactone) (PCL) and polylactic acid (PLA) have been frequently investigated to make scaffolds for cranial bone regeneration. Accordingly, the aim of the current research was to design and fabricate customized hybrid devices for the repair of large cranial defects integrating the reverse engineering approach with additive manufacturing, The hybrid device consisted of a 3D additive manufactured polyester porous structures infiltrated with PMMA/Cu-TCP (97.5/2.5 w/w) bone cement. Temperature profiles were first evaluated for 3D hybrid devices (PCL/PMMA, PLA/PMMA, PCL/PMMA/Cu-TCP and PLA/PMMA/Cu-TCP). Peak temperatures recorded for hybrid PCL/PMMA and PCL/PMMA/Cu-TCP were significantly lower than those found for the PLA-based ones. Virtual and physical models of customized devices for large cranial defect were developed to assess the feasibility of the proposed technical solutions. A theoretical analysis was preliminarily performed on the entire head model trying to simulate severe impact conditions for people with the customized hybrid device (PCL/PMMA/Cu-TCP) (i.e., a rigid sphere impacting the implant region of the head). Results from finite element analysis (FEA) provided information on the different components of the model.
Collapse
Affiliation(s)
- Roberto De Santis
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54–Mostra d’Oltremare Pad. 20, 80125 Naples, Italy; (T.R.); (A.G.)
- Correspondence: ; Tel.: +39-081-242-5936
| | - Teresa Russo
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54–Mostra d’Oltremare Pad. 20, 80125 Naples, Italy; (T.R.); (A.G.)
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, 119991 Moscow, Russia
| | - Ida Papallo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Massimo Martorelli
- Department of Industrial Engineering, Fraunhofer JL IDEAS, University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy;
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54–Mostra d’Oltremare Pad. 20, 80125 Naples, Italy; (T.R.); (A.G.)
| |
Collapse
|
22
|
Çakan BG. Effects of raster angle on tensile and surface roughness properties of various FDM filaments. JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY 2021; 35:3347-3353. [PMCID: PMC8295972 DOI: 10.1007/s12206-021-0708-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 10/02/2023]
Abstract
Parts produced by FDM (fused deposition modelling) technique, where polymer filaments are used, are anisotropic and their properties vary depending on the printing parameters, one of which is raster angle. In this study, the effects of this parameter on the tensile and the surface roughness properties were investigated. It was determined that the ultimate tensile strength (UTS) decreased with increasing raster angle; hence, 0° raster angle where tensile loading direction is parallel to the raster yielded the highest strength. Besides ±45° raster angle resulted the most ductile behaviour with the highest fracture strains. Fracture occurred due to raster failure for 0° raster angle but for 90° raster angle, it was due to the failure of the interlayer raster bonds. In the case of ±45°, both of the failure mechanisms were effective. Surface roughness values increased up to 7 µm when measurement was perpendicular to the raster and dropped below 1 µm when it was parallel to the raster.
Collapse
Affiliation(s)
- Betül Gülçimen Çakan
- Department of Mechanical Engineering, Bursa Uludağ University, Görükle, Bursa, 16059 Turkey
| |
Collapse
|
23
|
Waseem M, Salah B, Habib T, Saleem W, Abas M, Khan R, Ghani U, Siddiqi MUR. Multi-Response Optimization of Tensile Creep Behavior of PLA 3D Printed Parts Using Categorical Response Surface Methodology. Polymers (Basel) 2020; 12:E2962. [PMID: 33322445 PMCID: PMC7764475 DOI: 10.3390/polym12122962] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
Three-dimensional printed plastic products developed through fused deposition modeling (FDM) endure long-term loading in most of the applications. The tensile creep behavior of such products is one of the imperative benchmarks to ensure dimensional stability under cyclic and dynamic loads. This research dealt with the optimization of the tensile creep behavior of 3D printed parts produced through fused deposition modeling (FDM) using polylactic acid (PLA) material. The geometry of creep test specimens follows the American Society for Testing and Materials (ASTM D2990) standards. Three-dimensional printing is performed on an open-source MakerBot desktop 3D printer. The Response Surface Methodology (RSM) is employed to predict the creep rate and rupture time by undertaking the layer height, infill percentage, and infill pattern type (linear, hexagonal, and diamond) as input process parameters. A total of 39 experimental runs were planned by means of a categorical central composite design. The analysis of variance (ANOVA) results revealed that the most influencing factors for creep rate were layer height, infill percentage, and infill patterns, whereas, for rupture time, infill pattern was found significant. The optimized levels obtained for both responses for hexagonal pattern were 0.1 mm layer height and 100% infill percentage. Some verification tests were performed to evaluate the effectiveness of the adopted RSM technique. The implemented research is believed to be a comprehensive guide for the additive manufacturing users to determine the optimum process parameters of FDM which influence the product creep rate and rupture time.
Collapse
Affiliation(s)
- Muhammad Waseem
- Department of Industrial Engineering, University of Engineering & Technology, Peshawar 25100, Pakistan; (M.W.); (T.H.)
| | - Bashir Salah
- Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia;
| | - Tufail Habib
- Department of Industrial Engineering, University of Engineering & Technology, Peshawar 25100, Pakistan; (M.W.); (T.H.)
| | - Waqas Saleem
- Department of Mechanical and Manufacturing Engineering, Institute of Technology, F91 YW50 Sligo, Ireland;
| | - Muhammad Abas
- Department of Industrial Engineering, University of Engineering & Technology, Peshawar 25100, Pakistan; (M.W.); (T.H.)
| | - Razaullah Khan
- Department of Mechanical Engineering Technology, University of Technology, Nowshera 24100, Pakistan
| | - Usman Ghani
- Department of Mechanical Engineering, University of Engineering and Technology, Peshawar, Jalozai Campus 24240, Pakistan;
| | - Muftooh Ur Rehman Siddiqi
- Department of Mechanical Engineering, CECOS University of IT and Emerging Sciences, Peshawar 25100, Pakistan;
| |
Collapse
|
24
|
Lambin P, Liubimau A, Bychanok D, Vitale L, Kuzhir P. Thermal and Electromagnetic Properties of Polymer Holey Structures Produced by Additive Manufacturing. Polymers (Basel) 2020; 12:E2892. [PMID: 33276646 PMCID: PMC7761545 DOI: 10.3390/polym12122892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 11/25/2022] Open
Abstract
Multifunctional 3D-printed holey structures made of composite polymers loaded with nanocarbon were designed to serve simultaneously as GHz-radiation absorbing layers and heat conductors. The geometry of the structures was devised to allow heat to be easily transferred through, with special attention paid to thermal conductivity. Numerical calculations and a simple homogenization theory were conducted in parallel to address this property. Different structures have been considered and compared. The electromagnetic shielding effectiveness of the produced holey structures was measured in the microwave range.
Collapse
Affiliation(s)
- Philippe Lambin
- Department of Physics, University of Namur, B-5000 Namur, Belgium
- Higher Education Pedagogical Institute, Bukavu, Congo
| | - Aliaksandr Liubimau
- Institute for Nuclear Problems, Belarusian State University, 220030 Minsk, Belarus; (A.L.); (D.B.); (P.K.)
| | - Dzmitry Bychanok
- Institute for Nuclear Problems, Belarusian State University, 220030 Minsk, Belarus; (A.L.); (D.B.); (P.K.)
- Radioelectronics Department, Faculty of Radiophysics, Tomsk State University, 634050 Tomsk, Russia
| | - Luca Vitale
- Narrando srl and Department of Industrial Engineering, University of Salerno, I-84084 Fisciano, Italy;
| | - Polina Kuzhir
- Institute for Nuclear Problems, Belarusian State University, 220030 Minsk, Belarus; (A.L.); (D.B.); (P.K.)
- Institute of Photonics, University of Eastern Finland, FI-80100 Joensuu, Finland
| |
Collapse
|
25
|
Pinho AC, Amaro AM, Piedade AP. 3D printing goes greener: Study of the properties of post-consumer recycled polymers for the manufacturing of engineering components. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 118:426-434. [PMID: 32966947 DOI: 10.1016/j.wasman.2020.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
This study concerns the evaluation of several properties/characteristics of 3D printed poly(lactic acid) (PLA) polymer and acrylonitrile-butadienestyrene (ABS) copolymer, recycled from food packages and car dashboards, respectively. The aim is to evaluate the potential of recycled polymers that are recovered from solid polymer waste (SPW) to be reused for functional components/parts for add-value applications. The study compared the performance of the recycled material with the obtained from the 3D printing of virgin polymer. The characterization was made considering the chemical, thermal and mechanical properties as well as surface roughness and wettability. Although the thermal characterization did not indicate significant variations between recycled and virgin material, the mechanical recycling process induced some chain scission in PLA. Consequently, the semi-crystalline polymer revealed losses of 33% both in tensile stress and flexural strength. On the contrary, recycled ABS did not show changes in the mechanical properties of the printed specimens. Both recycled polymers produced smoother surfaces with a decrease of the mean surface roughness between 55% and 65%. Considering the properties required by manufacturers of food containers and car dashboards, this study indicates that recycled materials can be reused for the same applications.
Collapse
Affiliation(s)
- Ana C Pinho
- University of Coimbra, CEMMPRE, Department of Mechanical Engineering, 3030-788 Coimbra, Portugal
| | - Ana M Amaro
- University of Coimbra, CEMMPRE, Department of Mechanical Engineering, 3030-788 Coimbra, Portugal
| | - Ana P Piedade
- University of Coimbra, CEMMPRE, Department of Mechanical Engineering, 3030-788 Coimbra, Portugal.
| |
Collapse
|
26
|
Frontal Alpha Complexity of Different Severity Depression Patients. JOURNAL OF HEALTHCARE ENGINEERING 2020; 2020:8854725. [PMID: 33029338 PMCID: PMC7528126 DOI: 10.1155/2020/8854725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 11/17/2022]
Abstract
Depression is a leading cause of disability worldwide, and objective biomarkers are required for future computer-aided diagnosis. This study aims to assess the variation of frontal alpha complexity among different severity depression patients and healthy subjects, therefore to explore the depressed neuronal activity and to suggest valid biomarkers. 69 depression patients (divided into three groups according to the disease severity) and 14 healthy subjects were employed to collect 3-channel resting Electroencephalogram signals. Sample entropy and Lempel-Ziv complexity methods were employed to evaluate the Electroencephalogram complexity among different severity depression groups and healthy group. Kruskal-Wallis rank test and group t-test were performed to test the difference significance among four groups and between each two groups separately. All indexes values show that depression patients have significantly increased complexity compared to healthy subjects, and furthermore, the complexity keeps increasing as the depression deepens. Sample entropy measures exhibit superiority in distinguishing mild depression from healthy group with significant difference even between nondepressive state group and healthy group. The results confirm the altered neuronal activity influenced by depression severity and suggest sample entropy and Lempel-Ziv complexity as promising biomarkers in future depression evaluation and diagnosis.
Collapse
|
27
|
Wang Q, Ji C, Sun L, Sun J, Liu J. Cellulose Nanofibrils Filled Poly(Lactic Acid) Biocomposite Filament for FDM 3D Printing. Molecules 2020; 25:molecules25102319. [PMID: 32429191 PMCID: PMC7287905 DOI: 10.3390/molecules25102319] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
As direct digital manufacturing, 3D printing (3DP) technology provides new development directions and opportunities for the high-value utilization of a wide range of biological materials. Cellulose nanofibrils (CNF) and polylactic acid (PLA) biocomposite filaments for fused deposition modeling (FDM) 3DP were developed in this study. Firstly, CNF was isolated by enzymatic hydrolysis combined with high-pressure homogenization. CNF/PLA filaments were then prepared by melt-extrusion of PLA as the matrix and CNF as the filler. Thermal stability, mechanical performance, and water absorption property of biocomposite filaments and 3D-printed objects were analyzed. Findings showed that CNF increased the thermal stability of the PLA/PEG600/CNF composite. Compared to unfilled PLA FDM filaments, the CNF filled PLA biocomposite filament showed an increase of 33% in tensile strength and 19% in elongation at break, suggesting better compatibility for desktop FDM 3DP. This study provided a new potential for the high-value utilization of CNF in 3DP in consumer product applications.
Collapse
Affiliation(s)
- Qianqian Wang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.W.); (C.J.); (J.L.)
| | - Chencheng Ji
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.W.); (C.J.); (J.L.)
| | - Lushan Sun
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
- Correspondence: (L.S.); (J.S.)
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.W.); (C.J.); (J.L.)
- Correspondence: (L.S.); (J.S.)
| | - Jun Liu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.W.); (C.J.); (J.L.)
| |
Collapse
|
28
|
Sustainable Additive Manufacturing: Mechanical Response of Acrylonitrile-Butadiene-Styrene over Multiple Recycling Processes. SUSTAINABILITY 2020. [DOI: 10.3390/su12093568] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sustainability in additive manufacturing refers mainly to the recycling rate of polymers and composites used in fused filament fabrication (FFF), which nowadays are rapidly increasing in volume and value. Recycling of such materials is mostly a thermomechanical process that modifies their overall mechanical behavior. The present research work focuses on the acrylonitrile-butadiene-styrene (ABS) polymer, which is the second most popular material used in FFF-3D printing. In order to investigate the effect of the recycling courses on the mechanical response of the ABS polymer, an experimental simulation of the recycling process that isolates the thermomechanical treatment from other parameters (i.e., contamination, ageing, etc.) has been performed. To quantify the effect of repeated recycling processes on the mechanic response of the ABS polymer, a wide variety of mechanical tests were conducted on FFF-printed specimens. Regarding this, standard tensile, compression, flexion, impact and micro-hardness tests were performed per recycle repetition. The findings prove that the mechanical response of the recycled ABS polymer is generally improved over the recycling repetitions for a certain number of repetitions. An optimum overall mechanical behavior is found between the third and the fifth repetition, indicating a significant positive impact of the ABS polymer recycling, besides the environmental one.
Collapse
|
29
|
Narancic T, Cerrone F, Beagan N, O’Connor KE. Recent Advances in Bioplastics: Application and Biodegradation. Polymers (Basel) 2020; 12:E920. [PMID: 32326661 PMCID: PMC7240402 DOI: 10.3390/polym12040920] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
The success of oil-based plastics and the continued growth of production and utilisation can be attributed to their cost, durability, strength to weight ratio, and eight contributions to the ease of everyday life. However, their mainly single use, durability and recalcitrant nature have led to a substantial increase of plastics as a fraction of municipal solid waste. The need to substitute single use products that are not easy to collect has inspired a lot of research towards finding sustainable replacements for oil-based plastics. In addition, specific physicochemical, biological, and degradation properties of biodegradable polymers have made them attractive materials for biomedical applications. This review summarises the advances in drug delivery systems, specifically design of nanoparticles based on the biodegradable polymers. We also discuss the research performed in the area of biophotonics and challenges and opportunities brought by the design and application of biodegradable polymers in tissue engineering. We then discuss state-of-the-art research in the design and application of biodegradable polymers in packaging and emphasise the advances in smart packaging development. Finally, we provide an overview of the biodegradation of these polymers and composites in managed and unmanaged environments.
Collapse
Affiliation(s)
- Tanja Narancic
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
| | - Federico Cerrone
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
| | - Niall Beagan
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
| | - Kevin E. O’Connor
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
- School of Biomolecular and Biomedical Sciences, Earth Institute, O’Brien Centre for Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
| |
Collapse
|
30
|
Classifying Degraded Three-Dimensionally Printed Polylactic Acid Specimens Using Artificial Neural Networks based on Fourier Transform Infrared Spectroscopy. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9132772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fused filament fabrication (FFF) is commonly employed in multiple domains to realize inexpensive and flexible material extrusion systems with thermoplastic materials. Among the several types of thermoplastic materials, polylactic acid (PLA), an environment-friendly bio-plastic, is commonly used for FFF for the sake of the safety of the manufacturing process. However, thermal degradation of three-dimensionally (3D)-printed PLA products is inevitable, and it is one of the failure mechanisms of thermoplastic products. The present study focuses on the thermal degradation of 3D-printed PLA specimens. A classification methodology using artificial neural networks (ANNs) based on Fourier transform infrared (FTIR) and was developed. Under the given experimental conditions, the ANN model could classify four levels of thermal degradation. Among the FTIR spectra recorded from 650 cm−1 to 4000 cm−1, the ANN model could suggest the best wavenumber ranges for classification.
Collapse
|